
VecGeom@GPU
- ongoing work -

andrei.gheata@cern.ch25th Geant4 Collaboration Meeting

GPU-efficient geometry navigation
● Motivated by the need to have accelerator-friendly simulation
● Two main candidates

○ VecGeom: our in-house geometry modeler
■ ~1:1 mapping of scalar C++ CPU object model to GPU based on macros
■ CudaManager handling creating and populating GPU instances from CPU ones
■ Effective for making the GPU understand our CPU code, but unaware of device

specificity: memory/cache hierarchies, parallelism models, resources
○ Optix: state of art proprietary ray-tracing software

■ Efficient library allowing efficient scheduling of user kernels (shaders) in a ray-driven
pipeline

■ Ray-model intersection handled by hardware-accelerated BVH
■ Promising attempts for optical photon driven simulation (Optiks)

2

GPU-efficient geometry navigation
● Motivated by the need to have accelerator-friendly simulation
● Two main candidates

○ VecGeom: our in-house geometry modeler - at hand to try now
■ ~1:1 mapping of scalar C++ CPU object model to GPU based on macros
■ CudaManager handling creating and populating GPU instances from CPU ones
■ Effective for making the GPU understand our CPU code, but unaware of device

specificity: memory/cache hierarchies, parallelism models, resources
○ Optix: state of art proprietary ray-tracing software - promising, but potentially more effort

■ Efficient library allowing efficient scheduling of user kernels (shaders) in a ray-driven
pipeline

■ Ray-model intersection handled by hardware-accelerated BVH
■ Promising attempts for optical photon driven simulation (Optiks)

3

Feasibility study: a GPU raytracer demonstrator
● Import a geometry setup
● Implement a simple GPU-aware navigator
● Implement some simple “shader models”
● Write a demonstrator running on both CPU/GPU

○ Deal with all possible blockers along the way

● Implement few kernel scheduling scenarios
● Profile the code and understand bottlenecks
● Decide where to to go from here

4

Feasibility study: a GPU raytracer demonstrator
● Import a geometry setup - use our VecGeom GDML importer + trackML geom
● Implement a simple GPU-aware navigator - use a looper w/o optimizations
● Implement some simple “shader models” - specular reflection/ transparency
● Write a demonstrator running on both CPU/GPU

○ Deal with all possible blockers along the way - valid GPU object instances, memory/stack size

● Implement few kernel scheduling scenarios Sheffield GPU
● Profile the code and understand bottlenecks hackathon
● Decide where to to go from here - main R&D directions to achieve

performance
● Co-developed with Guilherme A. as branch in VecGeom

5

Some blockers
● Getting the (non-trivial) CPU code to compile and run on GPU…

○ Handling allocations, object copying and synchronization, kernel scheduling

● Handling rays as we would do tracks in simulation
○ Storing large track states for all pixels of a large image requires lots of memory
○ CUDA Exception: Lane User Stack Overflow - deep stacks, abusing local variables, …
○ CUDA_EXCEPTION_5, Warp Out-of-range Address.
○ RaytraceBenchmark received signal CUDA_EXCEPTION_6, Warp Misaligned Address

● Got it working eventually...

6

Sheffield hackathon
● Organizers: NVidia + Sheffield University
● 8 teams (scientific areas) with few mentors each
● 3 weeks: general presentations, mentoring, work, support, meetings with

experts, reports
● Got some insight on profiling tools usage: Nsight Systems & Nsight Compute
● Learned a lot, got useful contacts and links, understood performance

bottlenecks

7

Sheffield hackathon takeaways
● Kernel scheduling should be done carefully, minimizing the need for

synchronization to maximize occupancy
● Kernels of smaller size/complexity to be preferred to large ones, giving the

opportunity to more cores to run concurrently
● Our scientific code produces high register pressure, overspilling to memory.

Per-thread optimal settings for allocated registers is a compromise to be
found per card type.

● Double precision is way too expensive on GPU
○ NVIDIA charging premium for double precision enabled cards
○ “Emulating FP64 with double-float arithmetic is conservatively 20x slower than native float

arithmetic”

8

https://stackoverflow.com/questions/29344800/emulating-fp64-with-2-fp32-on-a-gpu

Minimizing GPU memory footprint
● GPU workflow = massive parallelism on tracks
● Handling a large number of track states - O(million) - concurrently is inevitable
● Geometry part of the state is considerable

○ Array of placed volumes indices in the geometry hierarchy
■ allowing global transformation computation & per-level navigation
■ Size ~ maximum geometry depth (15-20 for LHC setups)

● Ideally need two navigation states/track
○ Pre-step and post-step locations

9

Navigation state handling in VecGeom

PWorl

d

PA_0 PA_1 PA_2

PB_0 PC_0PB_0 PC_0 PB_0 PC_0

P_world

P_A0

P_B0

P_A1

P_C0

P_A2

ptr_P_world

ptr_P_A0

ptr_P_B0

ptr_P_A1

ptr_P_C0

ptr_P_A2

compactPlacedVolBuffer

0

1

2

3

4

5

0

1

2 3 2 23 3

4 5

Sequential physical volume index
stored as data member

id_

memory

Index2PVolumeConverter
id_ ↔ ptr_Pvol

NavigationState {fCurrentLevel = 3 / 3, fPath = {0, 1, 3}} :: TopTransform (G013= TA_0 * Tc_0)

TA_0

Tc_0
Navigation
history
“levels”

10

Tradeoff: state becoming an index in a global table
● The physical volumes can be enumerated and their info stored in a table

○ Track state becomes a 32 bits index in this table -> global navigation index
○ The table can become large for big geometry setups
○ Bonus: global transformations can be also cached down to a given depth -> speedup

-DUSE_NAVINDEX=ON
NavigationState becomes a type alias
No interface changes

11

VecGeom in single precision mode
● Much to gain on GPU

○ Is single precision good enough for geometry navigation?
○ How difficult to implement in VecGeom?

● Many possible approaches - algorithms templated on the data type
○ Mixing single & double precision interfaces however difficult to maintain/validate
○ Simplest way to test: generalizing vecgeom::Precision as type alias, chosen at compilation

time

● Had to touch most VecGeom classes, preserving interfaces
○ -DSINGLE_PRECISION=ON compiling OK
○ Changing numerical constants (such as kTolerance)
○ Many solids unit tests checking algorithms stability against propagation/boundary crossing are

failing

12

Rounding errors
● Floating point representation in single precision: 23 bits mantissa + 8 bits

exponent + 1 bit sign (vs. 52+11+1 for double precision)
○ As exponent grows, the last rounded significant digit represents a larger (absolute number)
○ As consequence, arithmetic operations involving large numbers have large round-off errors

● Typical geometry example: rounding errors for propagated points

Tolerance = 1e-4

P0

v

P = P0 + v∘distance
(needs accuracy)

round-off ~ distance

13

P0

Rounding errors
● Floating point representation in single precision: 23 bits mantissa + 8 bits

exponent + 1 bit sign (vs. 52+11+1 for double precision)
○ As exponent grows, the last rounded significant digit represents a larger (absolute) number
○ As consequence, arithmetic operations involving large numbers have large round-off errors

● Typical geometry example: rounding errors for propagated points
○ Strategy: approach solid, then compute distance

Tolerance = 1e-4

v

P = P1 + v∘d2
(accurate on boundary)

round-off ~ distance

P1 = P0 + v∘d1
(inaccurate)

14

Conclusions
● Possible to use VecGeom on GPU

○ A demonstrator ray-tracing utility using arbitrary geometry was developed

● Work started to make geometry efficient for simulation on GPU
○ Smaller navigation state caching transformation matrices
○ Single precision navigation

● Need for navigator class optimized for GPU
○ Using BVH or voxelization

● Most of these optimizations will become available in Geant4 with the native
VecGeom navigation

○ A version of the global navigation index table with transformation caching could be
implemented in Geant4 native as well

15

