‘Stateless Geant4’ prototype

A.Gheata, W.Pokorski
15.09.2020

Introduction

hardware trends push for concurrency and vectorization
* HPC centers
* GPUs

general simulation code is probably the one most ‘unfriendly’ for vectorization

* many branches
 we don’t have 1000 particles undergoing the same process, but we have 1000 ’if’ statements...

* stochasticity
experiments really need faster (and more precise) simulation
* we need to try whatever we can to efficiently run on modern hardware

attempts of vectorization like the GeantV prototype (nttps://arxiv.org/abs/2005.00949) gave an
insight what realistically could or could not be achieved

e can we apply the techniques that gave some speedups in Geant4?

https://arxiv.org/abs/2005.00949

GeantV lesson

e GeantV prototype showed that although the speedup of several
factors cannot be achieved, some processing stages could potentially
gain from vectorization

* propagation in magnetic field
* MSC
e some physics models

e can we get those speedups in Geant4 for a reasonable price?
e getting any % without breaking (too much) the backward compatibility would
be a success

* can we (do we need to) do anything to make exploitations of those
different approaches easier (possible)?

Current status

* Geant4 propagates particles one-by-one (per thread)

* several Geant4 classes (managers, navigator, transportation, etc) hold
the state related to the currently propagated particle

» default behavior is to propagate each particle from the first to the last

step in one go

* one can play with ‘stacking actions’ to ‘postpone’ particles, but this can be
done only between steps

* Geant4 step contains several ‘stages’ (geometry, physics,
transportation, magnetic field propagation) which currently can’t be
separated

* this prevents any fine-grained parallelism

Goal of this R&D

* make Geant4 engine ‘stateless’
e attach all the ‘state’ to each track

* split Geant4 step in ‘stages’ that can be executed independently

* introduce containers, allowing to group particles for each of the stage
* each ‘stage’ processes particles waiting and passes them on to the next stage

 ‘stages’ can run independently and in parallel

* they ‘consume’ what is in their container and populate other containers
* they could process the input from the container in vector-like manner

Disclaimer

°Nno performance measurements
°* N0 mMemory usage measurements

* no studies of saturating specific containers or blocking between
stages

* no detailed physics validation (certainly several bugs overlooked)

e goals:

* understand the code changes in Geant4 required to introduce such an
architecture

* demonstrate the feasibility by running a simple example

Code changes for ‘statelessness’

* strategy
* remove any members from the Geant4 classes (managers, navigators, etc)
that hold the state of the track
e either introduce them in G4Track directly
e or introduce ‘state’ classes and add pointers to those from G4Track
* change the signature of the relevant methods and add

e either G4Track as argument
e or one of the new ‘state’ classes as argument

* in summary: no caching of state and all relevant methods called with
‘G4Track™’ as argument

Managers

* pointers to track and step moved away from managers
* methods of the managers called now with argument *Track

* moved any state information from managers to track

e all step- and physics-related members moved from stepping manager
to track

GA4SteppingManage
r

G4TrackingManager GA4SteppingManager oS GATrackingManager

DoProcessing(G4Event*) ProcessOneTrack(G4Track*) Stepping(G4Track®)
fStep, flrack, state info for GetSecondary(G4Track*)
ProcessOneTrack(G4Track*
Tack : L sup;;‘:‘a"“'“ Get...(G4Track*)
GetSecondary()
Get...()

G4Trajectory

G4Trajectory

Navigators

 Removing state from navigator (G4Navigator, G4VoxelNavigator,
G4VoxelSafety)

e Quite some caching and 'state memory' in different methods

* Problem: can't pass track as argument to navigator methods because of
circular dependency

 Solution: introduced 'navigator state struct’ (similar idea to G4FieldTrack)
e Each track owns such an object
* it gets passed it to navigator methods

* Added state as argument to Navigator methods
* G4double ComputeStep(...) -> G4double ComputeStep(G4NavigatorState *const state, ...)

Processes

 similarly for Transportation and other processes

* removed any 'state caching members’ and introduced
* GA4TransportState.hh
* G4ELossState.hh
. etc

* all those ‘state’ objects are attached to G4Track

Breaking ‘steps’ into stages and introducing

containers

 stepping split in stages (along step geometry, physics, post step, etc)
* Introduced containers of particles for each stage
* processing is finished when all containers are empty

Track Track Track
Container Container Container

Track Geometry/ AlongStep PostStep
Container Transport Physics Physics

EventManager \

~

-

TrackManager

Process Process Process Process
One Geometry/ Along Post
Tk Transport Step Step

11

Tests

* running exampleB2a for the purpose of test
* no detailed validation, just making sure it compiles, doesn’t crash and ‘seems to run ok’

e able to run 1000s of events with steps split into stages and several particles
transported in the same time

0O OO0 0O OO 000 0O 00O OO OO0 00O 0O O 0 00O 00 O 000 0000000000 00000

* G4Track Information: Farticle = e-, Track ID 2, Parent ID = 24

O OO OO OO0 0O OO0 OO OO OO0 0O OO0 00O 0K O 0000000 00 0000

R

K, 00 0 D00 DO DO DO DO D O A
Ximm) ¥imm) Z(mm) KinE(
-24 le -
mm) KinE(1 dE(Me¥) StepLeng TracklLeng
[
t eloni TragklD:
t elani Tr
por
ThackID:
t em Tra
1d eloni
eloni
get eloni
World eloni
World
et

rtation

World elonifTrackID:
World eloni|TrackID:

=k

each line gets printed when one of the particles,
completes it’s ‘travel’ through all the containers

MMPMRPRRPRRRERERMMWUERWNRRBMERNNES
|

k.

World
World
World
Target
World
World
World
Target

elaoni
eloni
eloni
2m
Toni
i

2m

eloni

TrackID:

MrackID

cklID:
kID

TragkID:
TrackgID:

Repository

G4

* fork of the geant4-dev g
* https://gitlab.cern.ch/agheata/geant4-dev :,

* developments on top of geant4- |
dev master °

Andrei Gheata » &4 geant4-dev > Details

geant4-dev &

(¢ 4 v ¥ Star 0 Y Fork 0
\J Project ID: 71319 | Leave project
- 69,709 Commits }’ 8 Branches ¢ 119 Tags [337.3 MB Files
Geant4 toolkit for the simulation of the passage of particles through matter - Development Repository
Forked from geant4 / geant4-dev
master geant4-dev + v History Q Find file Web IDE &

Merge branch ‘temp' into 'master’
Witold Pokorski authored 1 montt

g

[README i3 LICENSE [CONTRIBUTING ® Add CHANGELOG @ Setup CI/CD

Name Last commit

B _github Add source/parameterisations to Code Owners

i _gitlab Add source/parameterisations to Code Owners

8 GitUtilities Fixup issues in git/clang-format hooks MR !138 had a few iss...

8 ReleaseNotes relnotes-ref-01: added notes...

B cmake Switch to GAEMLOW 7.9.1

v Clone v

6bdcd276

13

Last update

9 months ago

9 months ago

9 months ago

1 month ago

2 months ago

Conclusions

* making Geant4 engine ‘stateless’ and splitting the step into stages requires
substantial, but feasible changes

* backwards compatibly could be, to a very large extend, preserved
* only more advanced users’ code might need modifications

e we could start from introducing changes in G4Navigator, which were
anyway planned

2Soe (?rate safety computation and state from navigator’ — on Geometry Work Plan for

* once the G4Navigator is stateless, we could re-evaluate other required
changes and try to perform some performance comparisons
e smooth path to architecture modification allowing to further experiment with

vectorization and parallelism

* it would add quite some flexibility for further potential improvements related to track/step-
level parallelism

