

Search for the rare decay $\tau \rightarrow 3\mu$ at the CMS experiment

LUCA GUZZI

UNIVERSITÀ & INFN DI MILANO BICOCCA

END OF THE YEAR REPORT A.A. 2019/2020

September 3rd, 2020

THE PHYSICS CASE

Lepton Flavour Violation (LFV) is suppressed within the Standard Model (SM)

- neutrino oscillations has been observed
 - this induces LFV
 - Branching Ratio MS (BR) $\tau \rightarrow 3\mu \sim \mathcal{O}(10^{-55})$ [arXiv:1912.09862]
- LFV decays can be a good test for beyond SM physics

τ → 3μ decay

- pp collisions are a rich source of τ leptons
- 3µ channel has a clear signature due to the presence of three muons in the final state
- some BSM models predict enhanced coupling to the third family

STATE OF THE ART

- $\tau \longrightarrow 3 \mu$ search at lepton colliders
 - Belle (KEKB), BR($\tau \rightarrow 3\mu$) < 2.1 x 10⁻⁸ @ 90% di Confidence Level (CL) [arXiv:1001.3221]
 - best upper limit today
 - **BaBar** (SLAC), BR($\tau \rightarrow 3\mu$) < 3.3 x 10⁻⁸ @ 90% di CL [arXiv:1002.4550]
- $\tau \longrightarrow 3 \mu$ search at hadron colliders
 - LHCb (LHC), BR($\tau \rightarrow 3\mu$) < 4.6 x 10⁻⁸ @ 90% di CL [https://doi.org/10.1007/ JHEP02(2015)121]
 - ATLAS (LHC), BR(T \longrightarrow 3µ) < 3.8 x 10⁻⁷ @ 90% di CL [https://doi.org/10.1140/epic/ s10052-016-4041-9]
 - CMS (LHC), BR($\tau \rightarrow 3\mu$) < 8.0 x 10⁻⁸ @ 90% di CL [arXiv:2007.05658]

SEARCH AT CMS

Both Heavy Flavour (HF) (D $\longrightarrow \tau v..., B \longrightarrow \tau v..., B \longrightarrow D(\tau v)...)$ and W (W $\longrightarrow \tau v$) production channels can be investigated

CMS Run2 (pp @ 13 TeV): integrated luminosity ~140 fb⁻¹

- **HF channel**: $\mathcal{O}(10^{12})$ T leptons produced
- $\sim 10^4 \div 10^5 \ \tau \longrightarrow 3\mu$ events (assuming Belle's limit)
- low transverse momenta, low missing energy
- W channel: $\mathcal{O}(10^9)$ T leptons produced
- $\sim 10 \div 100 \tau \longrightarrow 3\mu$ events (assuming Belle's limit)
- stronger final state signature

Prima analisi $\tau \longrightarrow \Im \mu$ a CMS su dati 2016

- Journal (JHEP) publication under review
- available on the <u>CDS</u>, <u>arxiv</u>

ANALYSIS STRATEGY

Online: dedicated High Level Trigger (HLT)

- selecting two muons and one tracker muon coming from the same vertex
- implementing tau object reconstruction + isolation cut at HLT
- updated for the 2017-2018 data taking specifically for the W channel
- **Offline**: selecting $\tau \longrightarrow 3\mu$ events within offline reconstructed objects
 - identification of three muons coming from a common vertex
 - kinematic acceptance: pT > 1 GeV, $|\eta| < 2.4$

Signal/background discrimination

- S/B discrimination is done with MVA techniques (BDT) exploiting the full information of the event (no hard cuts)
- BDT trained on simulated signal samples and data from the signal-mass sidebands
- Using two categories: barrel (| η | < 1.6) and endcap (| η | \geq 1.6)

BDT rejection of background events

BDT discriminator trained with the XGBoost package, using a five-fold approach

- Trained on 2017-2018 dataset (data SB + MC)
- signal MC (private Pythia production)
 - 390k events for 2017
 - 380k events for 2018
- added shifted-tau-mass samples to the training
 - 5 samples per year, 50k events per sample
 - 1.65, 1.70, 1.85, 1.90 and 1.95 GeV
- data corresponding to 90 fb-1 (2017+2018)

FEATURE IMPORTANCE

Luca Guzzi - Univ. & INFN Milano Bicocca

PERFORMANCE

Overtraining checks ok

8

PERFORMANCE

VARIABLES

WORKING POINT OPTIMIZATION

expected UL @ 90% CL

BACKGROUND STUDIES

Possible background sources from di-muon resonance + muon/fake channels:

- di-muon resonant + random track
- from D+ and Ds decays with a di-muon resonance + fake muon final state
 - e.g. D+(s) → Φ(μμ) π
- from D \rightarrow three-real-muons + undetected (through di-muon resonances)
 - $D^+(s) \rightarrow \Phi(\mu\mu) \mu\nu$

Possible background sources are D \rightarrow three-fake decays

- e.g.
$$D \rightarrow KK\pi$$

DI-MUON BACKGROUND

- Phi survives the BDT selections, need to veto the phi resonance
 - could be related to ϕ + random track, or D+(s) decays
 - 13 MeV width, can veto with a 20 MeV cut
 - expected limit improves with the phi meson veto

EXPECTED D EVENTS IN 90 FB⁻¹

Branching ratios	s (from PDG)
 D+ → φπ 	5.6 x 10 ⁻³
 D+ → ωπ 	3.4 x 10-4
 D+ → ηπ 	3.7 x 10 ⁻³
 Ds → φπ 	4.5 x 10 ⁻²
 Ds → ωπ 	2.4 x 10 ⁻³
 Ds → ηπ 	1.7 x 10 ⁻²

No Ds $\rightarrow \phi \pi$ in the final mass spectrum after the BDT selection

• Should not expect other channels too (comparable BDT efficiency)

THREE-FAKE BACKGROUND

Rough (over)estimation of Ds → three-fake background

- About 5000 Ds $\rightarrow \phi(\mu\mu) \pi$ events in 90 fb⁻¹ (trigger matched)
 - all events are most likely $\phi(\mu\mu)$ events, since the $\phi \rightarrow KK$ is about 3 orders of magnitude more likely, but 10⁻⁵ suppressed by the mis-id
- About 5000 / 3 x 10⁻⁴ ($\phi \rightarrow \mu\mu$) / 4.5 x 10⁻² (Ds $\rightarrow \phi\pi$) Ds events in 90 fb⁻¹ with one mis-id'ed track (trigger matched)
 - Less than $4 \ge 10^{+8}$ Ds \rightarrow three-fake events in 90 fb⁻¹ with one mis-id'ed track
- Additional 10⁻⁵ factor from the other two mis-id'ed tracks
- less than 2000 Ds \rightarrow three-fake events trigger matched
 - assuming a BR for Ds \rightarrow three-fake of order 50%
 - less than $Ds \rightarrow \phi \pi$ events
 - same calculation on D+ gives less than 3000 D+ \rightarrow three-fake events

D SEMILEPTONIC DECAYS

Leptonic decays

http://cds.cern.ch/record/2002363/files/CERN-THESIS-2015-021.pdf

D decay	${\cal B}_1^{(*)}$	Secondary decay	\mathcal{B}_2	${\cal B}_1 imes {\cal B}_2$	
D_s					
$\eta\mu u_{\mu}$	2.67×10^{-2}	$\eta ightarrow \mu \mu$	5.8×10^{-6}	$1.5 imes 10^{-7}$	0.03 nb
$\eta\mu u_{\!\mu}$	2.67×10^{-2}	$\eta ightarrow \mu \mu \gamma$	3.1×10^{-4}	$8.2 imes 10^{-6}$	1.5 nb
$\eta\mu u_{\mu}$	2.67×10^{-2}	$\eta ightarrow \pi^0 \mu \mu \gamma$	$< 3 imes 10^{-6}$	$< 8.0 \times 10^{-8}$	< 0.02 nb
$\eta' \mu u_{\mu}$	$9.9 imes 10^{-3}$	$\eta' ightarrow \mu \mu \gamma$	1.09×10^{-4}	1.1×10^{-6}	0.20
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi ightarrow \mu \mu$	2.87×10^{-4}	7.1×10^{-6}	1.3
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi ightarrow \mu \mu \gamma$	1.4×10^{-5}	3.5×10^{-7}	0.06
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi \to \mu \mu \pi^0$	$1.12 \times 10^{-5}(\dagger)$	$2.8 imes 10^{-7}$	0.05
\mathbf{D}^+					nun
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \mu \mu$	5.8×10^{-6}	$6.6 imes 10^{-9}$	< 0.01 00 0
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \mu \mu \gamma$	3.1×10^{-4}	$3.5 imes 10^{-7}$	0.20
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \pi^0 \mu \mu \gamma$	$< 3 \times 10^{-6}$	$< 3.4 \times 10^{-9}$	< 0.0
$\eta' \mu u_{\mu}$	$2.2 imes 10^{-4}$	$\eta' ightarrow \mu \mu \gamma$	1.09×10^{-4}	$2.4 imes 10^{-8}$	0.01 T D
$\omega\mu u_{\!\mu}$	$1.6 imes 10^{-3}$	$\omega ightarrow \mu \mu$	$9.0 imes 10^{-5}$	1.4×10^{-7}	0.09 pk
$\omega\mu u_{\!\mu}$	$1.6 imes 10^{-3}$	$\omega \to \mu \mu \pi^0$	$1.3 imes 10^{-4}$	$2.1 imes 10^{-7}$	0.13 nb
$ ho^0 \mu u_{\!\mu}$	$2.4 imes 10^{-3}$	$ ho^0 ightarrow \mu \mu$	4.55×10^{-5}	1.1×10^{-7}	0.07 nb
$\phi \mu u_{\!\mu}$	$< 9 imes 10^{-5}$	$\phi ightarrow \mu \mu$	2.87×10^{-4}	$2.6 imes 10^{-8}$	0.02 nb
$(*)$: given branching ratios are from corresponding $e u_e$ decays					

(†) : given branching ratio is from $\phi \rightarrow e^+ e^- \pi^0$ decays

• as in previous slide none of these is resonant, due to neutrinos \rightarrow non peaking

Cannot make quantitative consideration as done for $Ds \rightarrow \phi \pi$

All the decays driven by pure di-muon resonances can be excluded (no di-muon resonances after the BDT but for φ meson -veoted-)

Anyway, the presence of one or more undetected particles makes the 3µ mass spectrum non-peaking

Riccardo Manzoni - ETHZ

EXPECTED LIMIT

- Extracted with unbinned ML fit to the 3µ mass distribution
- using combine tool (HybridNew with LHC statistics)
- signal region is blinded (1.72-1.84 GeV)

exp. 0.16 BR(Tau3Mu) < 0.35 x 10⁻⁷ @ 90% CL exp. 0.50 BR(Tau3Mu) < 0.48 x 10⁻⁷ @ 90% CL exp. 0.84 BR(Tau3Mu) < 0.73 x 10⁻⁷ @ 90% CL

Expected from 2016 (lumi scaled without SFs): 1.3 x 0.81 / sqrt(3) = 0.61 x 10^{-7} @ 90% CL

2016 expected limit 2016 average scale factor luminosity factor

NEW EVENT CATEGORIES

- So far events have been categorized as barrel or endcap (cut at eta 1.6).
- Could find a better definition, based on the mass resolution
 - mass resolution seems to have a change point at eta = 1, eta = 1.8
 - three categories are defined (not yet optimized): central, middle, forward

COORDINATION BETWEEN THE WARD D/B CHANNELS

- Analysis is carried out in two different channels (W → τν and D/B → τν X) by two different analysis groups
- Full potentiality of CMS is exploited by the statistical combination of the two
- This is done through the *combine* tool, efforts are being made in this direction
- The synchronization of the analysis has started to ensure:
 - common reco dataset
 - analysis milestones (AN, pre-approvals, etc.)
 - combination as done in 2016 (combine)
- Ideally: aim to Moriond 2021
- $\tau \rightarrow 3\mu$ analysis is a flagship for Belle II, this period is a window of opportunity for CMS to obtain a competitive result

TODO AND CONCLUSIONS

Ongoing studies

- study of the BDT efficiency vs. the tau mass
- MC Ultra Legacy performance study

TODO

- trigger and offline muon ID efficiencies and scale factors

RESULTS ON 2016 DATASET (W CHANNEL)

No evidence of $\tau \rightarrow 3\mu$ signal was found, an upper limit was set

the observed (expected) upper limit at 90% CL is • $BR(\tau \rightarrow 3\mu) < 2.0 (1.4) \cdot 10^{-7}$

Exported	Prefit $\mathcal{B}(\tau \to 3\mu) = 10^{-7}$		B only Fit		S+B Fit	
Expected	barrel	endcap	barrel	endcap	barrel	endcap
Signal	2.0 ± 0.2	0.9 ± 0.1	-	-	0.6 ± 1.1	0.3 ± 0.6
Background	3.1	30.6	3.0 ± 1.8	37.0 ± 6.5	2.6 ± 1.8	36.5 ± 6.3
Obsorrad		barrel			endcap	
Observed	3			37		

Luca Guzzi - Univ. & INFN Milano Bicocca

RESULTS ON 2016 DATASET (D/B CHANNEL)

No evidence of $\tau \rightarrow 3\mu$ signal was found, an upper limit was set

• the observed (expected) upper limit at 90% CL is $BR(\tau \rightarrow 3\mu) < 9.2 (10.0) \cdot 10^{-8}$

Combined result

• the observed (expected) upper limit at 90% CL is $BR(\tau \rightarrow 3\mu) < 8.0 \ (6.9) \cdot 10^{-8}$

OTHER TASKS AND CFU

Conferences

 selected for the talk Search for τ→3µ decay in CMS with the 2016 dataset and combining tau leptons produced in B, D and W decays at the YSF section of Moriond 2020 (cancelled due to covid-19 pandemic)

Schools in 2019-20

- PRecision Electroweak Field Theory (PREFIT) school at DESY

Work for the CMS collaboration

- Beamspot online monitoring (Ultra Legacy 2017)
- Maintenance and updating of tau reconstruction/identification software in CMSSW

Obtained 8 CFU in total

- CMS DAS school (Pisa) report (2 CFU) (2018-19)
- Introduction to statistics with R (part I): data description and basic inference (2 CFU) (2018-19)
- Machine learning course (1 CFU) (2018-19)
- Introduction to C++ (2 CFU) (2019-20)
- Introduction to python programming (1 CFU) (2019-20)

THREE-FAKE BACKGROUND

Rough (over)estimation of Ds → three-fake background

- About 5000 Ds $\rightarrow \phi(\mu\mu) \pi$ events in 90 fb⁻¹ (trigger matched)
 - all events are most likely $\phi(\mu\mu)$ events, since the $\phi \rightarrow KK$ is about 3 orders of magnitude more likely, but 10⁻⁵ suppressed by the mis-id
- About 5000 / 3 x 10⁻⁴ ($\phi \rightarrow \mu\mu$) / 4.5 x 10⁻² (Ds $\rightarrow \phi\pi$) Ds events in 90 fb⁻¹ with one mis-id'ed track (trigger matched)
 - Less than $4 \ge 10^{+8}$ Ds \rightarrow three-fake events in 90 fb⁻¹ with one mis-id'ed track
- Additional 10⁻⁵ factor from the other two mis-id'ed tracks
- less than 2000 Ds \rightarrow three-fake events trigger matched
 - assuming a BR for Ds \rightarrow three-fake of order 50%
 - less than $Ds \rightarrow \phi \pi$ events
 - same calculation on D+ gives less than 3000 D+ \rightarrow three-fake events

D SEMILEPTONIC DECAYS

Leptonic decays

http://cds.cern.ch/record/2002363/files/CERN-THESIS-2015-021.pdf

D decay	${\cal B}_1^{(*)}$	Secondary decay	\mathcal{B}_2	${\cal B}_1 imes {\cal B}_2$	
D_s					
$\eta\mu u_{\mu}$	2.67×10^{-2}	$\eta ightarrow \mu \mu$	5.8×10^{-6}	1.5×10^{-7}	0.03 nb
$\eta\mu u_{\!\mu}$	2.67×10^{-2}	$\eta ightarrow \mu \mu \gamma$	$3.1 imes 10^{-4}$	$8.2 imes 10^{-6}$	1.5 nb
$\eta\mu u_{\mu}$	2.67×10^{-2}	$\eta ightarrow \pi^0 \mu \mu \gamma$	$< 3 \times 10^{-6}$	$< 8.0 \times 10^{-8}$	< 0.02 nb
$\eta' \mu u_{\mu}$	$9.9 imes 10^{-3}$	$\eta' ightarrow \mu \mu \gamma$	1.09×10^{-4}	1.1×10^{-6}	0.20
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi ightarrow \mu \mu$	2.87×10^{-4}	$7.1 imes 10^{-6}$	1.3
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi ightarrow \mu \mu \gamma$	1.4×10^{-5}	3.5×10^{-7}	0.06
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi ightarrow \mu \mu \pi^0$	$1.12 \times 10^{-5}(\dagger)$	$2.8 imes 10^{-7}$	0.05
\mathbf{D}^+					nu
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \mu \mu$	$5.8 imes 10^{-6}$	$6.6 imes 10^{-9}$	< 0.01 0 0
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \mu \mu \gamma$	$3.1 imes 10^{-4}$	$3.5 imes 10^{-7}$	0.20
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \pi^0 \mu \mu \gamma$	$< 3 \times 10^{-6}$	$< 3.4 \times 10^{-9}$	< 0.0
$\eta' \mu u_{\mu}$	$2.2 imes 10^{-4}$	$\eta' ightarrow \mu \mu \gamma$	$1.09 imes 10^{-4}$	$2.4 imes 10^{-8}$	0.01
$\omega\mu u_{\mu}$	1.6×10^{-3}	$\omega ightarrow \mu \mu$	9.0×10^{-5}	1.4×10^{-7}	0.09 pb
$\omega\mu u_{\!\mu}$	$1.6 imes 10^{-3}$	$\omega ightarrow \mu \mu \pi^0$	$1.3 imes 10^{-4}$	$2.1 imes 10^{-7}$	0.13 nb
$ ho^0 \mu u_{\!\mu}$	$2.4 imes 10^{-3}$	$ ho^0 ightarrow \mu \mu$	4.55×10^{-5}	1.1×10^{-7}	0.07 nb
$\phi \mu u_{\mu}$	$< 9 \times 10^{-5}$	$\phi \rightarrow \mu \mu$	$2.87 imes 10^{-4}$	$2.6 imes 10^{-8}$	0.02 nb
$(*)$: given branching ratios are from corresponding $e u_e$ decays					

(†) : given branching ratio is from $\phi \rightarrow e^+ e^- \pi^0$ decays

• as in previous slide none of these is resonant, due to neutrinos \rightarrow non peaking

Cannot make quantitative consideration as done for $Ds \rightarrow \phi \pi$

All the decays driven by pure di-muon resonances can be excluded (no di-muon resonances after the BDT but for φ meson -veoted-)

Anyway, the presence of one or more undetected particles makes the 3µ mass spectrum non-peaking

Riccardo Manzoni - ETHZ

MC PRODUCTION 2017-2018

MC is used to train the BDT

- **2016**: 20k events produced via MadGraph (2HDM)
- 2017-2018: 800k events produced con Pythia (phase space), private production
 - asked a central production of 1 M events under the Ultra Legacy conditions (phase space)
- asked the central production of 1M events under the 2HDM model
 - compare phase space of the two montecarlo samples
- also producing 500k events with a shifted tau lepton mass value for BDT training purpose

SYSTEMATICS (W CHANNEL, 2016)

	Uncertainty (%)		
Source	Barrel	Endcap	
Signal efficiency	7.9	32	
Limited size of simulated samples	4.3	6.2	
Integrated luminosity	2.5	2.5	
$pp \rightarrow W$ cross section	2.9	2.9	
$\overline{\mathcal{B}}(W \to \mu \nu)$	0.2	0.2	
$\mathcal{B}(W \rightarrow \tau \nu)$	0.2	0.2	

EXPECTED LIMIT - NEW BARREL-ENDCAP DEFINITION

- Currently splitting barrel-endcap at $|\eta| =$ 1.6
- Mass resolution can be used to define a better event categorization

•

 $|\eta| = 1$ seems a better slitting point

2500

2000

1500

1000E

500

1200 1000

800Ē

600

400

0.0006

0.0008

0.00

0.0004

0.0008

0.001

0.0012

0.0006

DATA SAMPLES

Dataset DoubleMuLowMass MINIAOD

2017 data (30.45 fb⁻¹)

- /DoubleMuonLowMass/Run2017#-31Mar2018-v*/MINIAOD
 - # = C, D, E, F
- Collisions17/13TeV/ReReco/Cert_294927-306462_13TeV_EOY2017ReReco_Collisions17
 _JSON_v1.txt
 - trigger attivo da run 301046
 - possibile recuperare run B e C con trigger 2016 (~ 11 fb⁻¹)

2018 data (59.71 fb⁻¹)

- /DoubleMuonLowMass/Run2018#-17Sep2018-v*/MINIAOD
 - # = A, B, C
- /DoubleMuonLowMass/Run2018D-PromptReco-v2/MINIAOD
- Collisions18/13TeV/PromptReco/Cert_314472-325175_13TeV_PromptReco_Collisions18
 _JSON.txt

HIGH LEVEL TRIGGER

HLT 2016

HLT_DoubleMu3_Track_Tau3Mu

two muons

- $pT(\mu) > 3 \text{ GeV}, pT(\mu\mu) > 6 \text{ GeV}$
- |η| < 2.5
- massa invariante in (0.5, 1.7) GeV
- CL vertice > 0.01
- $\Delta R(\mu 1, \mu 2) < 0.6$
- $L/\sigma > 1$
- $\cos(a) > 0$

one track

- pT > 1.2 GeV
- |η| < 2.5
- χ^2 vertice < 8

muons + track

- pT > 8 GeV
- $L/\sigma > 2$,
- $\cos(a) > 0.9$
- massa invariante in (1.6, 2.02) GeV
- L1_DoubleMu0er1p5_SQ_OS_dR_Max1p4
- L1_TripleMu_5_3_0_DoubleMu_5_3_OS_Mass_Max17

HLT 2017-2018 (W)

HLT_Tau3Mu_Mu7_Mu1_TkMu1_IsoTau15

Tre muoni

- $pT(\mu_1) > 7 \text{ GeV}, pT(\mu_{2,3}) > 1 \text{GeV}$
- massa invariante τ in (0.5, 1.7) GeV
- $|\eta|_{\tau} < 2.5$
- pT_τ > 15 GeV
- $\Delta R_{3\mu} < 0.3$
- $Iso_{\tau}^{REL} < 0.2$

L1_DoubleMu_10_1_Q12_maxMass4p0

 $I^{abs} = \sum p^{charged} (d_z < 0.2 \text{ cm}) + max(0, \sum p^{\gamma} - \Delta\beta \sum p^{charged} (d_z > 0.2 \text{ cm}))$ $I^{rel} = I^{abs} / p_T^{\tau}$

Luca Guzzi - Univ. & INFN Milano Bicocca

BDT CORRELATION MATRIX

Luca Guzzi - Univ. & INFN Milano Bicocca

TRIGGER GAIN

Trigger efficiencies evaluated on $\tau \longrightarrow 3\mu$ MC (2016 and 2017)

#Events_firing_the_trigger / #GEN

2016 4288 / 20000 = 0.21 **2017** 8938 / 40600 = 0.22

Preselection efficiency (#Offline_Trigger_matched / #Events_firing_the_trigger)

- **2016** 3073/4288 = 0.72
- **2017** 8585/8938 = 0.96

ratio 1.33

- event loss in 2016 due to HLT request (two muons and a track)
 - the track could fail muon reconstruction
- this happens less for 2017-18, which selects three muons at HLT

Global efficiency (#Offline_Trigger_matched / #GEN)

- **2016** 3073/20000 = 0.15
- **2017** 8585/40600 = 0.21
- **ratio** 1.40

	Data 2016 RunG	Data 2017 RunD
luminosità [fb ⁻¹]	7.57	4.25
eventi	251803	68074
ev / fb ⁻¹ sidebands	33263	16017
ev in the signal region / fb ⁻¹ (extrapolated)	14600	6900

EXPECTED D EVENTS IN 90 FB⁻¹

- Expected number of trigger matched D+(s) $\rightarrow \phi \pi$ events obtained from a fit to the data (2017+2018)
- Likely all the events are $\phi \rightarrow \mu\mu$, since the $\phi \rightarrow KK$ channels are suppressed by a mis-id factor 10⁻⁵
- Sample selection:

- SV selection efficiency is evaluated on $Ds \rightarrow \phi \pi$ MC to be 52%
 - Trigger matched Ds $\rightarrow \phi\pi$: 2419 / 0.52 = **4651**
 - Trigger matched D+ $\rightarrow \phi \pi$: 529 / 0.52 = **1017**
 - other channels (ω and η) obtained scaling the branching ratios

THREE-FAKE BACKGROUND

Rough (over)estimation of Ds → three-fake background

- About 5000 Ds $\rightarrow \phi(\mu\mu) \pi$ events in 90 fb⁻¹ (trigger matched)
 - all events are most likely $\phi(\mu\mu)$ events, since the $\phi \rightarrow KK$ is about 3 orders of magnitude more likely, but 10⁻⁵ suppressed by the mis-id
- About 5000 / 3 x 10⁻⁴ ($\phi \rightarrow \mu\mu$) / 4.5 x 10⁻² (Ds $\rightarrow \phi\pi$) Ds events in 90 fb⁻¹ with one mis-id'ed track (trigger matched)
 - Less than $4 \ge 10^{+8}$ Ds \rightarrow three-fake events in 90 fb⁻¹ with one mis-id'ed track
- Additional 10⁻⁵ factor from the other two mis-id'ed tracks
- less than 2000 Ds \rightarrow three-fake events trigger matched
 - assuming a BR for Ds \rightarrow three-fake of order 50%
 - less than $Ds \rightarrow \phi \pi$ events
 - same calculation on D+ gives less than 3000 D+ \rightarrow three-fake events

D SEMILEPTONIC DECAYS

Leptonic decays

http://cds.cern.ch/record/2002363/files/CERN-THESIS-2015-021.pdf

D decay	${\cal B}_1^{(*)}$	Secondary decay	\mathcal{B}_2	${\cal B}_1 imes {\cal B}_2$	
D_s					
$\eta\mu u_{\mu}$	2.67×10^{-2}	$\eta ightarrow \mu \mu$	5.8×10^{-6}	1.5×10^{-7}	0.03 nb
$\eta\mu u_{\mu}$	2.67×10^{-2}	$\eta ightarrow \mu \mu \gamma$	3.1×10^{-4}	$8.2 imes 10^{-6}$	1.5 nb
$\eta\mu u_{\mu}$	2.67×10^{-2}	$\eta ightarrow \pi^0 \mu \mu \gamma$	$< 3 imes 10^{-6}$	$< 8.0 \times 10^{-8}$	< 0.02 nb
$\eta' \mu u_{\mu}$	$9.9 imes 10^{-3}$	$\eta' ightarrow \mu \mu \gamma$	1.09×10^{-4}	1.1×10^{-6}	0.20
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi ightarrow \mu \mu$	2.87×10^{-4}	$7.1 imes 10^{-6}$	1.3
$\phi \mu u_{\!\mu}$	2.49×10^{-2}	$\phi ightarrow \mu \mu \gamma$	1.4×10^{-5}	3.5×10^{-7}	0.06
$\phi \mu u_{\mu}$	2.49×10^{-2}	$\phi \to \mu \mu \pi^0$	$1.12 \times 10^{-5}(\dagger)$	$2.8 imes 10^{-7}$	0.05
\mathbf{D}^+					nu
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \mu \mu$	5.8×10^{-6}	$6.6 imes 10^{-9}$	< 0.01 0 0
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \mu \mu \gamma$	3.1×10^{-4}	$3.5 imes 10^{-7}$	0.20
$\eta\mu u_{\mu}$	1.14×10^{-3}	$\eta ightarrow \pi^0 \mu \mu \gamma$	$< 3 \times 10^{-6}$	$< 3.4 \times 10^{-9}$	< 0.0
$\eta' \mu u_{\mu}$	$2.2 imes 10^{-4}$	$\eta' ightarrow \mu \mu \gamma$	1.09×10^{-4}	$2.4 imes 10^{-8}$	0.01
$\omega\mu u_{\!\mu}$	1.6×10^{-3}	$\omega ightarrow \mu \mu$	9.0×10^{-5}	1.4×10^{-7}	0.09 ph
$\omega\mu u_{\!\mu}$	1.6×10^{-3}	$\omega \to \mu \mu \pi^0$	$1.3 imes 10^{-4}$	$2.1 imes 10^{-7}$	0.13 nb
$ ho^0 \mu u_{\!\mu}$	$2.4 imes 10^{-3}$	$ ho^0 ightarrow \mu \mu$	4.55×10^{-5}	1.1×10^{-7}	0.07 nb
$\phi \mu u_{\mu}$	$< 9 imes 10^{-5}$	$\phi \rightarrow \mu \mu$	$2.87 imes 10^{-4}$	$2.6 imes 10^{-8}$	0.02 nb
$(*)$: given branching ratios are from corresponding $e u_e$ decays					

(†) : given branching ratio is from $\phi \rightarrow e^+ e^- \pi^0$ decays

• as in previous slide none of these is resonant, due to neutrinos \rightarrow non peaking

Cannot make quantitative consideration as done for $Ds \rightarrow \phi \pi$

All the decays driven by pure di-muon resonances can be excluded (no di-muon resonances after the BDT but for φ meson -veoted-)

Anyway, the presence of one or more undetected particles makes the 3µ mass spectrum non-peaking

Riccardo Manzoni - ETHZ