Measurement of mixing and CP-violation in charm decays at the LHCb experiment

Edward Shields¹.

¹INFN & Universitá di Milano Bicocca, Milano, Italy

First PhD year final seminar PhD in Physics and Astronomy, XXXV Cycle September 3, 2020

Introduction

This seminar will present and discuss a technique for the measurement of the mixing parameter y_{CP} in $D^0 \rightarrow K^0_S K^+ K^-$ decays.

What will be covered today includes:

- Mixing
- ► CP-violation
- ▶ Formalism
- Dataset
- Measurement
- Systematic uncertainties
- Expected precision

Charm physics at LHCb

Charm physics is an active area of research in the LHCb collaboration with exciting results in recent years.

▶ First single-experiment observation of Charm mixing¹.

Observation of $D^0 - \overline{D}^0$ Oscillations

R. Aaij *et al.** (LHCb Collaboration) (Received 6 November 2012; published 5 March 2013)

▶ first observation of direct CP violation in Charm².

Observation of CP Violation in Charm Decays

R. Aaij et al.* (LHCb Collaboration)

(Received 21 March 2019; revised manuscript received 2 May 2019; published 29 May 2019)

To date no observation of mixing-induced CP violation in Charm has been made, providing further avenues research.

 $^{1}10.1103/PhysRevLett.110.101802$ $^{2}10.1103/PhysRevLett.122.211803$

Mixing

Neutral D^0 mesons can change their flavour and turn into antimesons before they decay. This phenomenon, known as flavour oscillation or $D^0-\overline{D}^0$ mixing arises because the mass eigenstates of the D^0 meson which are eignestates of the Hamiltonian are a superposition of the flavour eigenstates:

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}{}^0\rangle \tag{1}$$

The flavour eigenstates are then given by

$$|D^{0}(t)\rangle = g_{+}(t)|D^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{D}^{0}\rangle$$
 (2)

$$\left|\overline{D}^{0}\left(t\right)\right\rangle = \frac{p}{q}g_{-}\left(t\right)\left|D^{0}\right\rangle + g_{+}\left(t\right)\left|\overline{D}^{0}\right\rangle \tag{3}$$

where

$$g_{\pm}(t) = e^{-iMt} e^{i\Gamma t/2} \left(\cos \left(-i \left(x + iy \right) \Gamma t/2 \right) \right)$$
(4)

Mixing

p and q are complex parameters satisfying $|p|^2 + |q|^2 = 1$. In the limit of charge-parity (*CP*) symmetry, q equals p and the oscillations are characterised by two dimensionless parameters.

$$x \equiv (m_1 - m_2)/2\Gamma,\tag{5}$$

$$y \equiv (\Gamma_1 - \Gamma_2) / \Gamma \tag{6}$$

Here $m_{1(2)}$ and $\Gamma_{1(2)}$, are the mass and width of the mass eigenstates respectively.

In the limit of CP-symmetry the CP-eigenstates are the mass eigenstates, $D^0{}_{1(2)}$.

CP-violation

Because of $D^0 - \overline{D}^0$ mixing, the effective decay width, $\Gamma_{CP+} \neq \Gamma$. The quantity y_{CP} , is given by,

$$y_{CP} \equiv \frac{\Gamma_{CP+}}{\Gamma} - 1. \tag{7}$$

This is equal to y in the limit of CP-symmetry. However if there is CP-violation

$$2y_{CP} \approx (|q/p| + |p/q|) y \cos \phi + (|q/p| - |p/q|) x \sin \phi, \qquad (8)$$

thus significant discrepencies between y_{CP} and y would demonstrate CP-violation in mixing.

Formalism

Define two regions of phase-space:

- ▶ ON-resonance: $m_{K^+K^-} \in [1015, 1025] \,\mathrm{MeV}/c^2$
- ► OFF-resonance:

 $m_{K^+K^-} \in [2m_{K^+}, 1010] \cup [1033, 1100] \,\mathrm{MeV}/c^2$ 500 ×10³ Candidates / 1 MeV/c² LHCb Unofficial ON-resonance 400 -resonance 300 200 100 10001100 1200 1300 1400 $m_{V^+V^-}$ [MeV/c²]

The ON-resonance region is dominated by a CP-odd $\phi K_{\rm S}^0$ amplitude and the OFF-resonance region is dominated by a $K_{\rm S}^0 K^+ K^-$ S-wave amplitude.

Formalism

It can be shown that,

$$\frac{dN(s_0,t)}{dt} \propto a_1(s_0) e^{\frac{t}{\tau}(1+y)} + a_2(s_0) e^{\frac{t}{\tau}(1-y)},\tag{9}$$

where $a_k(s_0, t) = \int_{s_+} |\mathcal{A}_k(s_0, s_+)|^2 ds_+$, and $\mathcal{A}_{1,2}(s_0, s_+)$ are the *CP*-even and -odd amplitudes respectively.

From this the number of events in regions of phase space can be calculated:

$$N_{\rm ON}(t) = f_{\rm ON}a_1(s_0) e^{-\frac{t}{\tau}(1+y_{CP})} + (1-f_{\rm ON}) a_2(s_0) e^{-\frac{t}{\tau}(1-y_{CP})}$$
(10)
$$N_{\rm OFF}(t) = f_{\rm OFF}a_1(s_0) e^{-\frac{t}{\tau}(1+y_{CP})} + (1-f_{\rm OFF}) a_2(s_0) e^{-\frac{t}{\tau}(1-y_{CP})}$$
(11)

Formalism

By studying the ratio of events ON- and OFF- resonance over decay time, $y_{C\!P}$ can be extracted through

$$\frac{dN_{\rm ON}\left(t\right)}{dN_{\rm ON}\left(t\right)} = R_0 \left(1 - 2\left(f_{\rm ON} - f_{\rm OFF}\right)\frac{t}{\tau}y_{CP} + \mathcal{O}\left(y_{CP}^2\right)\right) \quad (12)$$

where R_0 absorbs any time-integrated phase-space efficiency effects.

LHCb Detector

The $K_{\rm S}^0$ decays to two pions. In this analysis the datasample is split into events where the $K_{\rm S}^0$ decays into two long tracks (LL), and where it decays to two downstream tracks (DD).

Charm production methods at LHCb

Lifetime unbiased (LTUNB) decays are also Prompt decays but are tiggered on independent of signal at the HLT1 level. This helps to recover decays at low decay time.

Dataset

The analysis is performed using the 5.7 fb^{-1} sample of pp collisions collected by LHCb during 2016-2018. The data is split into six sub-samples corresponding to different selection criteria.

Candidates		2016	2017	2018	Total
Total		$3,\!489,\!418$	$4,\!696,\!346$	$5,\!461,\!962$	$13,\!647,\!726$
Polarity					
Up		$1,\!593,\!663$	$1,\!883,\!271$	$2,\!327,\!183$	$5,\!804,\!117$
Down		$1,\!895,\!760$	$1,\!984,\!754$	$2,\!211,\!006$	$6,\!091,\!520$
Sample	KS type				
Prompt	LL	$512,\!462$	609,595	670,479	1,792,536
	DD	$625,\!357$	$828,\!321$	923,773	$2,\!377,\!451$
LTUNB	LL	$768,\!387$	$1,\!077,\!508$	$1,\!261,\!291$	$3,\!107,\!186$
	DD	$955,\!426$	$1,\!517,\!224$	1,776,737	4,249,387
SL	LL	$184,\!430$	183,785	226,203	$594,\!418$
	DD	$443,\!356$	479,913	$603,\!479$	$1,\!526,\!748$

Table: Total candidates after all slection has been performed.

Dataset

After further background is removed by fits to the Δm $(m_{D^*} - m_{D^0})$ or m_{D^0} distribution, the final number of signal candidates is shown on the table.

Sample	KS type	Signal yield	
Drompt	LL	845,001	± 2108
Frompt	DD	309,408	± 1002
ΙΤΙΝΟ	LL	822, 214	± 3205
LIUND	DD	1,270,477	± 2893
CT	LL	253,171	± 964
SL	DD	488,947	± 1759
Total		3,989,218	

Table: Signal yields per data sub-sample after all selection.

Measurement

Blinding strategy

- ▶ y_{CP} will be numerically and visually blinded to prevent any user bias.
- Offset y_{CP} by a random number generated from a gaussian with width 1.5% (roughly twice world average)

There are three main sources of systematic uncertainity that need to be considered in this analysis:

- 1. Phase-space acceptance.
- 2. Model uncertainity.

3. Contamination of Prompt sample from Secondary decays. The approch to measure these uncertainties will now be discussed.

Phase-space acceptance

If phase-space acceptance effects are constant as a function of decay time, they get absorbed into the R_0 term. However if these effects are not uniform over decay time, this has the effect of introducing an efficiency term into the ratio.

$$\frac{dN_{\rm ON}}{dN_{\rm OFF}} \to \frac{\varepsilon_{\rm ON(t)} dN_{\rm ON}}{\varepsilon_{\rm OFF(t)} dN_{\rm OFF}}$$
(13)

Strategy

- Construct an efficiency map from MC.
- Weight on an event by event basis from the inverse of the efficiency map.

Model uncertainity

A systematic uncertainity enters the analysis from the error on the amplitude model used and how that error propogates to $f_{\rm ON} - f_{\rm OFF}$. Three amplitude models will be considered:

- 1. Belle 2008.
- 2. Belle 2010.
- 3. BES III 2020.

A dedicated package has been written in C++ for the purpose of calculating the ratios³.

³https://gitlab.cern.ch/eshields/amplitudemodel

Model uncertainity

Belle 2008^4	Belle 2010^5	BES II 2020^6
$a_0 (980)^0$	$a_0 \left(980 ight)^0$	$a_0 (980)^0$
ϕ (1020)	$\phi\left(1020 ight)$	ϕ (1020)
$a_0 (1450)^+$	$a_0 (1450)^+$	$a_0 (980)^+$
$a_0 (980)^+$	$a_0 (980)^+$	$a_0 (1450)^-$
$a_0 (1450)^0$	$a_0 (1450)^0$	$a_2 (1320)^+$
$f_0(1370)$	$f_0(1370)$	$a_2 (1320)^-$
$f_2(1270)$	$f_2(1270)$	
$a_0 (980)^-$	$a_0 (980)^-$	

Note that although the Belle 2008 and Belle 2010 models have the same resonances, they have different amplitudes.

⁴arXiv:0804.2089v2]

⁵arXiv:1004.5053v3

⁶arXiv:2006.02800

Model uncertainity

Strategy

- ► Calculate the fraction $f_{\rm ON} f_{\rm OFF}$ 1000 times using an amplitude model.
- Each time vary the parameters of the model within there errors.
- ▶ Build a distribution of $f_{ON} f_{OFF}$ and take the width of this to be the uncertainty.

This error is directly propogated onto the error of y_{CP} due to it being a multiplying factor in $dN_{\rm ON}/dN_{\rm OFF}$.

Secondary contamination of Prompt sample

The D^0 decay time is defined as,

$$t = \frac{\left(m\vec{L}\cdot\vec{p}\right)}{|\vec{p}|^2} \tag{14}$$

Therefore if the impact parameter is small and the detector mistakes a secondary decay for a prompt decay, the measured decay length is, $\vec{L}_{\text{measured}} = \vec{L}_{B^0} + \vec{L}_{D^0}$, this the measured decay time is higher than the true D^0 decay time. This has the effect of putting decays with a lower decay time in higher decay time bins, and thus lowers the slope and measured value of y_{CP} . Secondary contamination of Prompt sample

Strategy

- Extract Prompt, Secondary and Background shapes from MC or data sidebands.
- ► Fit all the shapes together to the $\log(D^0 I P_{\chi^2})$ distribution to extract the fraction of secondary decays. Where $D^0 I P_{\chi^2}$ is the chi sqaured of the Impact Parameter fit in the D^0 vertex fit.

Secondary contamination of Prompt sample

Figure: Example fit in 1st decay time bin of Prompt LL sample.

Expected precision

500 fits are performed to toy datasets to study the expected precision of this analysis.

Expected precision

World average y_{CP} precision: • 0.113 % LHCb analysis expected statistical precision: • 0.102 %

Figure: y_{CP} measurements as of 16 July 2020

Triggering on $D^0 \to K^0_{\rm S} K^+ K^-$ in the LHCb Upgrade

HLT 1

- ► 3/4 body vertex fitter in HLT1.
- Exclusive $D^0 \to K^0_S hh$ HLT1 line.

HLT 2

- Exclusive $D^0 \to K^0_S hh$ HLT1 lines.
- Decicated untagged $D^0 \rightarrow K^0_S K^+ K^-$ line.

This analysis should be competative with the world average measurement of y_{CP} .

It also allows systematics to be studied and strategies identified to limit these in order to most effectively utilise the LHCb upgrade and Run III.

BACKUP

Invariant mass fits

Figure: Invariant mass fits for LL sample. From left to right: Prompt, LTUNB, and Semi-Leptonic

Invariant mass fits

Figure: Invariant mass fits for DD sample. From left to right: Prompt, LTUNB, and Semi-Leptonic

Efficiency maps

Figure: Example efficiency map for Prompt LL sample.

Secondary contamination

Figure: Effect on decay time distribution of secondary contamination of Prompt sample.

Measurements of y_{CP}

This analysis takes inspiration from a Belle analysis in 2009⁷

Studies the evolution of signal yields in the ON- and OFF-resonance regions of phase-space.

$$y_{CP} = (+0.11 \pm 0.61 \,(\text{stat.}) \pm 0.52 \,(\text{syst.}))\,\%$$
(15)

⁷arXiv:0905.4185v1

Measurements of y_{CP}

CERN-EP-2018-270 LHCb-PAPER-2018-038 October 16, 2018

Measurement of the charm-mixing parameter y_{CP}

LHCb collaboration

Abstrac

A measurement of the dama-action parameters $y_{\rm P}$ using $B^0 \to N^+\pi^-$, $B^0 \to B^0 \to N^+\pi^-$, $B^0 \to B^0 \to N^+\pi^-$, $B^0 \to B^0 \to B^0 \to B^0$, and $B^0 \to B^0 \to B^0$, and $B^0 \to B^0 \to B^0$.

Published in Phys. Rev. Lett. 122 (2019) 011802

© 2019 CERN for the beacht of the LHCb collaboration. CC-BY-LB lowner,

¹Authors are listed at the end of the Letter

- Most accurate measurement of y_{CP} to date comes from LHCb in 2019 ^a.
- ► They study the ratio of between $D^0 \rightarrow K^+ K^-$ (or $D^0 \rightarrow \pi^+ \pi^-$) and $D^0 \rightarrow K^+ \pi^-$ as a function of decay time.

^aarXiv:1810.06874v2

 $y_{CP} = (+0.57 \pm 0.13 \,(\text{stat.}) \pm 0.09 \,(\text{syst.}))\,\%$ (16)