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Focus of this talk:
Thinking about “SUSY” searches in terms of individual 
physics reactions                          (a.k.a. “topologies”)

rather than the combinations that arise in benchmark 
models

Parameters: masses and cross-section.
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Supporting material:
hep-ph/0703088: Arkani-Hamed et al w/ NT
0810.3921  Alwall, Schuster, NT

(See also series of papers by Alvez, Alwall, Le, 
Lisanti, Izaguirre, Manhart, Wacker) 



• Top physics 

• Resonance searches, e.g. higgs,Z′:  σ x Br limits, as function of mass, 
in many decay channels

• Many exotics searches likewise tailored to particular event topology 
(e.g. b′→ tW): mass-dependent limit on σ overlaid w/ prediction 

Searches Outside SUSY
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    Z′ Search (CDF 1.9 fb-1: PRL 102, 091805)

(D0: PRD 74, 011104)

Leptoquark 
Search

• vs. SUSY: present raw distributions & specific model exclusions (fits?) 
• Limits exploration to a slice of parameter space –– how does it apply 

if nature is on a different slice?



Focus of this talk:
Thinking about “SUSY” searches in terms of individual 
physics reactions

rather than the combinations that arise in benchmark 
models

Outline
– define & motivate reaction (topology)-based searches
– how to set/quote limits  (see also Eder’s talk)
– key reactions for hadronic final states
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    Z′ Search (CDF 1.9 fb-1: PRL 102, 091805)



Models
Theory offers no sharp predictions analogous to  Z, W, t          
                        (except higgs – maybe)

• Frameworks (e.g. SUSY) work beautifully, but “problems”       
– fixes interaction Feynman rules (partners)

• Models illustrate ideas to solve problem –– usually simplest 
case that makes the point

(e.g. SU(5)-symmetry)

Useful!   Suggest new signatures; inform understanding of 
any signal. 
But poor sampling of possible spectra & LHC dynamics.

5

– relations between masses rely on these assumptions



Example

Masses of               affect kinematics, search efficiency/optimization

Though         don’t appear in decay, their masses affect cross-section and 
branching fractions of       (higgs sector also)

In general, all are independent parameters!

Relation of some parameters to observables is complicated, non-unique.  
In the end, they just change                for various reactions. 6
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Masses of               affect kinematics, search efficiency/optimization

Don’t include squarks or higgs sector in description.

Don’t know cross-section, but know its scale: QCD gluino production.

Parameters are simply related to observables.

Alternative Outlook
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“Instead of slicing up MSSM, trim it down.”



Why reactions?
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• Experimental –– first ever 7 TeV collisions: maximize scope of 
searches, informed but not limited by theory

Why reactions?
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• Experimental –– first ever 7 TeV collisions: maximize scope of 
searches, informed but not limited by theory

• Theoretical –– many theorists (myself included) don’t expect any 
model on hep-ph to be literally correct.  Reactions are common 
building blocks; must piece them together to understand nature.

Why reactions?
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• 2 masses

•  
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Every point on this plot corresponds to a particular 
choice of kinematic distributions.

This is a plot you can make for existing analyses

Increasing !ET , Meff

⇒ Determine efficiency, upper bound on σ ×Br

Decreasing efficiency

Setting/Quoting Limits
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Limit on (Cross-section)x(Branching ratio)
as function of mass parameters

Parameters:
• 2 masses

•  
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Efficiency for multi-jet+MET search cuts decreases for small 
mass difference ⇒ weaker cross-section limits 
Approximately independent of mLSP, except at low masses.

Setting/Quoting Limits



    Z′ Search (CDF 1.9 fb-1: PRL 102, 091805)
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Different models (e.g. spins, squark mass) imply different mass–(σ x Br) 
relations.

Blue curves: exclusions on models, i.e. contours where expected cross-section 
equals maximum allowed cross-section (region below curves provides 
approximate exclusion).  

σ ×BR < σmodel



<1 pbσ ×BrLSP
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PICK ONE model for cross-section, look at limits on cross-section relative to 
this:

x =1 x1/4 =21/10

{x∼1:
x!1:

Variation of cross-section
Reduced branching fraction

(σ ×BR)/σref = x

Setting/Quoting Limits
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70 nb–1 sensitivity study 
(Alvez, Izaguirre, Wacker 2010)

Different presentations, same strategy:
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Two Lessons for Optimization

1. Optimize for all 
kinematics, not just that 
favored by particular 
model 
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Of course, optimization builds on existing and planned searches, 
and understanding their impact on this parameter space.
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to small branching 
fractions for low–mass 
cases.

Of course, optimization builds on existing and planned searches, 
and understanding their impact on this parameter space.



Sorting Physics Reactions
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What’s a spanning set of physics reactions for SUSY?
Doesn’t each model involve many different reactions?

* Effort in theory community to propose a “spanning set” ––             
see website   http://lhcnewphysics.org  and stay tuned for SLAC 
theory workshop September 22–25.

* “Theoretical” simplifications –– many possible reactions, 
hierarchies in cross-section and branching fraction ⇒ for given 
spectrum, small number often dominate. 

* “Experimental” simplifications –– reactions that “look the same”     
in the variables used for searches can be treated as equivalent

⇒ hadronic final state example 

“Simplified Models” 0810.3921  Alwall, Schuster, NT

http://lhcnewphysics.org
http://lhcnewphysics.org


Proposals and Tools

Building a “basis” set of 
reactions for study (grouped 
into “topology sets”), with 
notes on motivation, final 
states, and MC 
implementation for each

www.lhcnewphysics.org

Workshops at:
SLAC in September
CERN in November
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Theoretical Simplification: Production

M
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mq̃ −mg̃ " mg̃

⇓
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ŝ/Stot ∼ 4m2/ECM
2

Parton luminosity falls 
steeply with mass (m–5,6)

Electroweak 
production down 
by              , less
visible energy 

(α2/α3)2
Mostly produce
lightest (few) 
colored states



Theoretical Simplification: Decay
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Feynman rules determined by Standard Model

2–body decays dominate over 3–body, if allowed.

2–Body
Ã

B̃

C

Γ ∝ α

αt ! α3 ! α2 ! α1

Strongest coupling wins

3–Body
Ã

B̃

C

D

X̃∗ Γ ∝ α2/m4
X̃

Significant suppression 
by couplings and 
intermediate mass

(additional coupling & phase space suppression)



Experimental Simplification: Production
M
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can ignore squarks

mq̃ −mg̃ " mg̃

⇓

can ignore squarks

jet from squark decay 
very soft

19



Experimental Simplification: Decay
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Similar intermediate states can be grouped together



In Summary: Massive Simplifications

figures, analysis by 
SueAnn Koay (UCSB)
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e.g. LM1 SUSY Benchmark
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In Summary: Massive Simplifications

figures, analysis by 
SueAnn Koay (UCSB)
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Building a Spanning Set
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Basic Reactions

→ 4q 
           + MET

   

→ 2q 
           + MET

             add 
cascades add heavy 

     flavors: 
          t, b
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Heavy Flavor Simplified Models

From quark partner:

From gluon partner:
t
t

G

G

q

q
G b

b
G G

Bbb BttBqqσG

!ET!ET!ET

q b
T

σQ σB σT

T

TQ

Q Q

B

B B

!ET!ET!ET

Complexity reflects the richness of SUSY spectroscopy 23

See 0810.3921  Alwall, PS, Natalia Toro and http://lhcnewphysics.org for two 
related approaches

χ̃± (+ cascades)

(+ cascades)

particularly 
for low-mass 

SUSY

Interesting combinations: bb+bb; tt+tt; tb+tb; qq+bb/bt/tt
ongoing work by SLAC ATLAS group (and others?)

http://lhcnewphysics.org
http://lhcnewphysics.org


Summary
• LHC is poised for discovery of new physics

- Already at the frontier!

- Can maximize sensitivity by also studying “squeezed” 
spectra –– SUSY expected near weak scale

- First: thorough study of data includes modeling 
sensitivity to various topologies

• Active theory effort to classify & recommend 
topologies for inclusion in this effort

• Wide range of new-physics possibilities in hadronic 
final states.
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Three masses ⇒ study slices
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