Livio (sorry Livio) has shown that the planned injection geometry will lead to significant emittance increase.

The matched beam radius depends on the emittance:

$$\sigma_{x} = \frac{\sqrt{2\gamma}c}{\omega_{p}} \sigma_{x'}, \qquad (1)$$
$$= \left(\frac{2c^{2}\epsilon_{x}^{*2}}{\gamma\omega_{p}^{2}}\right)^{1/4}, \qquad (2)$$

Unfortunately, the blowout depends on the witness density, and beam loading depends on witness current, so everything has to change.

Characterising the blowout

How can we characterise the blowout?

э

Characterising the blowout

How can we characterise the blowout?

Consider plasma density at $3\sigma_r$ and electric field on axis

Characterising the blowout

How can we characterise the blowout?

For Veronica's paramters (q = 100 pC, $\sigma_z = 60 \ \mu$ m, $\epsilon^* = 2 \ \mu$ m)

- 17.5% of beam current sits inside a bubble of radius $\geq 3\sigma_r$
- Maximum decelerating field is 3.5% $E_{\rm crit}$

(no driver, zero-time fields)

With these metrics, we can scan the paramter space.

I consider three cases:

- low density, 100 μ m foil ($\epsilon^* = 12 \ \mu$ m)
- high density, 200 μ m foil ($\epsilon^*=$ 12 μ m)
- high density, 100 μ m foil ($\epsilon^* = 7 \ \mu$ m)

(all numbers very approximate - taken from Livio's slides)

P

æ

э

Driver wakefield $\sim 20\%~E_{\rm crit},$ so can discount any witness which loads $>10\%~E_{\rm crit}.$

Can discount witness with <15% of beam current sits inside a bubble of radius $\geq 3\sigma_r.$

Rb vapor / beam dump increases emittance before injection \rightarrow Larger radius witness needed to match plasma focussing \rightarrow Larger charge needed to generate blowout "Worse" beam requires higher charge

High currents can overload the wakefield Witness wake > driver wake \rightarrow no acceleration Can mitigate by using longer beam

Beamloading sets limits on parameter ranges Everything is essentially more difficult for high emittance.