A SIMULATION TOOLKIT

& GEANT<

Reproducibility Tests

Alberto Ribon
CERN EP/SFT

Geant4 Collaboration meeting, 21 September 2020



Reproducibility in Geant4

Work started in 2012, and in G4 9.6 we achieved for the first time
the sequential reproduciblility for FTFP_BERT

Leveraging on the sequential reproducibility, the next major
achievement was the MT vs. SEQ reproducibility in G4 10.0

* For NeutronHP, it MT vs. SEQ reproducibility was fixed in G4 10.1

* For De-excitation and Radioactive Decay intermittent violations of
reproducibility, finally fixed in G4 10.4

* For INCLXX, intermittent violations of reproducibility, fixed in G4 10.5
Reproducibllity is tested at each reference tag and public release

* In the recent past, once or twice per year we need to investigate and
debug reproducibility violations



“Weak” and “Strong” Reproducibility
* Weak reproducibility :

* EXxecuting twice the same Geant4 application, starting with the same
random engine status, we get the same random number sequence

- Using: /random/resetEngineFrom start.rndm
e Strong reproducibility :

* We execute a Geant4 application with N events — long run —
saving the random engine status at the beginning of each event;
then we execute the same application for 1 event — short run —
setting the random engine status of the k-th short run as the saved
one at the beginning of the k-th event of the long run;
we check that the random sequence Is the same, fork=1,..., N

- Using: /random/setSavingFlag 1

3
/random/saveEachEventFlag 1



SimplifiedCalo

* For the reproduciblility tests, we use the SimplifiedCalo
application
* Hadronic showers in simplified calorimeters

— 1000 events for 5 configurations: 1) 20 GeV KOL on Fe-Sci
2) 20 GeV pi- on Cu-LAr; 3) 20 GeV K- on PbWO4
4) 20 GeV p onW-LAr; 5)20GeV n on Pb-LAr

* At the end of the event (i.e. of an hadronic shower),
we print out a flat random number
* Reproducibility means that this end-of-the-event random number
IS the same In the two cases that we compare

- E.g. the k-th event of a long-run vs.
the single event of a short-run with random engine set to be the same

as the one at the beginning of the k-th event of the long run



Example 1

Irandom/resetEngineFrom start.rndm
Irandom/setSavingFlag 1
Irandom/saveEachEventFlag 1

/.g.g.un/particle pI-

/gun/energy 20 GeV
/mydet/absorberMaterial Copper Long run in MT mode
/mydet/activeMaterial LiquidArgon

Iru n/beamOn 1000

=> Producing in output the files:

G4Worker3_runOevtO0.rndm , G4Worker3 runOevtl.rndm, ...
G4Worker5_runOevt23.rndm , ... , GAWorker7_run0evt999.rndm



Example 2

Irandom/resetEngineFrom G4Worker5_runQevt23.rndm

/.g.g.un/particle pi-
/gun/energy 20 GeV
/mydet/absorberMaterial Copper

/mydet/activeMaterial LiquidArgon
Short run in SEQ mode

Illlr.unlbeamOn 1

=> From the log file of this short run:
--- EndOfEventAction --- event=0 random=0.7805

To be compared with this line of the output of the long run:
G4WT5 > --- EndOfEventAction --- event=23 random=0.7805



Planned Tests

* Long-run with one of the following:
« export G4AFORCE_RUN_MANAGER_TYPE=MT
« export G4FORCE_RUN_MANAGER_TYPE=Tasking
« export G4FORCE_RUN_MANAGER_TYPE=TBB
* And then short-runs with:
« export G4FORCE_RUN_MANAGER_TYPE=Serial



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

