Seeding Optimization

By Peter Chatain
Mentors: Dr. Rocky Bala Garg & Dr. Lauren Tompkins

B a C kg ro u n d Original Config on ttbar sample

Efficien

08

 Summer project was to write the seed
finding example for ACTS

0.6

0.4

* Originally found very poor performance
~50% efficiency on ttbar sample

0.2

||||||||||||l'-}|||||||||
; —

L T!—I—!
. T ;

e 200 pileup, generic detector ’ o [Gevi

 Efficiency = fraction of true particles with a

Original Config on ttbar sample
matched seed & & P

0.74

072

Efficie

* Tried filtering out particles that don’t have -
3 hits in the pixel detector oss

0.66

* Only small improvement seen ~65% efficiency

* Tried to configure it by hand

0.6

0.58

IIIIII|III|III|III|III|III|III|III|III|I

0.56

https://indico.cern.ch/event/917970/contributions/3862004/attachments/2043773/3426209/ACTS_Track_fitting_finding_Tutorial.html

Hand Configuration

 Edited a seeding algorithm “"TODQO” statement

e Line 208 here
¢ Maximum transverse momentum to apply sigma scattering cut on

* Certain parameters should be known by the user
Magnetic field strength

 Where to look in the detector for hits

* Others are less obvious

* Sigma Scattering

MaxPtScattering

Units = ~4*MeV
* Impact max

* Configured by testing

one at a time

Efficiency

= S5 & & .
-/_L
&

2
]

=
-

Hand Tuned Config on single muon sample

with 10,000 charged particles

Efficiency

1
N

-

III|IIII|IIII|III
]

]

0.895

0.89

0.885

0.88

0.875

0.87

=
&
&

c|IIliillllllllllllllllllllll

0.86

000

800

600

400

200

T[T T T [T T T[T

12 13 14

2
” 2
|||||J : ||||||
[R —
P L i
-1000 1000

0

L., o Ve

a9 |
-2000 2000 3000

z [mm]

w
S
o
o

For these plots, particles must have:
e 3 hitsin pixel “blue” volumes

* 1 hitin middle “red” volumes

e 1 hitin outer “green” volumes

* 0.1GeV<|pT| <100GeV

Removed sigma scattering cut entirely

[]

]

—ttttttt ottt

B0 100
pT [GeVic]

https://github.com/acts-project/acts/blob/256ab0e34c5f0746957ee7f7f6727c7b30fd7cb5/Core/include/Acts/Seeding/Seedfinder.ipp
https://indico.cern.ch/event/917970/contributions/3862004/attachments/2043773/3426209/ACTS_Track_fitting_finding_Tutorial.html

Seeding Algorithm Performance

* Wrote a script using multi-processing to
analyze which configuration to use

| added boost command line options to
read in parameters

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
sigmaScattering

(How many standard deviations of scattering to include)
* Downsides:

* Parameters depend on each other so secding Algortihm Performence
takes many iterations
* Inefficient exploration of high
dimensional space i
* Unclear whether configuration is
optimal .

0 10000 20000 30000 40000 50000 60000 70000 80000
maxPt

(Which momentum to stop applying sigmaScattering cut)

https://github.com/Pchatain/seedingWithEA

Hyperparameter Tuning

* Reminds me of hyperparameter tunning from Machine Learning!
* In ML, parameters are learned through training, and hyperparameters are

defined outside of training "by hand.” e.g. learning rate.
* I'm taking a class in ML, so | was excited to try this

* Common Hyperparameter Tunning Strategies
* Grid search (brute force all combinations of parameters)
 Random Search
* Evolutionary algorithms
e Derivative based approaches

* | decided on DEAP

* Easily use multiprocessing

DISTRIBUTED
EVOLUTIONARY
ALGORITHMS IN
PYTHON

Problem Statement

* Given an initial guess at the best configuration, and any geometry (including ITK), find the
optimal configuration for the seed finder

e Should find > 99.4% efficiency on single muon gun sample. Ideally a < 10% fake rate
and < 60% duplicate rate

* This is what the seedfinder was able to obtain on generic detector with single
muon sample and 200 pileup as generated here

Efficiency = true particles matched to a seed / true particles

Fake Rate = seeds that don’t correspond to a particle / seeds
Duplicate Rate = seeds that re-identify a particle / seeds

* First approach: Evolutionary Algorithm

https://github.com/acts-project/acts/blob/256ab0e34c5f0746957ee7f7f6727c7b30fd7cb5/Core/include/Acts/Seeding/Seedfinder.ipp

Evolutionary Algorithm

Initialization
* Provide a good guess, create N copies of it
* Individual = one seedfinder configuration

Selection
e Evaluate the population
* randomly delete poor performing individuals
* replicate good performing individuals to keep pop size
constant
Mutation
* Each individual has a 0.3 chance of being mutated

* If mutated, each value in an individual has a 0.2 chance of
being mutated

e Mutation is drawn from gaussian distribution centered at 0
* Numbers hand chosen before running the algorithm

Termination

* Ether max gen reached or ideal (> 99.4% efficiency, < 10% fake
rate, < 60% duplicate rate)

DISTRIBUTED

EVOLUTIONARY
ALGORITHMS IN
PYTHON

Initalization

/T.\I utation
'

Selection

\L&ossover
'

Termination

DISTRIBUTED

EVOLUTIONARY
ALGORITHMS IN
PYTHON

* Individual = a seedfinder config = a tuple of parameters,

e e.g. --sf-maxPt 12000 --sf-impactMax 0.99 --sf-deltaRMin 1 --sf-
sigmaScattering 2.25 --sf-deltaRMax 60 --sf-collisionRegionMin -300 --sf-
collisionRegionMax 300 --sf-maxSeedsPerSpM 1

Individual Evaluation

e Evaluated by running the seeding algorithm with that configuration

e Loss function is difficult to choose

| chose to score by efficiency, fake rate, and duplicate rate with priority in that
order (i.e. 99.3% efficiency > 99.2% efficiency regardless of fake rate)

e Other options are to combine terms

* Each parameter is bounded above and below during mutation

Evolutionary Algorithm Test 1

* Wanted to test whether the algorithm can learn at least one
Para meter
e Edited sigma scattering from 2.0 to 0.2.
* 99.1% efficiency changed to 93%
* Goal: recover 2.0 sigma scattering

e Algorithm Set Up
* Individual had 8 parameters
* Including my maxPt cut on sigma scattering calculation
e Population size 50
* Around 7-15 mutated per generation (16 cores)
e 100 generations (~15 minutes)
* Trained on single muon gun sample with 10,000 particles

Performance Measured on Best Individual

* Why was sigma scattering of 2.0 not recovered?

* Partly due to maxSeedsPerSpM increase from 1 to 2 at gen 19

* Seeds contain 3 space points. This cut determines the number of seeds to
consider per middle space point.

* In the algorithm, 1 is added to the input (so O is really 1)
* Increases efficiency by considering more seeds, but higher duplicate rate

b L 15 1o | — best FakeRate L 10 &
- maxSeefisPerSpM F
9 - 66
F10 08
- 8 - .
= o U €
= ' w B F08 &
g g 7 g g .
T S 62 R
g - = o
(-] Q -
= u na = I~
0.6 9 Mo o roe g
- 60
5 p
04 02 -0
4 58
—— best Efficienc y - best DuplicateRate
. - - sigmaScattering L n o
— sigmaScattering | ;- 3] 00 0.2
: ' . . - ' y T ' T y 0 20 a0 60 80 100
0 20 40 60 80 100
2 o - ® 100 Generation

* More robust than hand tunning

* Population stays relatively centered
* Collision Region Max remained relatively

Population Graphs

unchanged as expected

Buuapnedsewbs

o w0 -t ~N o) w -+ ~N
Lol ~ ~— ~—~ ~ o o o o
L L L L L ' L L L
>

s 4] g
o —— = -4 - o
- lllllH!.le 2 o
| o e < o [w}
lllll : N - & -
T R - — w ﬁ
— === w
Mo T mOEE
S>> EEREE

o <2,
O .) L}
W.\ll e = e _ _ |
- F I |

100

60

a0

- o
x & 3 &
Aouanys3
xepwuoibayuoisijoo
n o () o N o
o o o o @ w©
m m [*3] N 3 (=2
™~ ™~ ™~ ™~
L ' '
- LCL . - W lm
cmmesEESSSSIISSICCT [Lo |~
llllllllllllllll - TR - 4
g = EIRN z
lllllllllllllllllll) zcu P)
- — Ilt o
vy - P . '\(m
e = "3
gt LT - Q.Nﬂm 8
meeeemEEEIIIIEMAA~—— -
T w—— J 470
e Eawm——— Tl
OIIIIIH““HH""“I AT
T - - - e 1
S = ===zl ke
———— - ==
lllll Pk - o o Loy
AR o 2 v vu - Com—-
— A |
A LT T p— = s n\l\ﬂn.-'
AL e e = = . —— L
ettt 2 9

ajey=1edndng

Generation

Generation

— Highest efficiency in the population
-- Lowest efficiency in the population

— Highest sigmaScattering in the population

-- Lowest sigmaScattering in the population

Test 2 With Multiple Bad Parameters

e Goal: Start with several parameters wrong and still find an
optimal solution
* Changed 5 parameters to be off each by a factor >=2

 Starting point: 85% Efficiency, 17% fake rate, 74% duplicate rate on single
muon

Run 2 Best Performing Individual Analysis

* 98.7% Efficiency, 6% fake rate, 54% duplicate rate

* Also, cross checked same configuration on ttbar sample
» Efficiency 60%->86%, fake rate 76%->64%, duplicate rate 8%->17%
* Although trained on single muon sample, generalizes to ttbar

- best DuplicateRate 10) - best FakeRate
70.0 A —— maxSeedsPerSpM 16 1 —— maxSeedsPerSpM
67.5 1
14
65.0 1 <
. &
g
T 625 212
o o o
=2 b g
g 60.0 - 04 -: &
= 10
57.5 1
55.0 1 8
— 00
. . - - T T 52.5 1 o
0 20 40 60 80 100 T T T T T T
Ge 0 20 40 60 80 100 T T T T

DuplicateRate

Test 2 Population Analysis

* More generations likely needed for better performance
* Optimal configuration has impact max of 1.0

* Impact Max = cut on impact parameter of a seed (how close is the closest
point of particle helix to interaction point).

- maxDuplicateRate

o 20
minDuplicateRate [17 96 1 o |
65 -
T o 94 A o |
125 g 3 z
25 £) k: 2
” 2 g . [v 92
w0 v S g
L100 £ & . g
90 o |

%,
o

3

Working On Next

* A hyper parameter tunning algorithm for the seedfinder that can work
on the ITK geometry, and 2 other geometries

* |deas
* Try a gradient based search
* Try more evaluation metrics
* Test on ttbar samples
e Use a validation set

 Excited to try other seeding or tracking algorithms in the future

Feedback

* Any previous studies on optimizing seeding or tracking algorithms are
greatly appreciated

* | would love to hear suggestions. My code is located here:
https://github.com/Pchatain/seedingWithEA

* Any questions?

https://github.com/Pchatain/seedingWithEA

