

Milano Bicocca University

TEST OF LEPTON FLAVOUR UNIVERSALITY IN SEMILEPTONIC DECAYS AT THE LHCB EXPERIMENT Second Year PhD final seminar, Cycle XXXIV

September 3, 2019

Supervisor: Prof. Marta Calvi

Simone Meloni, 763674 s.meloni1@campus.unimib.it

[Analysis strategy](#page-7-0)

[Backgrounds and main systematic uncertainties](#page-12-0)

[Data/MC comparisons](#page-25-0)

[Toy studies](#page-27-0)

[A new project: DFEI](#page-31-0)

Ξ

O \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

[Introduction and motivations of the analysis](#page-2-0)

Ξ

 299

K ロ ト K 個 ト K 差 ト K

Lepton Flavour Universality in the SM

• Lepton Flavour Universality (LFU) is an accidental symmetry in the Standard Model

- The hypothesis can be tested in $b \rightarrow c l \nu$
	- \blacktriangleright Relatively simple description in the Standard Model via Tree Level Processes
	- \blacktriangleright High Transition rate
- Differences for decays with e, μ, τ should originate only from mass differences
- Test variables are ratios of Branching Fractions

$$
\mathcal{R}(D^{(*)})=\frac{\mathcal{B}(B\to D^{(*)}\tau\nu)}{\mathcal{B}(B\to D^{(*)}\mu\nu)}
$$

- Equality of the couplings of gauge bosons to leptons $(g_e = g_u = g_\tau)$
- LFU can be violated in New Physics Models with mass dependent coupling

 Ω

 λ = λ

Previous measurements

- Various measurements of $\mathcal{R}(D^{(*)})$ combined
- Tension at the 3.1 σ level wrt SM predictions

 \rightarrow \equiv \rightarrow

K ロ ▶ K 何 ▶

• No measurement of $\mathcal{R}(D^{+,0})$ performed at an hadron collider so far.

舌

The LHCb experiment

• LHCb is a single arm spectrometer with angular coverage $2 < n < 5$

Excellent performances in

- Primary and secondary vertices reconstruction (VELO)
- Resolution on tracks momentum (Tracking Stations)
- Photons, Electrons, Muons and Hadrons identification (ECAL, HCAL, Muon Stations)
- $\pi/K/p$ identification (RICH1 and RICH2)

KO K K A P K K E K K

- All the subdetectors are used for the analysis...
- ...the response of some of them must be emulated offline in our fast simulations.
- 5.9 fb^{-1} collected at $\sqrt{s} = 13 \text{TeV}$
- 2 fb^{-1} used for this analysis (2015+2016)

${\cal R}(D^+)$ with $\tau \to \mu \nu \nu$ at LHCb, analysis strategy

• Measuring
$$
\mathcal{R}(D^{+,*}) = \frac{\mathcal{B}(B \rightarrow D^{(+,*})_{\tau \nu})}{\mathcal{B}(B \rightarrow D^{(+,*})_{\mu \nu})}
$$

 m_{miss}^2

 $B \rightarrow Dm$

 $-B \rightarrow D u v$

 $B \rightarrow D^* u v$

 $D^* \tau V$

$$
\textcolor{red}{\blacktriangleright} \ \tau \rightarrow \mu \nu \nu
$$

 $\rightarrow \tau \rightarrow \mu \nu \nu$
 $\rightarrow D^+ \rightarrow K^- \pi^+ \pi^+$

- Signal $(B \to D^{(*)} \tau \nu)$ and normalization $(B\to D^{(*)}\mu\nu)$ have the same final state
	- \triangleright We separate them through a fit to variables evaluated in an approximated rest frame

$$
q^2 = (p_B - p_D)^2
$$

K ロ ト K 伺 ト K ヨ ト

- $B \to DH_cX$, $H_c \to \mu\nu X'$
- $B \to D^{**} \mu \nu X$

Normalized events
 0.25
 0.25
 0.35
 0.35
 0.35
 0.35

 0.1

 0.05

Other backgrounds in a data driven way

• Fake-D

 $\frac{2000}{E_u^{*}[MeV/c^2]}$

- Combinatorial
- \bullet μ MisID

 E^*_{μ}

 1000

 0.12

Normalized e
e e e e $\frac{1}{2}$

 0.04

 0.02

[Analysis strategy](#page-7-0)

 2990

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P}$

- The data events used are triggered solely on the hadronic part of the event
- The selections require well vertexed, high- p_{τ} μ and $D(\rightarrow K\pi\pi)$ candidates with opposite charge
- Background of prompt-charm from PV removed by requiring a big impact parameter of the D.

Fake-D background

- Particle Identification criteria on the daughters of the D to suppress Fake- D contributions
- Fake-D further suppressed by means of a BDT trained on:
	- \triangleright signal: MC of *B* → *D*_{*µv*}
	- \blacktriangleright background: mass sidebands
- Remaining background is statistically subtracted by means of a mass fit

(□) (n) (三)

 Ω

Selections and data driven background

MisID background

- $B \to Dh(\mu)X$
- Estimated in a region enriched of hadrons
- Both in the Right-Sign $(D^{\pm}\mu^{\mp})$ and Wrong-Sign $(D^{\pm}\mu^{\pm})$ sample
- Divided in reconstructed hadron categories
- The contributions from hadron species evaluated by deconvolving the MisID matrix
- The true number of events from each hadron specie is then converted in $N(\hat{\mu}|h)$

Combinatorial background

- The shape of the combinatorial is estimated from WS combinations
- The MisID is subtracted
- The normalization is corrected from RS/WS ratio, as a function of B mass

K ロ ト K 伺 ト K 手

Isolation and control regions

- The physical backgrounds are suppressed with a charged particle isolation BDT
- It assigns to each non-signal particle a probability of coming from the decay vertex
- We cut on the maximum BDT value in each event

- By inverting this cut we have defined control regions to help us understanding better the background compositions
- We want to perform a simultaneous fit to signal and control regions, with common shape and normalization nuisance parameters

MC simulation

- in 2015 $+$ 2016 dataset $(2\rm{fb^{-1}})$ we have \approx 2.8M events
- We need lots of MC, simulating the full detector is unfeasable
- We are using a tracker-only sample of 3B events
- simulate everything which is not in the red boxes

- We emulate the hadron trigger efficiency offline, using tracker information
- I have been in charge of the emulation of the first software level trigger (HLT1)
- This year I have finished implementing the emulation on 2016 MC
- We have published an internal note to document the achievements

[Backgrounds and main systematic uncertainties](#page-12-0)

舌

イロトス個 トメミトメ

The Double Charm background

- The most dangerous background is Double-Charm
- for each control region, 4 templates, dividing the sample by
	- \blacktriangleright charge of the B mother $(B^0,\ B^+)$
	- \triangleright decay topology (Two body, Multi body)

Two Body templates

K ロ ▶ | K 同 ▶ | K ヨ ▶

- The Multi body decays are not well known
- Their shape is reweighted and fitted from data

 QQ

The Double Charm background

- The most dangerous background is Double-Charm
- for each control region, 4 templates, dividing the sample by
	- \blacktriangleright charge of the B mother $(B^0,\ B^+)$
	- \triangleright decay topology (Two body, Multi body)

Two Body templates

- The Multi body decays are not well known
- Their shape is reweighted and fitted from data

Double charm with τ

- If the additional mesons are D_s , the μ can also come from a τ , through the decay of $D_s \to \tau \nu$
- $\mathcal{B}(D_s \rightarrow \tau \nu) = 5.5\%$
- We have a dedicated MC sample for this contribution
- This background is very dangerous since it is very similar to the signal in the fit variables

- We have seen in toys that the fit gets unstable when leaving this contribution float freely
- We constrain it relative to the μ double charm component

← □ ▶

つへへ

External constraints on the Double charm with τ

- Common normalization parameters as the μ component
- Common shape systematic uncertainty

- Two additional normalization factors are included for this component
- $f_{\tau/\mu}$ (fixed) contains:

•

- \triangleright the fraction of D_s modes in the muonic sample (in each template, from MC)
- \blacktriangleright the ratio of efficiencies (in each template, from MC)
- \mathcal{B}_{μ}^{τ} is:
	- **►** the ratio between $\mathcal{B}(D_s \to (\tau \to \mu \nu \nu)\nu)$ and $B(D_s \rightarrow \mu \nu X)$, from PDG
	- \triangleright constrained with a 30% gaussian uncertainty

K ロ ▶ K 何 ▶ K ヨ ▶ K

つへへ

Feed Down background

- \bullet The D^+ and $D^{*,+}$ mesons are the ground states formed by $c - d$ pairs (L=0, S=0)
- Other excited states we consider correspond to $S = 1$ and $L = 1$.
- They usually decay as $D^{**}\to D^{(*)}\pi$
- We have one MC dataset for each of the $B \to D^{**}$ contributions
 $\begin{bmatrix}\n\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots$

 $\overline{10}$

≮ロト ⊀何ト ⊀ミト

 0.05

Ξ

- The 2S states are not well known
- We follow the same phenomenological approach we followed for the Double Charm component
- Their shape is reweighted, and we let the fitter interpolate between the alternative templates

$$
w(\alpha) = 1 + 2\alpha \left(\frac{(\rho_{\mu} + \rho_{\nu})^2 - m_{\mu}^2}{8 \text{GeV}^2} - 0.5\right) \begin{array}{c} \frac{2}{36} \\ \
$$

 \equiv

 299

 4 ロ } 4 6 } 4 3 } 4

- By combining two spin-1/2 particles in a 1P state, you end up with 4 possible states
- Two braoad states and two narrow states
- We split the simulation in 8 templates according to
	- \blacktriangleright charge of the B mother
	- \blacktriangleright D^{**} state

K ロ ▶ | K 同 ▶ | K ヨ ▶

- In each analysis region we fit the yield of one of the 8 components
- We normalize the others using the ratio of efficiencies and ratio of B.

舌

Low mass states: external measurements

- We take into account both decay paths to arrive to a $D^+\mu$ final state
	- $B \to D^{**} \to D$

$$
\blacktriangleright \ B \to D^{**} \to D^* \to D
$$

- Some of the decays have only been observed, no measured branching fraction available
- Use Isospin conservation to generalize from measured B

$$
\frac{\mathcal{B}(D^{***}\to D^{(*)0}\pi^{\pm})}{\mathcal{B}(D^{***}\to D^{(*)}\pi)}=\frac{\mathcal{B}(D^{**0}\to D^{(*)\pm}\pi^{\mp})}{\mathcal{B}(D^{**0}\to D^{(*)}\pi)}=\frac{2}{3}
$$

- All the states widths are saturated by $D^*\pi$ or/and $D\pi$ decays.
- The only exception is D_1^0 , which has been lately seen decay to $D\pi\pi$
- I enlarge the error on β by 10% to include this

- $\mathcal{B}(D_1 \to D^*\pi) = 1$, $\mathcal{B}(D'_1 \to D^*\pi) = 1$, $\mathcal{B}(D_0^* \to D\pi) = 1,$ $\mathcal{B}(D_2^* \to D^* \pi) + \mathcal{B}(D_2^* \to D \pi) = 1.$
- All the errors and correlation of ratios of β are put in the fit **K ロ ト K 御 ト K 語 ト K 語** 299

Form Factors: definitions and parameterization

- We want to include the systematic uncertainty that comes from the choice of the model used to generate the $B \to D^{(*)} \ell \nu$ decays.
- The hadronic matrix elements cannot be evaluated from first principles
- They are expressed through Form Factors, which can be then measured

$$
\langle D|\bar{c}\gamma_{\mu}b|\bar{B}\rangle = f_{+}(q^{2})(p_{B}^{\mu}+p_{D})^{\mu} + [f_{0}(q^{2})-f_{+}(q^{2})]\frac{m_{B}^{2}-m_{D}^{2}}{q^{2}}q^{\mu},
$$

\n
$$
\langle D^{*}|\bar{c}\gamma^{\mu}b|B\rangle = -ig(q^{2})\varepsilon^{\mu\nu\rho\sigma}\varepsilon_{\nu}^{*}(p_{B}+p_{D^{*}})_{\rho}q_{\sigma}
$$

\n
$$
f^{*}|\bar{c}\gamma^{\mu}\gamma^{5}b|B\rangle = \varepsilon^{*\mu}f(q^{2})+a_{+}(q^{2})\varepsilon^{*}\cdot p_{B}(p_{B}+p_{D^{*}})^{\mu} +a_{-}(q^{2})\varepsilon^{*}\cdot p_{B}
$$

• Various parameterizations for them in the literature in terms of $z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w-1}-\sqrt{2}}$, where $w=v_B\cdot v_{D^{(*)}}$

 $\langle D^*$

CLN

- uses dispersion relations, unitarity and HQET
- all form factors are expressed using a universal Isgur-Wise function
- a single tunable parameter ρ

$$
f(z) \approx [1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)^3]
$$

BGL

- More general, does not use HQET assumptions
- More parameters, expansion series (truncated at finite order)

$$
f(z) = \frac{1}{P(z)\phi(z)} \sum_{i=0}^{\infty} a_i z^i
$$

• Considered more r[elia](#page-20-0)b[le](#page-22-0) [in](#page-20-0) [th](#page-21-0)[e](#page-22-0) [c](#page-11-0)[o](#page-12-0)[m](#page-24-0)[m](#page-25-0)[u](#page-11-0)[n](#page-12-0)[it](#page-24-0)[y](#page-25-0)

 $B \to D$

- FF expanded at third order in BGL
- Parameters constrained using results from a [paper](http://arxiv.org/abs/1606.08030) which fits Belle, BaBar, FNAL, HPQCD data.
- One of the parameters fixed using a maximum recoil relation

 $f_+(q^2=0)=f_0(q^2=0)$

$B \to D^*$

- FF expanded at second order in BGL
- Parameters constrained using results from a paper which fits Belle unfolded data.
- One of the parameters fixed using a zero-recoil relation

 $F_1(z = 0) = constant \times P_1(z = 0)$

K ロ ト K 何 ト K ヨ ト K ヨ

- The helicity suppressed $B \to D^*$ form factor is not measured, and it is being fixed in the fit
- All the errors and correlations between the parameters are taken into account in the fit

 Ω

Hammer as a forward folding tool

- How do we include the shape variations due to the change in the form factor parameters?
- We forward-fold the variations into the MC simulation (templates morphing)
- We use the **Hammer** tool, which is able to reweight distributions to change FF parameterizations
- It is fast enough to be able to be used at each step of the minimization

- In collaboration with Hammer, we developed an interface to insert the tool in our fitters
- We tested the interface, released the code and published the documentation
- The tool can be used also to extract NP Wilson coefficients directly from data, in model independent analyses

RooHammerModel: interfacing the HAMMER software tool with the HistFactory package

J. García Pardiñas, S. Meloni, L. Grillo, P. Owen, M. Calvi, N. Serra

Recent B -physics results have sparkled great interest in the search for beyond-the-Standard-Model (BSM) physics in $b \to c \ell \bar{\nu}$ transitions. The need to analyse in a consistent manner big datasets for these searches, using high-statistics Monte-Carlo (MC) samples, led to the development of HAMMER, a software tool which enables to perform a fast morphing of MC-derived templates to include BSM effects and/or alternative parameterisations of longdistance effects, avoiding the need to re-generate simulated samples. This note describes the development of RooHammerModel, an interface between this tool and the commonlyused data-fitting framework HistFactory. The code is written in C++ and admits an alternative

 Ω

Hammer as a forward folding tool

- How do we include the shape variations due to the change in the form factor parameters?
- We forward-fold the variations into the MC simulation (templates morphing) Now using this tool into our analysis
- $w_{e,u}$ example for a pull of one FF parameter

used data-fitting framework HistFactory. The code is written in C++ and admits an alternative

 C_{11}^6 - C_{11}^7 .8: 0.00 + 0.00) C_L^T : 0.00 + 0.00

[Data/MC comparisons](#page-25-0)

 299

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \subseteq \mathcal{P}$

Data/MC agreement

- with the model we have developed, we are comparing the data and the MC in some validation regions
- Region of $m_{Du} > m_B$
- Only non physical backgrounds contribute to this region
	- \blacktriangleright Combinatorial
	- \blacktriangleright MisID
- Normalization enriched region: $m^2_{\rm miss} < 0$
	- \blacktriangleright $B \to D \mu \nu$
	- \blacktriangleright $B \to D^* \mu \nu$
- Fit and topological variables
- After having performed the fit to the data, we plan to do a final data/MC agreement check, projecting the fit result in all regions and various variables

←ロ ▶ → 何 ▶

 \rightarrow \pm

[Toy studies](#page-27-0)

 2990

メロトメ 御 トメ 差 トメ 差 ト

- The fit model is very complicated
- many constrained parameters and a lot more free parameters.
- I spent a lot of time this year developing a stable and reliable fit model.
- I have tested the model against fit bias and coverage issues.

メロメメ 倒 メメ ミメメ 毛

Toy studies

1OS

LHCb Preliminary

- The fits are simultaneous in all signal and control regions used in the nominal fit
- The datasets are generated taking the nominal model, smeared with a Poisson uncertainty in each bin

 \Box

• No bias is observed in any of the parameters

Simone Meloni, 763674 (Milano Bicocca University) LEU test at LHCb September 3, 2019 29/38

Toy studies: results

• Raw numbers have to be converted into measured $\mathcal{R}(D^{+,*)}$, but it will be a very competitive result

 299

 (1) (1)

[A new project: DFEI](#page-31-0)

 2990

メロトメ 御 トメ 差 トメ 差 ト

- I have lately joined a new project, linked to Juliàn's Marie Curie
- DFEI: Deep Full event interpretation in LHCb
- At the moment the signal reconstruction is done based on a signal-hypothesis approach:
	- \triangleright You reconstruct the signal particles, the rest is considered background

- Some other experiments try to reconstruct all the decays in the event
	- \triangleright Belle II: Full Event Interpretation (Decision Tree)

• Aim: Try to reconstruct all (reconstructible?) decays

(□) () + ()

 QQ

DFEI: Why?

- The main background to be modelled in many key analyses is the **Combinatorial**
	- \triangleright Decay of the other *b*-hadron in the event
	- \triangleright Tracks from the rest of the event
	- \triangleright The situation will significantly worsen with the LHCb upgrades

- Why do we want to try Deep Learning?
- The increase in luminosity poses computational challenges for the trigger
	- \triangleright One can try to enhance the information in the trigger with DL
	- E.g.: can we avoid trying out all particle combinations in the online reconstruction?
- Limited available storage:
	- \triangleright Can we compress the information somehow with DL?

 QQ

 4 ロ } 4 \overline{m} } 4 \overline{m} }

The first approach: Reinforcement Learning

- The idea is to have an agent which will have the role to combine particles, assigning PID hypothesis etc.
- How do you train this agent?
- Reinforcement Learning: neither Supervised nor unsupervised learning
	- \triangleright training data: experiences of the agent
	- \triangleright training signal: reward from the environment
- It is all about the interaction with the environment
- The agent senses the state of the environment and decides upon an action
- The environment gives a reward signal to the agent
- It presents the agent with a new state
- This techniques are used AIs to beat games. To make a parallel with chess:
	- \triangleright Move your pawns \rightarrow combine particles
	- \triangleright Board \rightarrow list of particles you can combine

 QQ

The reinforcement learning problem

- The aim is to maximize the expected total reward, G
- The rewards are discounted by a factor $0 \le \gamma \le 1$
- $\pi(a|s)$ is the policy with which the action are chosen.
- You have to find the best policy
- For each state-action pair, you can assign a number Q_{π} , telling you how much you value that combination
- The best policy is the one that choses, for each state, the action with maximum value
- Solving the reinforcement learning problem is equivalent to find the optimal policy, or equivalently finding the best value function
- Some algorithms use tables of states and actions to approximate the best Q function
- This is impossible in our case, since the number of possible states is vastly large
- We use neural networks as function approximators for the Q value

€ □ }

つへへ

 $G=\sum_{i=1}^{T}$ $t=0$ $\gamma^t E_{\pi}[r_t]$

 $Q_\pi(s, a) = E_\pi[G|s, a]$
Deep-Q learning

- The optimal Q function is not known, but under the otpimal policy it follows some recursion relations: Bellman Optimality equations:
- Recursive problem: at each time step you formulate a minimization problem to minimize the difference between the left hand side and the one-sample approximation of the right hand side

DQN algorithm

- Observe s, select and execute a
- observe s' and get reward r
- Gradient $\frac{\partial E r}{\partial w} = [Q_w(s,a) - r - \gamma max_{a'} Q_w(s',a')] \frac{\partial Q_w}{\partial w}$
- update weights $w \leftarrow w \alpha \frac{\partial Er}{\partial w}$

$$
Q^*(s_t, a_t) = E[r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})]
$$

$$
Err(w) = 0.5|Q_w(s, a) - r - \gamma max_{a'} Q_{\bar{w}}(s', a')|^2
$$

- Deep Learning APIs give you the tools to evaluate automatically the gradients
- I have implemented this algorithm and some other tools that are needed for the reinforcement learning problem

 (1) (1)

First test of the algorithm in a mockup environment

• We tested this in a simple, 2D world with just 3 particles, 2 with the same mother

Simone Meloni, 763674 (Milano Bicocca University) LEU test at LHCb September 3, 2019 37/38

Conclusions

- Testing lepton flavour universality in semileptonic decays at the LHCb experiment
- Interesting discrepancies are being observed in similar analyses
- $\bullet\,$ Our analysis will report the simultaneous measurement of ${\cal R}(D^+)$ and ${\cal R}(D^*)$.
- This year I concentrated on including many systematic uncertainties in the fit
- Very difficul analysis with lots of nasty background: many external measurements are needed to constrain better the fit to data
- I have tested the model against bias and coverage, in all the control regions of the analysis
- We are now fitting the data and assessing the data/MC agreement in validation region
- I have joined a more technical project
- Aims at studying if a full event interpretation is feasable at LHCb and if it can bring some advantages
- Involves usage of state-of-the-art Machine Learning techniques
- Starting from scratch, in a field very different from our expertise

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Backup

K ロ → K 御 → K 君 → K 君 → 「君」 の Q Q →

Low mass states

- With the previous assumptions and external measurements I have evaluated the β for all the states
- \bullet Luse these numbers to evaluate the constraint on β in the fit

- All the β ratios have the same denominator, so they are correlated with each other
- The constraints, with the full correlation matrix, are put in the fit to include systematic uncertainties for the D^{**} composition

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- We expand the FF at third order in BGL
- We constrain the parameters using results from a [paper](http://arxiv.org/abs/1606.08030) which fits Belle, BaBar, FNAL, HPQCD data:

• a_{00} is fixed to the value of other parameters from a maximum recoil relation

イロト イ押 トイヨ トイヨト

$$
f_+(q^2=0)=f_0(q^2=0)
$$

- All the errors and correlations are taken into account in the fit
- In order to avoid numerical problems in the minimization, the covariance matrix of this result is diagonalized and the fit is performed on its principal components

 QQ

- We expand all the parameters at second order, except one which is expanded at third order in BGL
- We constrain the parameters using results from a paper which fits Belle unfolded data

- The helicity suppressed form factor parameters d have never been measured and are fixed in the fit.
- \bullet c_0 is fixed to other parameters values through the zero-recoil relation

$$
F_1(z=0) = \text{constant} \times P_1(z=0) \tag{1}
$$

(ロ) (何) (ヨ) (ヨ)

- All the errors and correlations are taken into account in the fit
- In order to avoid numerical problems in the minimization, the covariance matrix of this result is diagonalized and the fit is performed on its principal components

 QQ

The idea of Hammer

• The Hammer package takes the moves from the observation that the matrix elements for a semileptonic decay is linear in the form factors (or can be written in a linear form by a first order expansion)

$$
\mathcal{M} = FF^{\alpha} \mathcal{M}^{\alpha} \tag{2}
$$

• A given vector (FF) corresponds to a given choice of the form factors parameters used to evaluate the rate

$$
\Gamma \approx |\mathcal{M}|^2 = |\mathcal{M}^\alpha \mathcal{M}^\alpha|^2 \tag{3}
$$

- Instead of filling histograms with events, they can be filled with tensors $\mathcal{W}^{\alpha\beta} = \mathcal{M}^{\alpha} \mathcal{M}^{\beta}$
- When one needs the number of events in a given bin, the tensors can be contracted

$$
\Gamma \approx FF^T \cdot \mathcal{W} \cdot FF \tag{4}
$$

How can this be used?

• Knowing the tensors and having generated a MC sample with one choice of Form Factor parameters, one can reweight the Reco-Level histograms (one weight factor per histogram bin).

$$
r_i = \frac{\Gamma_{\text{new}}}{\Gamma_{\text{old}}} \tag{5}
$$

- It is quick to evaluate the weights, only linear operations involved
- A change in the model is *convolved* inside the full simulation, instead of deconvolving data from experimental resolutions $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

The Hammer architecture

 $(C++$ library w/ python bindings + optional histogram interface to ROOT \rightarrow can be integrated easily with existing software)

 \sim Ξ 299

 4 O \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

Trigger configurations

 QQ

Muon ID ~ 97 % for 1-3 % $\pi \rightarrow \mu$ mis-id probability

Ξ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Detailed description of the selections

Simone Meloni, 763674 (Milano Bicocca University) [LFU test at LHCb](#page-0-0) September 3, 2019 47/38

In

メロメメ 倒 メメ ミメメ 毛

Trigger

Kロ → K個 → K 君 → K 君 → 「君」 の Q (^)

 \equiv 990

メロメメ 御き メミメメミド

Table 14: Requirements of the H1t1TrackMVa trigger line during 2015 data taking

メロメメ 倒 メメ ミメメ ミメ

 \sim

÷.

HLT2, Stripping, Preselection, Filtering

Table 3: List of generator level selections

Þ

 299

メロメメ 倒す メミメメ 毛

D daughters PID selection

- Already existing PID cuts: $pi1-DLLK < 2$, $pi2-DLLK < 2$ and $K-DLLK > 4$.
- New PID variables: ProbNNpi $*(1 -$ ProbNNk) for pions and **ProbNNk** $*(1 - \text{ProbNNpi})$ for kaons.
- Cut on each variable optimised on data (to avoid using PID info from MC), through fits to the 3-body mass distribution, taking $S/\sqrt{S+B}$ as FoM.

つへへ

BDT against non D background- Input variables

- \bullet log(pi1_PT)
- \bullet log(pi2_PT)
- \bullet log(K_PT)
- · log(pi1_IPCHI2_OWNPV)
- · log(pi2_IPCHI2_OWNPV)
- log(K_IPCHI2_OWNPV)
- · log(pi1_TRACK_GhostProb)
- \bullet og(pi2_TRACK_GhostProb)
- og(K_TRACK_GhostProb)
- · Dplus_ENDVERTEX_CHI2NDOF

 \bullet log(B0_dXY)

BDT against non D background- Input variables

- Signal $B^0 \to D^+ \mu \nu$
- Background:D sidebands
- Cut optimized on $\frac{S}{\sqrt{S+B}}$, > -0.23

Charged Isolation

- Using the BDT trained for the $R(D^*)$ measurement.
- Old cut of < 0.15 reoptimised for this analysis.
- Signal sample: Bd2Dpmunu MC sample (11574061).
- · Background sample: Bd2DD, DD cocktail, MC sample (11995203).

つへへ

Neutral Isolation

- Two independent methods trained to suppress additional neutral particles
	- \triangleright The two methods are then combined in a single Neutral isolation output
- Signal: $B \rightarrow D \mu \nu$
- \bullet Background: $B \to (D^* \to D\pi^0) \mu \nu$

TMVA overtraining check for classifier: neutralBDT

- Signal effficiency 0.9
- Background rejection 0.3

4 **D F**

• $Cut > -0.16$

• The two BDTs used in input to this one are explained in the followng slides

 QQ

Resolved Pions BDT

- \bullet For each π^0 in the event evaluate a BDT trained on
	- $\blacktriangleright \pi^0$ s from $B \to D \mu \nu$ as signal
	- \blacktriangleright Truth matched π^0 s from $B\to (D^*\to D\pi^0)\mu\nu$ as background
- $\bullet\,$ Evaluate a per event quantity by counting how many π^0 s with BDT $<$ 0

K ロ ▶ | K 同 ▶ | K ヨ ▶

 QQ

Neutral Cones BDT

- \bullet In each event construct a cone around the D^+ flight direction
- Evaluate a BDT trained using variables related to activity inside the cone

4 ロ ▶ イ 何

${\cal R}(D^+)$ with $\tau \to \mu \nu \nu$ at LHCb, analysis strategy

- Aim of the analysis is to measure $\mathcal{R}(D^+) = \frac{\mathcal{BF}(\bar{B}^0 \to D^+\tau^-\bar{\nu}_\tau)}{2\mathcal{F}(\bar{B}^0 \to D^+-\tau^-)}$ $\mathcal{BF}(\bar B^0\to D^+\mu^-\bar\nu_\mu)$ $\mathcal{BF}(\tau^-\rightarrow \mu^-\nu_\tau\bar{\nu}_\mu)=(17.39\pm 0.04)\%$ $\mathcal{BF}(D^+ \to K^+ \pi^- \pi^+)=(8.98 \pm 0.28)\%$
- Theoretical point of view: clean because $|V_{cb}|$ and hadronic form factors uncertainties cancel in the ratio

$$
\mathcal{R}(D^+)_\text{SM}=0.300\pm0.008
$$

- Experimental point of view: Signal and normalization channels have the same final state
	- \triangleright Most of uncertainties due to efficiency and reconstruction cancel
	- \blacktriangleright The two channels are separated using 3 kinematical variables, computed in the B rest frame

Simone Meloni, 763674 (Milano Bicocca University) LEU test at LHCb September 3, 2019 60/38

Shape systematics

- Some backgrounds are modelled by cocktails of poorly known B decays.
- The assumptions about their composition can induce biases in the measurement.
- Varying all the assumed branching ratios inside the cocktails would be a titanic work
- The control samples can actually be used to check the data MC agreement
- The idea is to let the fit have enough variation to adjust the MC shape in the control regions.
- **Solution:** Include some phenomenological shape variation as systematics

Reweight to the $B \to D_J^{**} \mu \nu$ sample

 Ω

- Some backgrounds are modelled by cocktails of poorly known B decays.
- The assumptions about their composition can induce biases in the measurement.
- Varying all the assumed branching ratios inside the cocktails would be a titanic work
- The control samples can actually be used to check the data MC agreement
- The idea is to let the fit have enough variation to adjust the MC shape in the control regions.
- **Solution:** Include some phenomenological shape variation as systematics

Reweight to the $B \to DD\mu\nu$ sample

MC samples

Table 2: List of Monte Carlo samples used.

重

メロメ メ御 メメ ヨメ メヨメ

Table 5: Generated full-MC samples. In parenthesis, the number of events after filtering is indicated.

 299

メロメメ 倒 メメ ミメメ ミメ

Tracker Only, how many?

Table 6: Generated tracker-only-MC samples. In parenthesis, the number of events after filtering is indicated.

B

 299

メロメ メ御 メメ ヨメ メヨメ

Kinematic reweighting 1

Control sample: $B^+ \rightarrow J/\psi K^+$ (2015 so far)

- · Stripping: BetaSBu2JpsiKDetachedLine.
- Trigger: (LOMuon || LODiMuon) && HIt1TrackMuon && Hlt2DimuonDetatchedHeavy.
- Using DTF with constraint on the PV and the Jpsi mass.
- Preselection: similar to the $R(D^*)$ analysis, rectangular cuts and sWeights (using the Bp mass as variable, signal $+$ comb. bkg.).

つへへ

Kinematic reweighting 2

Weights obtained from GBreweighter, trained on the 3D distribution of:

- \bullet log(Bp _{-PT}).
- Pseudorapidity (ETA) of the Bp .
- Number of tracks in the event.

Green filled area: reweighted MC

Checked that the reweight does not negatively affect the J/ψ and K kinematic distributions (they actually improve). マロト マタト マミトマミ

Correction to the Double Charm control sample

 \bullet Reweight $B^0 \rightarrow D_1D_2X$ and $B^\pm \rightarrow D_1D_2X$ events with two (common) weight functions

$$
w(\alpha_1) = 1 + 2\alpha_1 \left(\sqrt{\left(\frac{m_{D_1D_2}^2 - (m_{D_1} + m_{D_2})^2}{(m_B - m_K)^2 - (m_{D_1} + m_{D_2})^2} \right)} - \frac{1}{2} \right)
$$

$$
w(\alpha_2) = (1 - \alpha_2) + 8\alpha_2 \left(\sqrt{\left(\frac{m_{D_1D_2}^2 - (m_{D_1} + m_{D_2})^2}{(m_B - m_K)^2 - (m_{D_1} + m_{D_2})^2} \right)} - \frac{1}{2} \right)^2
$$

- Evaluate the templates at $\alpha_i = \pm 1$, and include them in the fit as systematic variations
- Interpolate between them and fit for α_i

4 0 8 \leftarrow \leftarrow

Combinatorial background suppression

- The combinatorial fraction seemed a little bit too high at the beginning
- \bullet We think to have tracked down the problem... We miss a IP_{χ^2} cut for the D^+ candidate
	- In This cut would reject most of the Combinatorial from prompt D candidates

つへへ

• The measurement relies on the correct evaluation of the backgrounds, that must be tackled in order

• Analysis chain:

- 1μ -MisID: Unfold its distribution from real data using weights extracted from prescaled !isMuon sample, both in ${D^+\mu^-}$ cc and ${D^+\mu^+}$ cc samples.
- 2 Non D background: Extract sWeights from the D-MassFit to the μ -PID weighted sample
- 3 $\,$ Combinatorial: taken from the sWeighted, μ -MisID subtracted $\{D^+\mu^+\}$ cc sample
- 4 Physical backgrounds: estimated from MC
	- \star Eventually extracting corrections using data driven studies in dedicated control samples
- \bullet $Before$.
	- \triangleright sWeights were extracted before evaluating PID weights $(1 \leftarrow 2)$
	- \blacktriangleright The weights were extracted for the whole sample, and then some isolation categories were defined
- Now...
	- \triangleright We first define all the isolation categories (And never touch selections again!)
	- \blacktriangleright ...The whole analysis chain is repeated for all the isolation categories we are defining

つへへ

イロト イ押 トイヨ トイヨト

 $\mathcal{R}(D^*) = 0.336 \pm 0.027(\text{stat.}) \pm 0.030(\text{syst.})$

2.1 σ higher than the Standard Model

systematic uncertainties

- MC statistics
- Shape of the Mis-ID background
- Shape of the MC derived background models
	- ▶ Depend on the statistics in the control regions
	- They will be reduced in the measurements performed with the Runll data

イロト イ押 トイヨ トイヨト

• Hadronic form factors