

Milano Bicocca University

TEST OF LEPTON FLAVOUR UNIVERSALITY IN SEMILEPTONIC DECAYS AT THE LHCB EXPERIMENT Second Year PhD final seminar, Cycle XXXIV

September 3, 2019

Supervisor: Prof. Marta Calvi

Simone Meloni, 763674 s.meloni1@campus.unimib.it

1 Introduction and motivations of the analysis

2 Analysis strategy

Backgrounds and main systematic uncertainties

Data/MC comparisons

5 Toy studies

6 A new project: DFEI

Simone Meloni, 763674 (Milano Bicocca University)

A D > A B > A B >

Introduction and motivations of the analysis

イロト スピト メヨト メヨ

Lepton Flavour Universality in the SM

• Lepton Flavour Universality (LFU) is an accidental symmetry in the Standard Model

- The hypothesis can be tested in b
 ightarrow c l
 u
 - Relatively simple description in the Standard Model via Tree Level Processes
 - High Transition rate
- Differences for decays with e, μ, τ should originate only from mass differences
- Test variables are ratios of Branching Fractions

$$\mathcal{R}(D^{(*)}) = rac{\mathcal{B}(B
ightarrow D^{(*)} au
u)}{\mathcal{B}(B
ightarrow D^{(*)} \mu
u)}$$

- Equality of the couplings of gauge bosons to leptons $(g_e = g_\mu = g_ au)$
- LFU can be violated in New Physics Models with mass dependent coupling

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Previous measurements

- Various measurements of *R*(D^(*)) combined
- Tension at the 3.1 σ level wrt SM predictions

• • • • • • • • • • • • •

• No measurement of $\mathcal{R}(D^{+,0})$ performed at an hadron collider so far.

The LHCb experiment

• LHCb is a single arm spectrometer with angular coverage 2 $< \eta < 5$

- 5.9 fb^{-1} collected at $\sqrt{s} = 13 \, TeV$
- 2 fb^{-1} used for this analysis (2015+2016)

Excellent performances in

- Primary and secondary vertices reconstruction (VELO)
- Resolution on tracks momentum (Tracking Stations)
- Photons, Electrons, Muons and Hadrons identification (ECAL, HCAL, Muon Stations)
- $\pi/K/p$ identification (RICH1 and RICH2)

• • • • • • • • • • • • • •

- All the subdetectors are used for the analysis...
- ...the response of some of them must be emulated offline in our fast simulations.

$\mathcal{R}(D^+)$ with $au o \mu u u$ at LHCb, analysis strategy

• Measuring
$$\mathcal{R}(D^{+,*}) = \frac{\mathcal{B}(B \to D^{(+,*)}\tau\nu)}{\mathcal{B}(B \to D^{(+,*)}\mu\nu)}$$

$$\blacktriangleright \ \tau \to \mu \nu \nu$$

$$\blacktriangleright D^+ \to K^- \pi^+ \pi^+$$

- Simultaneous measurement of $\mathcal{R}(D^+)$ and $\mathcal{R}(D^*)$ with $D^* \to D^+ \pi^0$, with un-reconstructed π^0
- Signal $(B \rightarrow D^{(*)}\tau\nu)$ and normalization $(B \rightarrow D^{(*)}\mu\nu)$ have the same final state
 - We separate them through a fit to variables evaluated in an approximated rest frame

$$q^2=(p_B-p_D)^2$$

• • • • • • • • • • • • •

Physical backgrounds estimated with MC simulations

- $B \rightarrow DH_cX$, $H_c \rightarrow \mu\nu X'$
- $B \rightarrow D^{**} \mu \nu X$

Other backgrounds in a data driven way

• Fake-D

2000 E.[MeV/c²]

- Combinatorial
- μ MisID

 E^*_{μ}

1000

0.1

0.08

0.06

0.04

0.02

Analysis strategy

人口》 人間》 人口》 人口》

- The data events used are triggered solely on the hadronic part of the event
- The selections require well vertexed, high- $p_T \mu$ and $D(\rightarrow K\pi\pi)$ candidates with opposite charge
- Background of prompt-charm from PV removed by requiring a big impact parameter of the D.

Fake-D background

- Particle Identification criteria on the daughters of the *D* to suppress Fake-*D* contributions
- Fake-D further suppressed by means of a BDT trained on:
 - signal: MC of $B \rightarrow D\mu\nu$
 - background: mass sidebands
- Remaining background is statistically subtracted by means of a mass fit

< □ > < □ > < □ > < □ > < □ > < □ </p>

Selections and data driven background

MisID background

- $B \rightarrow Dh(\mu)X$
- Estimated in a region enriched of hadrons
- Both in the Right-Sign $(D^{\pm}\mu^{\mp})$ and Wrong-Sign $(D^{\pm}\mu^{\pm})$ sample
- Divided in reconstructed hadron categories
- The contributions from hadron species evaluated by deconvolving the MisID matrix
- The true number of events from each hadron specie is then converted in $N(\hat{\mu}|h)$

$\begin{pmatrix} N_{\hat{\pi}} \\ N_{\hat{K}} \end{pmatrix}$		$\begin{pmatrix} P(\hat{\pi} \mid \pi) \\ P(\hat{K} \mid \pi) \end{pmatrix}$	$\begin{array}{l} P(\hat{\pi} \mid K) \\ P(\hat{K} \mid K) \end{array}$	· · · ·	$\begin{array}{c} P(\hat{\pi} \mid g) \\ P(\hat{K} \mid g) \end{array}$	$\begin{pmatrix} N_{\pi} \\ N_{K} \end{pmatrix}$
$\begin{pmatrix} \vdots \\ N_{\hat{g}} \end{pmatrix}$	-	\vdots $P(\hat{g} \mid \pi)$	$P(\hat{g} \mid K)$	14. 	\vdots $P(\hat{g} \mid g)$	$\begin{pmatrix} \vdots \\ N_g \end{pmatrix}$

(a) < (a) < (b) < (b)

Combinatorial background

- The shape of the combinatorial is estimated from WS combinations
- The MisID is subtracted
- The normalization is corrected from RS/WS ratio, as a function of *B* mass

Isolation and control regions

- The physical backgrounds are suppressed with a charged particle isolation BDT
- It assigns to each non-signal particle a probability of coming from the decay vertex
- We cut on the maximum BDT value in each event

- By inverting this cut we have defined control regions to help us understanding better the background compositions
- We want to perform a simultaneous fit to signal and control regions, with common shape and normalization nuisance parameters

	high-B ⁰ mass	10S	20S	DD
Anti-isolated track(s)		$1~\pi$ -like	2π -like	1 <i>K</i> -like
Charge requirements		D^+h-	$\pi^+\pi^-$	
Purpose	Combinatorial MisID	$B o D^{**} \mu u$	$B o D_J^{**} \mu u$	$B \rightarrow DH_c X$

MC simulation

- in 2015 + 2016 dataset (2fb $^{-1}$) we have pprox 2.8M events
- We need lots of MC, simulating the full detector is unfeasable
- We are using a tracker-only sample of 3B events
- simulate everything which is not in the red boxes

- We emulate the hadron trigger efficiency offline, using tracker information
- I have been in charge of the emulation of the first software level trigger (HLT1)
- This year I have finished implementing the emulation on 2016 MC
- We have published an internal note to document the achievements

Backgrounds and main systematic uncertainties

・ロト ・回ト ・ヨト ・ヨ

The Double Charm background

- The most dangerous background is Double-Charm
- for each control region, 4 templates, dividing the sample by
 - charge of the *B* mother (B^0, B^+)
 - decay topology (Two body, Multi body)

Two Body templates

- The Multi body decays are not well known
- Their shape is reweighted and fitted from data

イロト イヨト イヨト

The Double Charm background

- The most dangerous background is Double-Charm
- for each control region, 4 templates, dividing the sample by
 - charge of the *B* mother (B^0, B^+)
 - decay topology (Two body, Multi body)

Two Body templates

- The Multi body decays are not well known
- Their shape is reweighted and fitted from data

Double charm with $\boldsymbol{\tau}$

- If the additional mesons are D_s , the μ can also come from a au, through the decay of $D_s o au
 u$
- $\mathcal{B}(D_s \rightarrow \tau \nu) = 5.5\%$
- We have a dedicated MC sample for this contribution
- This background is very dangerous since it is very similar to the signal in the fit variables

- We have seen in toys that the fit gets unstable when leaving this contribution float freely
- We constrain it relative to the μ double charm component

External constraints on the Double charm with $\boldsymbol{\tau}$

- Common normalization parameters as the μ component
- Common shape systematic uncertainty

Component	Shape	Normalization
$B^0 \rightarrow D^- (D_s^+ \rightarrow \tau^+ \nu_\tau)$	MC	$N(DD) \times (1 f_{Bu}) \times f_{DD}^{Bd} \times f_{\tau/\mu} \times \hat{\mathcal{B}}_{\mu}^{\tau}$
$B^0 \rightarrow D^- (D^+_s \rightarrow \tau^+ \nu_\tau) X$	MC + Shape Var.	$N(DD) \times (1 - f_{Bu}) \times (1 - f_{DD}^{Bd}) \times f_{\tau/\mu} \times \hat{B}_{\mu}^{\tau}$
$B^+ \rightarrow D^- (D_s^+ \rightarrow \tau^+ \nu_{\tau})$	MC	$N(DD) imes f_{Bu} imes f_{DD}^{Bu} imes f_{ au/\mu} imes \hat{\mathcal{B}}_{\mu}^{ au}$
$B^+ \rightarrow D^- (D^+_s \rightarrow \tau^+ \nu_\tau) X$	MC + Shape Var.	$N(DD) imes f_{Bu} imes (1 - f_{DD}^{Bd}) imes f_{ au/\mu} imes \hat{\mathcal{B}}_{\mu}^{ au}$

- Two additional normalization factors are included for this component
- $f_{\tau/\mu}$ (fixed) contains:

.

- the fraction of D_s modes in the muonic sample (in each template, from MC)
- the ratio of efficiencies (in each template, from MC)

- \mathcal{B}^{τ}_{μ} is:
 - the ratio between $\mathcal{B}(D_s \to (\tau \to \mu\nu\nu)\nu)$ and $\mathcal{B}(D_s \to \mu\nu X)$, from PDG
 - constrained with a 30% gaussian uncertainty

イロト イポト イヨト イヨト

Feed Down background

- The *D*⁺ and *D*^{*,+} mesons are the ground states formed by *c d* pairs (L=0, S=0)
- Other excited states we consider correspond to S = 1 and L = 1.
- They usually decay as $D^{**} o D^{(*)} \pi$
- We have one MC dataset for each of the $B \rightarrow D^{**}$ contributions

Normalized Events 0.25 0.25 0.25 0.25 0.15

0.05

(a) < (a) < (b) < (b)

- The 2S states are not well known
- We follow the same phenomenological approach we followed for the Double Charm component
- Their shape is reweighted, and we let the fitter interpolate between the alternative templates

$$w(\alpha) = 1 + 2\alpha \left(\frac{(p_{\mu} + p_{\nu})^2 - m_{\mu}^2}{8 \text{GeV}^2} - 0.5 \right)^{\frac{4}{10}} \xrightarrow{0}{0} \frac{1}{100} \frac{1}{1$$

イロン イロン イヨン イヨ

- By combining two spin-1/2 particles in a 1P state, you end up with 4 possible states
- Two braoad states and two narrow states
- We split the simulation in 8 templates according to
 - charge of the B mother
 - D** state

- In each analysis region we fit the yield of one of the 8 components
- We normalize the others using the ratio of efficiencies and ratio of *B*.

Resonance	Mass (MeV)	Width (MeV)	Decay modes
$D_0^*(2300)^0$	2300 ± 19	274 ± 40	$D^+\pi^-$ (seen)
$D_1(2420)^0$	2420.8 ± 0.5	31.7 ± 2.5	$D^{*}(2010)^{+}\pi^{-}(\text{seen})$
			$D^0\pi^+\pi^-$ (seen)
			$D^+\pi^-$ (not seen)
			$D^{*0}\pi^+\pi^-$ (not seen)
$D_2^*(2460)^0$	2460.7 ± 0.4	47.5 ± 1.1	$D^+\pi^-$ (seen)
			$D^{*}(2010)^{+}\pi^{-}(\text{seen})$
			$D^0\pi^+\pi^-$ (not seen)
			$D^{*0}\pi^+\pi^-$ (not seen)
$D_2^*(2465)^{\pm}$	2465.5 ± 1.3	46.7 ± 1.2	$D^0\pi^+(\text{seen})$
			$D^{*0}\pi^+$ (seen)
			$D^+\pi^+\pi^-$ (not seen)
			$D^{*+}\pi^+\pi^-$ (not seen)

Component	Shape	Normalization
$B^0 \rightarrow (D_1 \rightarrow D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$N(D_1^{\pm})$
$B^0 \rightarrow (D^*_0 \rightarrow D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$ \left \begin{array}{c} N(D_1^{\pm}) \times \varepsilon_{D_1^{\pm}}^{D_0^{\pm}} \times \hat{\mathcal{B}}_{D_1^{\pm}}^{D_0^{\pm}} \\ D_1^{\pm} \end{array} \right $
$B^0 \to (D_1' \to D^- X) \mu^+ \nu_\mu$	MC +Hammer LLSW	$ \left \begin{array}{c} N(D_1^{\pm}) \times \varepsilon_{D_1^{\pm}}^{D_1^{\pm}} \times \hat{\mathcal{B}}_{D_1^{\pm}}^{D_1^{\pm}} \\ D_1^{\pm} \end{array} \right $
$B^0 \to (D_2^* \to D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$ \left \begin{array}{c} N(D_1^{\pm}) \times \varepsilon \frac{D_2^{\pm\pm}}{D_1^{\pm}} \times \hat{B} \frac{D_2^{\pm\pm}}{D_1^{\pm}} \end{array} \right. $

September 3, 2019

20/38

Low mass states: external measurements

- We take into account both decay paths to arrive to a $D^+\mu$ final state
 - ▶ $B \rightarrow D^{**} \rightarrow D$

$$\blacktriangleright \quad B \to D^{**} \to D^* \to D$$

- Some of the decays have only been observed, no measured branching fraction available
- Use Isospin conservation to generalize from measured $\ensuremath{\mathcal{B}}$

$$\frac{\mathcal{B}(D^{**\pm} \to D^{(*)0}\pi^{\pm})}{\mathcal{B}(D^{**\pm} \to D^{(*)}\pi)} = \frac{\mathcal{B}(D^{**0} \to D^{(*)\pm}\pi^{\mp})}{\mathcal{B}(D^{**0} \to D^{(*)}\pi)} = \frac{2}{3}$$

- All the states widths are saturated by $D^*\pi$ or/and $D\pi$ decays.
- The only exception is D_1^0 , which has been lately seen decay to $D\pi\pi$
- I enlarge the error on ${\cal B}$ by 10% to include this

Resonance	Mass (MeV)	Width (MeV)	Decay modes
$D_0^*(2300)^0$	2300 ± 19	274 ± 40	$D^+\pi^-$ (seen)
$D_1(2420)^0$	2420.8 ± 0.5	31.7 ± 2.5	$D^{*}(2010)^{+}\pi^{-}(\text{seen})$
			$D^0\pi^+\pi^-(\text{seen})$
			$D^+\pi^-$ (not seen)
			$D^{*0}\pi^+\pi^-$ (not seen)
$D_2^*(2460)^0$	2460.7 ± 0.4	47.5 ± 1.1	$D^+\pi^-$ (seen)
			$D^{*}(2010)^{+}\pi^{-}(\text{seen})$
			$D^0\pi^+\pi^-$ (not seen)
			$D^{*0}\pi^+\pi^-$ (not seen)
$D_2^*(2465)^{\pm}$	2465.5 ± 1.3	46.7 ± 1.2	$D^0\pi^+$ (seen)
			$D^{*0}\pi^+$ (seen)
			$D^+\pi^+\pi^-$ (not seen)
			$D^{*+}\pi^+\pi^-$ (not seen)

- $$\begin{split} \mathcal{B}(D_1 \to D^*\pi) = & 1, \\ \mathcal{B}(D_1' \to D^*\pi) = & 1, \\ \mathcal{B}(D_0^* \to D\pi) = & 1, \\ \mathcal{B}(D_2^* \to D^*\pi) + \mathcal{B}(D_2^* \to D\pi) = & 1. \end{split}$$

Form Factors: definitions and parameterization

- We want to include the systematic uncertainty that comes from the choice of the model used to generate the B → D^(*)ℓν decays.
- The hadronic matrix elements cannot be evaluated from first principles
- They are expressed through Form Factors, which can be then measured

$$D | \bar{c}\gamma_{\mu}b | \bar{B} \rangle = f_{+}(q^{2})(p_{B}^{\mu} + p_{D})^{\mu} + [f_{0}(q^{2}) - f_{+}(q^{2})] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}}q^{\mu},$$

$$b^{*} | \bar{c}\gamma^{\mu}b | B \rangle = -ig(q^{2})\varepsilon^{\mu\nu\rho\sigma}\varepsilon^{*}_{\nu}(p_{B} + p_{D})_{\rho}q_{\sigma}$$

$$\bar{c}\gamma^{\mu}\gamma^{5}b | B \rangle = \varepsilon^{*\mu}f(q^{2}) + a_{+}(q^{2})\varepsilon^{*} \cdot p_{B}(p_{B} + p_{D})^{\mu}$$

$$+a_{-}(q^{2})\varepsilon^{*} \cdot p_{B}$$

• Various parameterizations for them in the literature in terms of $z = \frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w-1}-\sqrt{2}}$, where $w = v_B \cdot v_{D^{(*)}}$

 $\langle L$

 D^*

CLN

- uses dispersion relations, unitarity and HQET
- all form factors are expressed using a universal Isgur-Wise function
- a single tunable parameter ρ

$$f(z) \approx [1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)^3]$$

BGL

- More general, does not use HQET assumptions
- More parameters, expansion series (truncated at finite order)

$$f(z) = \frac{1}{P(z)\phi(z)}\sum_{i=0}^{\infty}a_i z^i$$

Considered more reliable in the community

$B \to D$

- FF expanded at third order in BGL
- Parameters constrained using results from a paper which fits Belle, BaBar, FNAL, HPQCD data.
- One of the parameters fixed using a maximum recoil relation

 $f_+(q^2=0)=f_0(q^2=0)$

$B ightarrow D^*$

- FF expanded at second order in BGL
- Parameters constrained using results from a paper which fits Belle unfolded data.
- One of the parameters fixed using a zero-recoil relation

 $F_1(z=0) = \text{constant} \times P_1(z=0)$

- The helicity suppressed $B \rightarrow D^*$ form factor is not measured, and it is being fixed in the fit
- All the errors and correlations between the parameters are taken into account in the fit

< □ > < 同 > < 回 > < 回)

Hammer as a forward folding tool

- How do we include the shape variations due to the change in the form factor parameters?
- We forward-fold the variations into the MC simulation (templates morphing)
- We use the **Hammer** tool, which is able to reweight distributions to change FF parameterizations
- It is fast enough to be able to be used at each step of the minimization

- In collaboration with Hammer, we developed an interface to insert the tool in our fitters
- We tested the interface, released the code and published the documentation
- The tool can be used also to extract NP Wilson coefficients directly from data, in model independent analyses

High Energy Physics - Phenomenology

[Submitted on 24 Jul 2020]

RooHammerModel: interfacing the HAMMER software tool with the HistFactory package

J. García Pardiñas, S. Meloni, L. Grillo, P. Owen, M. Calvi, N. Serra

Recent B_2 -physics results have sparkled great interest in the search for beyond-the-Standard-Model (BSM) physics in $b \rightarrow c \hat{U} \tilde{U}$ transitions. The need to analyse in a consistent manner big datasets for these searches, using high-statistics Monte-Carlo (MC) samples, led to the development of HAMMER, a software tool which enables to perform a fast morphing of MC-derived templates to include BSM effects and/or alternative parameterisations of discarce effects, avoiding the need to re-generate simulated samples. This note describes the development of RooHammerModel, an interface between this tool and the commonlyused data-fitting framework hilf-story. The code is written in C++ and admits an alternative

Help | Advan

Hammer as a forward folding tool

• We t

• We u

- How do we include the shape variations due to the change in the form factor parameters?
 - Now using this tool into our analysis
 - example for a pull of one FF parameter

Data/MC comparisons

人口》 人間》 人口》 人口》

$\mathsf{Data}/\mathsf{MC} \text{ agreement}$

- with the model we have developed, we are comparing the data and the MC in some validation regions
- Region of $m_{D\mu} > m_B$
- Only non physical backgrounds contribute to this region
 - Combinatorial
 - MisID
- Normalization enriched region: $m_{\rm miss}^2 < 0$
 - $B \rightarrow D\mu\nu$
 - $B \to D^* \mu \nu$
- Fit and topological variables
- After having performed the fit to the data, we plan to do a final data/MC agreement check, projecting the fit result in all regions and various variables

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Toy studies

イロン 不良と 不良と 不良と

Component	Shape	Normalization
$B^0 \rightarrow D^- \mu^+ \nu_\mu$	MC + Hammer BGLVar	$N(D\mu) \times TF$
$B^0 \rightarrow D^- \tau^+ \nu_\mu$	MC + Hammer BGLVar	$N(D\mu) \times TF \times \mathcal{R}_{raw}(D^+)$
$B^0 \rightarrow D^{*-} \mu^+ \nu_\mu$	MC + Hammer BGLVar	$N(D^*\mu) \times TF$
$B^0 \rightarrow D^{*-} \tau^+ \nu_\mu$	MC + Hammer BGLVar	$N(D^*\mu) \times \mathbf{TF} \times \mathcal{R}_{\mathrm{raw}}(D^*)$
$B^0 \rightarrow D^-(X_c \rightarrow \mu^+ \nu_\mu X)$	MC	$N(DD) \times (1 f_{Bu}) \times f_{DD}^{Bd}$
$B^0 \rightarrow D^-(X_c \rightarrow \mu^+ \nu_\mu X)X$	MC + Shape Var.	$N(DD) \times (1 - f_{Bu}) \times (1 - f_{DD}^{Bd})$
$B^+ \rightarrow D^-(X_c \rightarrow \mu^+ \nu_\mu X)$	MC	$N(DD) \times f_{Bu} \times f_{DD}^{Bu}$
$B^+ \rightarrow D^-(X_c \rightarrow \mu^+ \nu_\mu X)X$	MC + Shape Var.	$N(DD) \times f_{Bu} \times (1 - f_{DD}^{Bd})$
$B^0 \rightarrow D^-(D_s^+ \rightarrow \tau^+ \nu_{\tau})$	MC	$N(DD) \times (1 - f_{Bu}) \times f_{DD}^{Bd} \times f_{\tau/\mu} \times \dot{B}_{\mu}^{\tau}$
$B^0 \rightarrow D^-(D_s^+ \rightarrow \tau^+ \nu_{\tau})X$	MC + Shape Var.	$N(DD) \times (1 - f_{Bu}) \times (1 - f_{DD}^{Bd}) \times f_{\tau/\mu} \times \dot{B}_{\mu}^{\tau}$
$B^+ \rightarrow D^-(D_s^+ \rightarrow \tau^+ \nu_{\tau})$	MC	$N(DD) \times f_{Bu} \times f_{DD}^{Bu} \times f_{\tau/\mu} \times \hat{B}_{\mu}^{\tau}$
$B^+ \rightarrow D^- (D_s^+ \rightarrow \tau^+ \nu_{\tau})X$	MC + Shape Var.	$N(DD) \times f_{Bu} \times (1 - f_{DD}^{Bd}) \times f_{\tau/\mu} \times \dot{B}_{\mu}^{\tau}$
$\Lambda_b \rightarrow (\Lambda_c \rightarrow \mu\nu X)DX'$	MC	$N(\Lambda_b)$
$B^0 \rightarrow (D_1 \rightarrow D^- X)\mu^+ \nu_\mu$	MC + Hammer LLSW	$N(D_{1}^{\pm})$
$B^0 \rightarrow (D_0^* \rightarrow D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$N(D_1^{\pm}) \times \epsilon_{D_1^{\pm}}^{D_0^{\pm} \pm} \times \hat{B}_{D_1^{\pm}}^{D_0^{\pm}}$
$B^0 \rightarrow (D_1^\prime \rightarrow D^- X) \mu^+ \nu_\mu$	MC +Hammer LLSW	$N(D_1^{\pm}) \times \varepsilon_{D_1^{\pm}}^{D_1^{\prime\pm}} \times \mathcal{B}_{D_1^{\pm}}^{D_1^{\prime\pm}}$
$B^0 \rightarrow (D_2^* \rightarrow D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$N(D_1^{\pm}) \times \varepsilon_{D_1^{\pm}}^{D_2^{\pm\pm}} \times \hat{B}_{D_1^{\pm}}^{D_2^{\pm\pm}}$
$B^\pm \to (D_1 \to D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$N(D_1^{\pm}) \times \varepsilon_{D_1^{\pm}}^{D_1^0} \times \mathcal{B}_{D_1^{\pm}}^{D_1^0}$
$B^\pm\rightarrow(D^*_0\rightarrowD^-X)\mu^+\nu_\mu$	MC + Hammer LLSW	$N(D_1^{\pm}) \times \varepsilon_{D_1^{\pm}}^{D_0^{+0}} \times \hat{B}_{D_1^{\pm}}^{D_0^{+0}}$
$B^\pm \to (D_1^\prime \to D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$N(D_1^{\pm}) \times \epsilon_{D_1^{\pm}}^{D_1^{+0}} \times \mathcal{B}_{D_1^{\pm}}^{D_1^{+0}}$
$B^\pm \to (D_2^* \to D^- X) \mu^+ \nu_\mu$	MC + Hammer LLSW	$N(D_1^{\pm}) \times \varepsilon_{D_1^{\pm}}^{D_2^{\pm 0}} \times \mathcal{B}_{D_1^{\pm}}^{D_2^{\pm 0}}$
$B^0 \rightarrow (D_J^{**} \rightarrow D^- X)\mu^+ \nu_\mu$	MC + Shape Var.	$N(D_{J}^{**})$
MisID	data	N(MisID)
Combinatorial	data	N(Comb)

- The fit model is very complicated
- many constrained parameters and a lot more free parameters.
- I spent a lot of time this year developing a stable and reliable fit model.
- I have tested the model against fit bias and coverage issues.

イロト 不得下 不良下 不良下

Toy studies

- The fits are simultaneous in all signal and control regions used in the nominal fit
- The datasets are generated taking the nominal model. smeared with a Poisson uncertainty in each bin

• No bias is observed in any of the parameters

Toy studies: results

• Raw numbers have to be converted into measured $\mathcal{R}(D^{+,*})$, but it will be a very competitive result

September 3, 2019 30 / 38

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

A new project: DFEI

イロン 不良と 不良と 不良と

- I have lately joined a new project, linked to Juliàn's Marie Curie
- DFEI: Deep Full event interpretation in LHCb
- At the moment the signal reconstruction is done based on a **signal-hypothesis** approach:
 - > You reconstruct the signal particles, the rest is considered background

- · Some other experiments try to reconstruct all the decays in the event
 - Belle II: Full Event Interpretation (Decision Tree)

• Aim: Try to reconstruct all (reconstructible?) decays

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DFEI: Why?

- The main background to be modelled in many key analyses is the Combinatorial
 - Decay of the other b-hadron in the event
 - Tracks from the rest of the event
 - ▶ The situation will significantly worsen with the LHCb upgrades

- Why do we want to try Deep Learning?
- The increase in luminosity poses computational challenges for the trigger
 - One can try to enhance the information in the trigger with DL
 - E.g.: can we avoid trying out all particle combinations in the online reconstruction?
- Limited available storage:
 - Can we compress the information somehow with DL?

イロン 不通 とうせい うけ

The first approach: Reinforcement Learning

- The idea is to have an agent which will have the role to combine particles, assigning PID hypothesis etc.
- How do you train this agent?
- Reinforcement Learning: neither Supervised nor unsupervised learning
 - training data: experiences of the agent
 - training signal: reward from the environment
- It is all about the interaction with the environment
- The agent senses the state of the environment and decides upon an action
- The environment gives a reward signal to the agent
- It presents the agent with a new state
- This techniques are used AIs to beat games. To make a parallel with chess:
 - $\blacktriangleright \ \ Move \ your \ pawns \rightarrow combine \ particles$
 - Board \rightarrow list of particles you can combine

The reinforcement learning problem

- The aim is to maximize the expected total reward, G
- The rewards are discounted by a factor 0 $\leq \gamma \leq 1$
- $\pi(a|s)$ is the policy with which the action are chosen.
- You have to find the best policy
- For each state-action pair, you can assign a number Q_{π} , telling you how much you value that combination
- The best policy is the one that choses, for each state, the action with maximum value
- Solving the reinforcement learning problem is equivalent to find the optimal policy, or equivalently finding the best value function
- Some algorithms use tables of states and actions to approximate the best *Q* function
- This is impossible in our case, since the number of possible states is vastly large
- We use neural networks as function approximators for the *Q* value

4 E 6

 $G = \sum_{t=0}^{T} \gamma^{t} E_{\pi}[r_{t}]$

 $Q_{\pi}(s,a) = E_{\pi}[G|s,a]$
Deep-Q learning

- The optimal *Q* function is not known, but under the otpimal policy it follows some recursion relations: **Bellman Optimality equations:**
- Recursive problem: at each time step you formulate a minimization problem to minimize the difference between the left hand side and the one-sample approximation of the right hand side

DQN algorithm

- Observe s, select and execute a
- observe s' and get reward r
- Gradient $\frac{\partial Err}{\partial w} = [Q_w(s, a) - r - \gamma \max_{a'} Q_w(s', a')] \frac{\partial Q_w}{\partial w}$
- update weights $w \leftarrow w \alpha \frac{\partial Err}{\partial w}$

$$Q^*(s_t, a_t) = E[r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})]$$

$$Err(w) = 0.5 |Q_w(s, a) - r - \gamma max_{a'} Q_{\bar{w}}(s', a')|^2$$

- Deep Learning APIs give you the tools to evaluate automatically the gradients
- I have implemented this algorithm and some other tools that are needed for the reinforcement learning problem

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

First test of the algorithm in a mockup environment

 $\bullet\,$ We tested this in a simple, 2D world with just 3 particles, 2 with the same mother

Conclusions

- Testing lepton flavour universality in semileptonic decays at the LHCb experiment
- Interesting discrepancies are being observed in similar analyses
- Our analysis will report the simultaneous measurement of $\mathcal{R}(D^+)$ and $\mathcal{R}(D^*)$.
- This year I concentrated on including many systematic uncertainties in the fit
- Very difficul analysis with lots of nasty background: many external measurements are needed to constrain better the fit to data
- I have tested the model against bias and coverage, in all the control regions of the analysis
- We are now fitting the data and assessing the data/MC agreement in validation region
- I have joined a more technical project
- Aims at studying if a full event interpretation is feasable at LHCb and if it can bring some advantages
- Involves usage of state-of-the-art Machine Learning techniques
- Starting from scratch, in a field very different from our expertise

イロト 不良 トイヨト イヨト

Backup

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣 -

Low mass states

- With the previous assumptions and external measurements I have evaluated the ${\cal B}$ for all the states
- I use these numbers to evaluate the constraint on ${\mathcal B}$ in the fit

Mode	$\mathcal{B}_{\to D^* \to D^+}(10^{-3})$	$\mathcal{B}_{\to D^+}(10^{-3})$	σ/\mathcal{B}
$\bar{B}^0 \to D_1^+ \mu^- \nu$	0.45	0.0	11.1%
$\bar{B}^0 \rightarrow D_2^{*+} \mu^- \nu$	0.11	0.61	23.1%
$\bar{B}^0 \rightarrow D_1^{'+} \mu^- \nu$	0.5	0.0	29.1%
$\bar{B}^0 \rightarrow D_0^{*+} \mu^- \nu$	0.0	1.5	40.0%
$B^- \rightarrow D_1^0 \mu^- \nu$	0.98	0.0	7.5%
$B^- \rightarrow D_2^{*0} \mu^- \nu$	0.33	1.53	9.6%
$B^- ightarrow D_1^{\prime 0} \mu^- \nu$	0.87	0.0	22.3%
$B^- \to D_0^{*0} \mu^- \nu$	0.0	2.5	20.0%

- All the ${\mathcal B}$ ratios have the same denominator, so they are correlated with each other
- The constraints, with the full correlation matrix, are put in the fit to include systematic uncertainties for the D^{**} composition

(a) < (a) < (b) < (b)

- We expand the FF at third order in BGL
- We constrain the parameters using results from a paper which fits Belle, BaBar, FNAL, HPQCD data:

parameter	value		error
a_{+0}	0.01566	±	0.00011
a_{+1}	-0.0342	\pm	0.0031
a_{+2}	-0.090	\pm	0.022
a_{00}	0.07935	\pm	0.00058
a_{01}	-0.205	\pm	0.014
<i>a</i> ₀₂	-0.23	\pm	0.10

• *a*₀₀ is fixed to the value of other parameters from a maximum recoil relation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$f_+(q^2=0)=f_0(q^2=0)$$

- All the errors and correlations are taken into account in the fit
- In order to avoid numerical problems in the minimization, the covariance matrix of this result is diagonalized and the fit is performed on its principal components

- We expand all the parameters at second order, except one which is expanded at third order in BGL
- We constrain the parameters using results from a paper which fits Belle unfolded data

parameter	value		error
a_0	0.000379	±	0.000249
a_1	0.026954	\pm	0.009320
b_0	0.000550	\pm	0.000023
b_1	-0.002040	\pm	0.001064
c_1	-0.000433	\pm	0.000264
<i>C</i> ₂	0.005350	\pm	0.004606
d_0	0.002		
d_1	-0.013		

- The helicity suppressed form factor parameters *d* have never been measured and are fixed in the fit.
- *c*₀ is fixed to other parameters values through the zero-recoil relation

$$F_1(z=0) = \text{constant} \times P_1(z=0) \tag{1}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- All the errors and correlations are taken into account in the fit
- In order to avoid numerical problems in the minimization, the covariance matrix of this result is diagonalized and the fit is performed on its principal components

The idea of Hammer

• The Hammer package takes the moves from the observation that the matrix elements for a semileptonic decay is linear in the form factors (or can be written in a linear form by a first order expansion)

$$\mathcal{M} = FF^{\alpha}\mathcal{M}^{\alpha} \tag{2}$$

• A given vector (FF) corresponds to a given choice of the form factors parameters used to evaluate the rate

$$\Gamma \approx |\mathcal{M}|^2 = |\mathcal{M}^{\alpha} \mathcal{M}^{\alpha}|^2 \tag{3}$$

- Instead of filling histograms with events, they can be filled with tensors $W^{\alpha\beta} = M^{\alpha}M^{\beta}$
- When one needs the number of events in a given bin, the tensors can be contracted

$$\Gamma \approx FF^T \cdot \mathcal{W} \cdot FF \tag{4}$$

How can this be used?

• Knowing the tensors and having generated a MC sample with one choice of Form Factor parameters, one can reweight the Reco-Level histograms (one weight factor per histogram bin).

$$r_i = \frac{\Gamma_{\text{new}}}{\Gamma_{\text{old}}} \tag{5}$$

- It is quick to evaluate the weights, only linear operations involved
- A change in the model is *convolved* inside the full simulation, instead of deconvolving data from experimental resolutions

The Hammer architecture

 $(C++ library w/ python bindings + optional histogram interface to ROOT \rightarrow can be integrated easily with existing software)$

イロト イポト イヨト イヨト

Trigger configurations

Simone Meloni, 763674 (Milano Bicocca University)

(a) < (a) < (b) < (b)

Detailed description of the selections

Simone Meloni, 763674 (Milano Bicocca University)

イロト イヨト イヨト イヨト

Trigger

L0 Any of:
L0Global TIS
L0Hadron TOS
Hlt1 Any of:
Hlt1TrackMVA TOS
Hlt1TwoTrackMVA TOS
Hlt2:
Hlt2XcMuXForTauB2XcMu TOS

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣 -

L0 Trigger

L0 trigger	E_T/p_T threshold			SPD threshold
	2015	2016	2017	
Hadron	$> 3.6 { m ~GeV}$	$> 3.7 { m ~GeV}$	$> 3.46~{\rm GeV}$	< 450
Photon	$> 2.7 { m ~GeV}$	$> 2.78 { m ~GeV}$	$> 2.47 { m ~GeV}$	< 450
Electron	$> 2.7 { m ~GeV}$	> 2.4 GeV	$> 2.11 { m GeV}$	< 450
Muon	$> 2.8 { m ~GeV}$	$> 1.8 { m ~GeV}$	$> 1.35 { m ~GeV}$	< 450
Muon high p_T	$> 6.0 { m ~GeV}$	$> 6.0 { m GeV}$	$> 6.0 { m ~GeV}$	none
Dimuon	$> 1.69 \ { m GeV}^2$	$> 2.25 \ \mathrm{GeV}^2$	$> 1.69 \ { m GeV}^2$	< 900

◆□ → ◆□ → ◆臣 → ◆臣 → ○臣 -

Hlt1TrackMVa
Input tracks selections (after Track-Fit)
$p_T > 500 \text{ MeV}$
p > 3 GeV
Track χ^2 /d.o.f. < 4.0
$\chi^2/n.d.f < 2.5$
$(p_T > 25 \text{ GeV}/c \land IP_{\chi^2} > 7.4) \lor [(1 \text{ GeV}/c < p_T < 25 \text{ GeV}/c) \land$
$\log(IP_{\chi^2}) > \left(\frac{1}{p_T[\text{GeV/c}] - 1}\right)^2 + \left(\frac{1.1}{25 \text{ GeV/c}}\right) (25 \text{ GeV/c} - p_T) + \log(7.4)]$

Table 14: Requirements of the Hlt1TrackMVa trigger line during 2015 data taking

	Hlt1TwoTrackMVa
Requirement on the single tracks	$p_T > 0.5 \text{ GeV}/c$ p > 5.0 GeV/ $\chi^2/n.d.f < 2.5$
Requirements on the track pair before vertexing	$(p_1 + p_2)_T > 2 \text{ GeV}/c$ DOCA(1, 2) < 10
Requirements on the track pair combination	$ \begin{array}{l} \operatorname{Vertex} \chi^2 < 10 \\ m_{corr} > 1 \ \operatorname{GeV}/c^2 \\ 2 < \eta < 5 \\ DIRA > 0 \end{array} $
MVA requirements	MVA Output > 0.95
MVA training variables	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$

イロト 不得 トイヨト イヨト

ъ

Particle	Variable	Hlt2 cuts	Stripping cuts	Filtering cuts	
K, π	K PIDK	> 2	> 4	_	
	$\pi PIDK$	< 4	< 2	_	
	Track IP_{χ^2}	> 9	> 9	> 9	
	Track $p_T [MeV/c]$	> 200	> 300	> 300	
	Track $p [\text{MeV}/c]$	> 5000	> 2000	> 2000	
	$\geq 1 \operatorname{track} p_T \left[\mathrm{MeV}/c \right]$	> 800	_	_	
	\sum track p_T [MeV/c]	> 2500	> 2500	> 2500	
	Track GhostProb	_	< 0.5	< 0.5	
D	D mass interval [MeV/ c^2]	1830 - 1910	1790 - 1950	1770 - 1970	
	$D p_T [\text{MeV}/c]$	> 2000	_	_	
	D child pair DOCA [mm]	< 0.10	_	_	
	$D \ \chi^2_{vertex}/ndf$	< 10	< 4	< 4	
	D DIRA	> 0.999	> 0.999	> 0.999	
	$D F D_{\chi^2}$	> 25	> 25	> 25	
μ	μIP_{χ^2}	> 16	> 16	> 16	
	$\mu PID\mu$	_	> -200	_	
	μ GhostProb	_	< 0.5	< 0.5	
	$\mu p [\text{MeV}/c]$	_	> 3000	> 3000	
$D\mu$	$D\mu \ \chi^2_{vertex}/ndf$	< 15	< 6	< 6	
	$D\mu$ DIRA	> 0.999	> 0.999	0.999	
	$D\mu$ DOCA [mm]	< 0.50	_	_	
	$D\mu \ FD_{\chi^2}$	> 50	_	_	
	$D\mu$ mass interval [MeV/ c^2]	< 10500	0 - 10000	-	
	$D\mu$ mass interval [MeV/ c^2] (Before vert.)	< 11000	< 10200	_	_

HLT2, Stripping, Preselection, Filtering

Variable	Requirement
$\theta(\pi)$	$\in [0.01, 0.4]$ rad
$\theta(K)$	$\in [0.01, 0.4]$ rad
$\theta(\mu)$	$\in [0.01, 0.4]$ rad
$p_T(\pi)$	$> 150 { m ~MeV/c}$
$p_T(K)$	$> 150 \ { m MeV/c}$
$p(\mu)$	$> 2500~{\rm MeV/c}$
$p(K^+) + p(\pi^-) + p(\pi^-)$	$> 15000 { m ~MeV/c}$
$p_T(K^+) + p_T(\pi^-) + p_T(\pi^-)$	$> 2300~{\rm MeV/c}$

Table 3: List of generator level selections

イロト 不得 トイヨト イヨト

D daughters PID selection

- Already existing PID cuts: $pi1_DLLK < 2$, $pi2_DLLK < 2$ and $K_DLLK > 4$.
- New PID variables: ProbNNpi * (1 ProbNNk) for pions and ProbNNk * (1 ProbNNpi) for kaons.
- Cut on each variable optimised on data (to avoid using PID info from MC), through fits to the 3-body mass distribution, taking $S/\sqrt{S+B}$ as FoM.

BDT against non D background- Input variables

- log(pi1_PT)
- log(pi2_PT)
- Iog(K_PT)
- log(pi1_IPCHI2_OWNPV)
- log(pi2_IPCHI2_OWNPV)
- log(K_IPCHI2_OWNPV)
- log(pi1_TRACK_GhostProb)
- og(pi2_TRACK_GhostProb)
- og(K_TRACK_GhostProb)
- Dplus_ENDVERTEX_CHI2NDOF

log(B0_dXY)

BDT against non D background- Input variables

- Signal $B^0 \rightarrow D^+ \mu \nu$
- Background:D sidebands
- Cut optimized on $\frac{S}{\sqrt{S+B}}$, > -0.23

Cut efficiencies and optimal cut value TMVA overtraining check for classifier: BDT Signal purity Signal efficiency Signal efficiency*purity xb / Nb (N/1) Signal (test sample) Signal (training sample) Background efficiency S/VS+B 3.5 Background (test sample) Background (training sample) Efficiency (Purity) Kolmogorov-Smirnov test: signal (background) probability = 0.005 (0.401) 100 0.8 2.5 8000 (0.0, 0.0) 2 0.6 600 1.5 0.4 400 0.2 For 1351600 signal and 271540 background 200 events the maximum S/\S+B is 0.5 1076.9972 when cutting at -0.2302 n 0.2 0.4 -0.6 -0.4 -0.2 n 0.6 -0.4 -0.2 n 0.2 04 Cut value applied on BDT output BDT response

Charged Isolation

- Using the BDT trained for the $R(D^*)$ measurement.
- Old cut of < 0.15 reoptimised for this analysis.
- **Signal sample:** Bd2Dpmunu MC sample (11574061).
- Background sample: Bd2DD, DD cocktail, MC sample (11995203).

Neutral Isolation

- Two independent methods trained to suppress additional neutral particles
 - The two methods are then combined in a single Neutral isolation output
- Signal: $B \rightarrow D\mu\nu$
- Background: $B \rightarrow (D^* \rightarrow D\pi^0) \mu \nu$

TMVA overtraining check for classifier: neutralBDT

- Signal effficiency 0.9
- Background rejection 0.3

• Cut > -0.16

• The two BDTs used in input to this one are explained in the followng slides

Resolved Pions BDT

- For each π^0 in the event evaluate a BDT trained on
 - π^0 s from $B \to D \mu \nu$ as signal
 - Truth matched π^{0} s from $B \to (D^* \to D\pi^0) \mu \nu$ as background
- Evaluate a per event quantity by counting how many π^0 s with BDT< 0

(a) < (a) < (b) < (b)

Neutral Cones BDT

- In each event construct a cone around the D^+ flight direction
- Evaluate a BDT trained using variables related to activity inside the cone

A D > A B > A B >

$\mathcal{R}(D^+)$ with $au o \mu u u$ at LHCb, analysis strategy

- Theoretical point of view: clean because |V_{cb}| and hadronic form factors uncertainties cancel in the ratio

$${\cal R}(D^+)_{
m SM} = 0.300 \pm 0.008$$

- Experimental point of view: Signal and normalization channels have the same final state
 - Most of uncertainties due to efficiency and reconstruction cancel
 - ▶ The two channels are separated using 3 kinematical variables, computed in the B rest frame

Shape systematics

- Some backgrounds are modelled by cocktails of poorly known B decays.
- The assumptions about their composition can induce biases in the measurement.
- Varying all the assumed branching ratios inside the cocktails would be a titanic work
- The control samples can actually be used to check the data MC agreement
- The idea is to let the fit have enough variation to adjust the MC shape in the control regions.
- Solution: Include some phenomenological shape variation as systematics

Reweight to the $B \rightarrow D_J^{**} \mu \nu$ sample

- Some backgrounds are modelled by cocktails of poorly known *B* decays.
- The assumptions about their composition can induce biases in the measurement.
- Varying all the assumed branching ratios inside the cocktails would be a titanic work
- The control samples can actually be used to check the data MC agreement
- The idea is to let the fit have enough variation to adjust the MC shape in the control regions.
- Solution: Include some phenomenological shape variation as systematics

Reweight to the $B \rightarrow DD\mu\nu$ sample

MC samples

Sample	Event type
$\bar{B}^0 \to D^+ \tau (\to \mu \bar{\nu}_\mu \nu_\tau) \bar{\nu}_\tau$	11574060
$\bar{B}^0 \to D^{*+} (\to D^+ \pi^0) \tau (\to \mu \bar{\nu}_\mu \nu_\tau) \bar{\nu}_\tau$	11574401
$\bar{B}^0 \to D^+ \mu \bar{\nu}_\mu$	11574061
$\bar{B}^0 \to D^{*+} (\to D^+ \pi^0) \mu \bar{\nu}_{\mu}$	11574402
$\bar{B}^0 \to D^{**+} (\to D^+ X) \mu \bar{\nu}_{\mu}$	11574403
$\bar{B}^0 \to D^{**+} (\to D^+ X) \mu \bar{\nu}_{\mu}$, high mass	11574070
$B^- \to D^{**0} (\to D^+ X) \mu \bar{\nu}_{\mu}$	12874050
$\bar{B}^0 \to D^+ H_c (\to \mu \bar{\nu}_\mu X') X$	11995204
$B^- \to D^+ H_c (\to \mu \bar{\nu}_\mu X') X$	12995604
$\Lambda_b \to (\Lambda_c \to \mu \nu X) D X'$	15976000
$B^0 \to D^{\pm}(D_s \to \tau \nu) X$	11995214
$B^{\pm} \rightarrow D^{\pm}(D_s \rightarrow \tau \nu) X$	12995615

Table 2: List of Monte Carlo samples used.

э

イロト イヨト イヨト イヨト

	Generated
Sample	events (2015)
$\bar{B}^0 \to D^+ \tau (\to \mu \bar{\nu}_\mu \nu_\tau) \bar{\nu}_\tau$	2M (0.1M)
$\bar{B}^0 \to D^{*+} (\to D^+ \pi^0) \tau (\to \mu \bar{\nu}_\mu \nu_\tau) \bar{\nu}_\tau$	2M (0.1M)
$\bar{B}^0 \to D^+ \mu \bar{\nu}_\mu$	10M (0.5M)
$\bar{B}^0 \to D^{*+} (\to D^+ \pi^0) \mu \bar{\nu}_{\mu}$	10M (0.5M)
$\bar{B}^0 \to D^{**+} (\to D^+ X) \mu \bar{\nu}_{\mu}$	2M (0.14M)
$\bar{B}^0 \to D^{**+} (\to D^+ X) \mu \bar{\nu}_{\mu}$, high mass	1M(0.06M)
$B^- \to D^{**0} (\to D^+ X) \mu \bar{\nu}_{\mu}$	2M (0.14M)
$\bar{B}^0 \to D^+ H_c (\to \mu \bar{\nu}_\mu X') X$	6M(0.34M)
$B^- \to D^+ H_c (\to \mu \bar{\nu}_\mu X') X$	3M(0.15M)
$\Lambda_b \to (\Lambda_c \to \mu \nu X) DX'$	_
$B^0 \to D^{\pm}(D_s \to \tau \nu) X$	_
$B^{\pm} \to D^{\pm} (D_s \to \tau \nu) X$	_

Table 5: Generated full-MC samples. In parenthesis, the number of events after filtering is indicated.

ъ

イロト イヨト イヨト イヨト

Tracker Only, how many?

	Generated	Generated
Sample	events (2015)	events (2016)
$\bar{B}^0 \to D^+ \tau (\to \mu \bar{\nu}_\mu \nu_\tau) \bar{\nu}_\tau$	20M (1M)	120M (6M)
$\bar{B}^0 \to D^{*+} (\to D^+ \pi^0) \tau (\to \mu \bar{\nu}_\mu \nu_\tau) \bar{\nu}_\tau$	20M (1M)	120M (6M)
$B^0 \to D^+ \mu \bar{\nu}_\mu$	100M (5M)	600M (30M)
$\bar{B}^0 \to D^{*+} (\to D^+ \pi^0) \mu \bar{\nu}_{\mu}$	100M (5M)	600M (30M)
$\bar{B}^0 \to D^{**+} (\to D^+ X) \mu \bar{\nu}_{\mu}$	20M (1M)	120M (6M)
$\bar{B}^0 \to D^{**+} (\to D^+ X) \mu \bar{\nu}_{\mu}$, high mass	10M (0.5M)	60M (3M)
$B^- \to D^{**0} (\to D^+ X) \mu \bar{\nu}_{\mu}$	20M (1M)	120M (6M)
$\bar{B}^0 \to D^+ H_c (\to \mu \bar{\nu}_\mu X') X$	60M (3.4M)	360M (18M)
$B^- \to D^+ H_c (\to \mu \bar{\nu}_\mu X') X$	30M (1.5M)	180M (9M)
$\Lambda_b \to (\Lambda_c \to \mu \nu X) D X'$	2M(0.1M)	12M (0.6M)
$B^0 \to D^{\pm}(D_s \to \tau \nu) X$	4M(0.2M)	24M (1.2M)
$B^{\pm} \to D^{\pm} (D_s \to \tau \nu) X$	4M(0.2M)	24M (1.2M)

Table 6: Generated tracker-only-MC samples. In parenthesis, the number of events after filtering is indicated.

э

イロト 不得 トイヨト イヨト

Kinematic reweighting 1

Control sample: $B^+ \rightarrow J/\psi K^+$ (2015 so far)

- Stripping: BetaSBu2JpsiKDetachedLine.
- Trigger: (L0Muon || L0DiMuon) && Hlt1TrackMuon && Hlt2DimuonDetatchedHeavy.
- Using DTF with constraint on the PV and the Jpsi mass.
- **Preselection:** similar to the $R(D^*)$ analysis, rectangular cuts and sWeights (using the Bp mass as variable, signal + comb. bkg.).

Kinematic reweighting 2

Weights obtained from GBreweighter, trained on the 3D distribution of:

- $\log(Bp_-PT)$.
- Pseudorapidity (ETA) of the Bp.
- Number of tracks in the event.

Green filled area: reweighted MC

Checked that the reweight does not negatively affect the J/ψ and K kinematic distributions (they actually improve).

Correction to the Double Charm control sample

• Reweight $B^0 \rightarrow D_1 D_2 X$ and $B^{\pm} \rightarrow D_1 D_2 X$ events with two (common) weight functions

$$w(\alpha_1) = 1 + 2\alpha_1 \left(\sqrt{\left(\frac{m_{D_1D_2}^2 - (m_{D_1} + m_{D_2})^2}{(m_B - m_K)^2 - (m_{D_1} + m_{D_2})^2}\right)} - \frac{1}{2} \right)$$
$$w(\alpha_2) = (1 - \alpha_2) + 8\alpha_2 \left(\sqrt{\left(\frac{m_{D_1D_2}^2 - (m_{D_1} + m_{D_2})^2}{(m_B - m_K)^2 - (m_{D_1} + m_{D_2})^2}\right)} - \frac{1}{2} \right)^2$$

- Evaluate the templates at α_i = ±1, and include them in the fit as systematic variations
- Interpolate between them and fit for α_i

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Combinatorial background suppression

- The combinatorial fraction seemed a little bit too high at the beginning
- We think to have tracked down the problem... We miss a IP_{χ^2} cut for the D^+ candidate This cut would reject most of the Combinatorial from prompt D candidates

• The measurement relies on the correct evaluation of the backgrounds, that must be tackled in order

• Analysis chain:

- 1 μ -MisID: Unfold its distribution from real data using weights extracted from prescaled !isMuon sample, both in $\{D^+\mu^-\}cc$ and $\{D^+\mu^+\}cc$ samples.
- 2 Non D background: Extract sWeights from the D-MassFit to the $\mu-\text{PID}$ weighted sample
- 3 Combinatorial: taken from the sWeighted, μ -MisID subtracted $\{D^+\mu^+\}cc$ sample
- 4 Physical backgrounds: estimated from MC
 - \star Eventually extracting corrections using data driven studies in dedicated control samples
- Before...
 - sWeights were extracted before evaluating PID weights $(1 \leftrightarrow 2)$
 - ▶ The weights were extracted for the whole sample, and then some isolation categories were defined
- Now...
 - ▶ We first define all the isolation categories (And never touch selections again!)
 - ...The whole analysis chain is repeated for all the isolation categories we are defining

イロト イヨト イヨト

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**} \tau^- \overline{\nu}_\tau) / \mathcal{B}(\overline{B} \to D^{**} \mu^- \overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_\mu$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form-factors	0.2
${\cal B}(au^- o \mu^- \overline{ u}_\mu u_ au)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

 $\mathcal{R}(D^*) = 0.336 \pm 0.027 (\text{stat.}) \pm 0.030 (\text{syst.})$

2.1 σ higher than the Standard Model

systematic uncertainties

- MC statistics
- Shape of the Mis-ID background
- Shape of the MC derived background models
 - Depend on the statistics in the control regions
 - They will be reduced in the measurements performed with the RunII data

(a) < (a) < (b) < (b)

Hadronic form factors