
Reproducibility Tests

 Alberto Ribon
 CERN EP/SFT

 Geant4 Collaboration meeting, 21 September 2020

2

Reproducibility in Geant4
● Work started in 2012, and in G4 9.6 we achieved for the first time

the sequential reproducibility for FTFP_BERT
● Leveraging on the sequential reproducibility, the next major

achievement was the MT vs. SEQ reproducibility in G4 10.0
● For NeutronHP, it MT vs. SEQ reproducibility was fixed in G4 10.1
● For De-excitation and Radioactive Decay intermittent violations of

reproducibility, finally fixed in G4 10.4
● For INCLXX, intermittent violations of reproducibility, fixed in G4 10.5

● Reproducibility is tested at each reference tag and public release
● In the recent past, once or twice per year we need to investigate and

debug reproducibility violations

3

“Weak” and “Strong” Reproducibility
● Weak reproducibility :

● Executing twice the same Geant4 application, starting with the same
random engine status, we get the same random number sequence

– Using: /random/resetEngineFrom start.rndm # In all cases

● Strong reproducibility :
● We execute a Geant4 application with N events – long run –

saving the random engine status at the beginning of each event;
then we execute the same application for 1 event – short run –
setting the random engine status of the k-th short run as the saved
one at the beginning of the k-th event of the long run;
we check that the random sequence is the same, for k = 1 ,…, N

– Using: /random/setSavingFlag 1 # In all cases
 /random/saveEachEventFlag 1 # For MT

4

SimplifiedCalo
● For the reproducibility tests, we use the SimplifiedCalo

application
● Hadronic showers in simplified calorimeters

– 1000 events for 5 configurations: 1) 20 GeV K0L on Fe-Sci
 2) 20 GeV pi- on Cu-LAr ; 3) 20 GeV K- on PbWO4
 4) 20 GeV p on W-LAr ; 5) 20 GeV n on Pb-LAr

● At the end of the event (i.e. of an hadronic shower),
we print out a flat random number

● Reproducibility means that this end-of-the-event random number
is the same in the two cases that we compare

– E.g. the k-th event of a long-run vs.
 the single event of a short-run with random engine set to be the same
 as the one at the beginning of the k-th event of the long run

5

Example (1/2)
/random/resetEngineFrom start.rndm
/random/setSavingFlag 1
/random/saveEachEventFlag 1
…
/gun/particle pi-
/gun/energy 20 GeV
/mydet/absorberMaterial Copper
/mydet/activeMaterial LiquidArgon
…
/run/beamOn 1000

=> Producing in output the files:

 G4Worker3_run0evt0.rndm , G4Worker3_run0evt1.rndm , …
 G4Worker5_run0evt23.rndm , … , G4Worker7_run0evt999.rndm

Long run in MT mode

6

Example (2/2)
/random/resetEngineFrom G4Worker5_run0evt23.rndm
…
/gun/particle pi-
/gun/energy 20 GeV
/mydet/absorberMaterial Copper
/mydet/activeMaterial LiquidArgon
…
/run/beamOn 1

=> From the log file of this short run:
 --- EndOfEventAction --- event= 0 random=0.7805

 To be compared with this line of the output of the long run:
 G4WT5 > --- EndOfEventAction --- event= 23 random=0.7805

Short run in SEQ mode

7

Planned Tests
● Long-run with one of the following:

● export G4FORCE_RUN_MANAGER_TYPE=MT
● export G4FORCE_RUN_MANAGER_TYPE=Tasking
● export G4FORCE_RUN_MANAGER_TYPE=TBB

● And then short-runs with:
● export G4FORCE_RUN_MANAGER_TYPE=Serial

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

