
Seeding Optimization
By Peter Chatain

Mentors: Dr. Rocky Bala Garg & Dr. Lauren Tompkins

Background

• Summer project was to write the seed
finding example for ACTS
• Originally found very poor performance

~50% efficiency on ttbar sample
• 200 pileup, generic detector
• Efficiency = fraction of true particles with a

matched seed

• Tried filtering out particles that don’t have
3 hits in the pixel detector
• Only small improvement seen ~65% efficiency

• Tried to configure it by hand

Original Config on ttbar sample

Original Config on ttbar sample

https://indico.cern.ch/event/917970/contributions/3862004/attachments/2043773/3426209/ACTS_Track_fitting_finding_Tutorial.html

Hand Configuration
• Edited a seeding algorithm ”TODO” statement

• Line 208 here
• Maximum transverse momentum to apply sigma scattering cut on

• Certain parameters should be known by the user
• Magnetic field strength
• Where to look in the detector for hits

• Others are less obvious
• Sigma Scattering
• MaxPtScattering

• Units = ~4*MeV

• Impact max

• Configured by testing

• one at a time

Hand Tuned Config on single muon sample
with 10,000 charged particles Removed sigma scattering cut entirely

For these plots, particles must have:
• 3 hits in pixel “blue” volumes
• 1 hit in middle “red” volumes
• 1 hit in outer “green” volumes
• 0.1GeV <|pT| < 100GeV

https://github.com/acts-project/acts/blob/256ab0e34c5f0746957ee7f7f6727c7b30fd7cb5/Core/include/Acts/Seeding/Seedfinder.ipp
https://indico.cern.ch/event/917970/contributions/3862004/attachments/2043773/3426209/ACTS_Track_fitting_finding_Tutorial.html

Hand Tuning

• Wrote a script using multi-processing to
analyze which configuration to use

• I added boost command line options to
read in parameters

• Downsides:
• Parameters depend on each other so

takes many iterations
• Inefficient exploration of high

dimensional space
• Unclear whether configuration is

optimal

(How many standard deviations of scattering to include)

(Which momentum to stop applying sigmaScattering cut)

https://github.com/Pchatain/seedingWithEA

Hyperparameter Tuning

• Reminds me of hyperparameter tunning from Machine Learning!
• In ML, parameters are learned through training, and hyperparameters are

defined outside of training ”by hand.” e.g. learning rate.
• I’m taking a class in ML, so I was excited to try this

• Common Hyperparameter Tunning Strategies
• Grid search (brute force all combinations of parameters)
• Random Search
• Evolutionary algorithms
• Derivative based approaches

• I decided on DEAP
• Easily use multiprocessing

Problem Statement

• Given an initial guess at the best configuration, and any geometry (including ITK), find the
optimal configuration for the seed finder
• Should find > 99.4% efficiency on single muon gun sample. Ideally a < 10% fake rate

and < 60% duplicate rate
• This is what the seedfinder was able to obtain on generic detector with single

muon sample and 200 pileup as generated here

Efficiency = true particles matched to a seed / true particles
Fake Rate = seeds that don’t correspond to a particle / seeds
Duplicate Rate = seeds that re-identify a particle / seeds

• First approach: Evolutionary Algorithm

https://github.com/acts-project/acts/blob/256ab0e34c5f0746957ee7f7f6727c7b30fd7cb5/Core/include/Acts/Seeding/Seedfinder.ipp

Evolutionary Algorithm
• Initialization

• Provide a good guess, create N copies of it
• Individual = one seedfinder configuration

• Selection
• Evaluate the population
• randomly delete poor performing individuals
• replicate good performing individuals to keep pop size

constant
• Mutation

• Each individual has a 0.3 chance of being mutated
• If mutated, each value in an individual has a 0.2 chance of

being mutated
• Mutation is drawn from gaussian distribution centered at 0
• Numbers hand chosen before running the algorithm

• Termination
• Ether max gen reached or ideal (> 99.4% efficiency, < 10% fake

rate, < 60% duplicate rate)

Individual Evaluation

• Individual = a seedfinder config = a tuple of parameters,
• e.g. --sf-maxPt 12000 --sf-impactMax 0.99 --sf-deltaRMin 1 --sf-

sigmaScattering 2.25 --sf-deltaRMax 60 --sf-collisionRegionMin -300 --sf-
collisionRegionMax 300 --sf-maxSeedsPerSpM 1

• Evaluated by running the seeding algorithm with that configuration
• Loss function is difficult to choose
• I chose to score by efficiency, fake rate, and duplicate rate with priority in that

order (i.e. 99.3% efficiency > 99.2% efficiency regardless of fake rate)
• Other options are to combine terms

• Each parameter is bounded above and below during mutation

Evolutionary Algorithm Test 1

• Wanted to test whether the algorithm can learn at least one
parameter
• Edited sigma scattering from 2.0 to 0.2.

• 99.1% efficiency changed to 93%
• Goal: recover 2.0 sigma scattering

• Algorithm Set Up
• Individual had 8 parameters

• Including my maxPt cut on sigma scattering calculation
• Population size 50

• Around 7-15 mutated per generation (16 cores)
• 100 generations (~15 minutes)
• Trained on single muon gun sample with 10,000 particles

Performance Measured on Best Individual
• Why was sigma scattering of 2.0 not recovered?
• Partly due to maxSeedsPerSpM increase from 1 to 2 at gen 19
• Seeds contain 3 space points. This cut determines the number of seeds to

consider per middle space point.
• In the algorithm, 1 is added to the input (so 0 is really 1)
• Increases efficiency by considering more seeds, but higher duplicate rate

Population Graphs
• More robust than hand tunning

• Population stays relatively centered

• Collision Region Max remained relatively
unchanged as expected

– Highest efficiency in the population
-- Lowest efficiency in the population
– Highest sigmaScattering in the population
-- Lowest sigmaScattering in the population

Test 2 With Multiple Bad Parameters

• Goal: Start with several parameters wrong and still find an
optimal solution
• Changed 5 parameters to be off each by a factor >=2
• Starting point: 85% Efficiency, 17% fake rate, 74% duplicate rate on single

muon

Run 2 Best Performing Individual Analysis

• 98.7% Efficiency, 6% fake rate, 54% duplicate rate
• Also, cross checked same configuration on ttbar sample
• Efficiency 60%->86%, fake rate 76%->64%, duplicate rate 8%->17%
• Although trained on single muon sample, generalizes to ttbar

Test 2 Population Analysis

• More generations likely needed for better performance
• Optimal configuration has impact max of 1.0
• Impact Max = cut on impact parameter of a seed (how close is the closest

point of particle helix to interaction point).

Working On Next

• A hyper parameter tunning algorithm for the seedfinder that can work
on the ITK geometry, and 2 other geometries
• Ideas
• Try a gradient based search
• Try more evaluation metrics
• Test on ttbar samples
• Use a validation set

• Excited to try other seeding or tracking algorithms in the future

Feedback

• Any previous studies on optimizing seeding or tracking algorithms are
greatly appreciated

• I would love to hear suggestions. My code is located here:
https://github.com/Pchatain/seedingWithEA

• Any questions?

https://github.com/Pchatain/seedingWithEA

