
‘Stateless Geant4’ prototype
A.Gheata, W.Pokorski

15.09.2020

1



Introduction

• hardware trends push for concurrency and vectorization
• HPC centers 

• GPUs

• general simulation code is probably the one most ‘unfriendly’ for vectorization
• many branches

• we don’t have 1000 particles undergoing the same process, but we have 1000 ’if’ statements…

• stochasticity

• experiments really need faster (and more precise) simulation
• we need to try whatever we can to efficiently run on modern hardware 

• attempts of vectorization like the GeantV prototype (https://arxiv.org/abs/2005.00949) gave an 
insight what realistically could or could not be achieved
• can we apply the techniques that gave some speedups in Geant4?

2

https://arxiv.org/abs/2005.00949


GeantV lesson

• GeantV prototype showed that although the speedup of several 
factors cannot be achieved, some processing stages could potentially 
gain from vectorization
• propagation in magnetic field
• MSC
• some physics models

• can we get those speedups in Geant4 for a reasonable price?
• getting any % without breaking (too much) the backward compatibility would 

be a success
• can we (do we need to) do anything to make exploitations of those 

different approaches easier (possible)?

3



Current status

• Geant4 propagates particles one-by-one (per thread)
• several Geant4 classes (managers, navigator, transportation, etc) hold 

the state related to the currently propagated particle
• default behavior is to propagate each particle from the first to the last 

step in one go
• one can play with ‘stacking actions’ to ‘postpone’ particles, but this can be 

done only between steps
• Geant4 step contains several ‘stages’ (geometry, physics, 

transportation, magnetic field propagation) which currently can’t be 
separated
• this prevents any fine-grained parallelism

4



Goal of this R&D

• make Geant4 engine ‘stateless’
• attach all the ‘state’ to each track

• split Geant4 step in ‘stages’ that can be executed independently 
• introduce containers, allowing to group particles for each of the stage
• each ‘stage’ processes particles waiting and passes them on to the next stage

• ‘stages’ can run independently and in parallel
• they ‘consume’ what is in their container and populate other containers

• they could process the input from the container in vector-like manner 

5



Disclaimer

• no performance measurements
• no memory usage measurements
• no studies of saturating specific containers or blocking between 

stages
• no detailed physics validation (certainly several bugs overlooked)

• goals:
• understand the code changes in Geant4 required to introduce such an 

architecture
• demonstrate the feasibility by running a simple example

6



Code changes for ‘statelessness’

• strategy
• remove any members from the Geant4 classes (managers, navigators, etc) 

that hold the state of the track
• either introduce them in G4Track directly
• or introduce ‘state’ classes and add pointers to those from G4Track

• change the signature of the relevant methods and add 
• either G4Track as argument
• or one of the new ‘state’ classes as argument

• in summary: no caching of state and all relevant methods called with 
‘G4Track*’ as argument 

7



Managers

• pointers to track and step moved away from managers
• methods of the managers called now with argument *Track 

• moved any state information from managers to track
• all step- and physics-related members moved from stepping manager 

to track

8



Navigators

• Removing state from navigator (G4Navigator, G4VoxelNavigator, 
G4VoxelSafety)
• Quite some caching and 'state memory' in different methods

• Problem: can't pass track as argument to navigator methods because of 
circular dependency

• Solution: introduced 'navigator state struct’ (similar idea to G4FieldTrack)
• Each track owns such an object
• it gets passed it to navigator methods

• Added state as argument to Navigator methods
• G4double ComputeStep(…) -> G4double ComputeStep(G4NavigatorState *const state, …)

9



Processes

• similarly for Transportation and other processes
• removed any ’state caching members’ and introduced

• G4TransportState.hh
• G4ELossState.hh 
• etc

• all those ‘state’ objects are attached to G4Track

10



Breaking ‘steps’ into stages and introducing 
containers
• stepping split in stages (along step geometry, physics, post step, etc)
• Introduced containers of particles for each stage
• processing is finished when all containers are empty

Track 
Container

Po
pN

ex
t

Tr
ac

k

Process 
One 
Track

Track 
Container

Geometry/
Transport

Po
pN

ex
t

Tr
ac

k
Process 

Geometry/
Transport

Track 
Container
AlongStep

Physics

Po
pN

ex
t

Tr
ac

k

Process 
Along 
Step

Track 
Container
PostStep
Physics

Po
pN

ex
t

Tr
ac

k

Process 
Post 
Step

Ev
en

tM
an

ag
er

Tr
ac

kM
an

ag
er

11



Tests

• running exampleB2a for the purpose of test
• no detailed validation, just making sure it compiles, doesn’t crash and ‘seems to run ok’

• able to run 1000s of events with steps split into stages and several particles 
transported in the same time

each line gets printed when one of the particles,
completes it’s ‘travel’ through all the containers 12



Repository

• fork of the geant4-dev
• https://gitlab.cern.ch/agheata/geant4-dev

• developments on top of geant4-
dev master

13



Conclusions

• making Geant4 engine ‘stateless’ and splitting the step into stages requires 
substantial, but feasible changes
• backwards compatibly could be, to a very large extend, preserved

• only more advanced users’ code might need modifications
• we could start from introducing changes in G4Navigator, which were 

anyway planned
• ‘Separate safety computation and state from navigator’ – on Geometry Work Plan for 

2020
• once the G4Navigator is stateless, we could re-evaluate other required 

changes and try to perform some performance comparisons
• smooth path to architecture modification allowing to further experiment with 

vectorization and parallelism
• it would add quite some flexibility for further potential improvements related to track/step-

level parallelism

14


