Using Jet Substructure with ATLAS

Thomas Gadfort / BNL On Behalf of ATLAS Collaboration

Outline

- Physics motivation for investigating jet substructure?
- Quick introduction to substructure jet algorithms (more from Michael Spannowsky & Steve Ellis later today)

ATLAS Results

- 🔮 Тор
- SUSY
- 🝚 Higgs

Summary & Outlook

New Physics @ LHC

- Many physics models predict TeV-scale resonances.
 - \bigcirc If decay products are high p_T isolated leptons our challenge is simplified. $Z' \to \ell \ell$
- Several of these resonances preferentially decay to hadronic final states.
 - Solution Example: RS with all particles in the bulk $\Rightarrow g_{KK} \rightarrow t_R \overline{t}_L$
- All we need to do is find high mass tt pair!

New Physics @ LHC

- Many physics models predict TeV-scale resonances.
 - If decay products are high p_T isolated leptons our challenge is simplified. $Z' o \ell \ell$
- Several of these resonances preferentially decay to hadronic final states.
 - Example: RS with all particles in the bulk $\Rightarrow g_{KK} \rightarrow t_R \overline{t}_L$
- All we need to do is find high mass tt pair!
- Resonances are very wide
- Top quarks are highly boosted as are its daughter particles (t → Wb)
 - \bigcirc Leptonic W decay \Rightarrow lepton falls within b-jet
 - Hadronic W decay $\Rightarrow \Delta R(q,b) \& \Delta R(q,q') < R_{cone}$

New Physics @ LHC

- Many physics models predict TeV-scale resonances.
 - If decay products are high p $_{
 m T}$ isolated leptons our challenge is simplified. $Z' o \ell \ell$
- Several of these resonances preferentially decay to hadronic final states.
 - Example: RS with all particles in the bulk $\Rightarrow g_{KK} \rightarrow t_R \overline{t}_L$
- All we need to do is find high mass tt pair!
- Resonances are very wide
- Top quarks are highly boosted as are its daughter particles (t → Wb)
 - \bigcirc Leptonic W decay \Rightarrow lepton falls within b-jet
 - ♀ Hadronic W decay ⇒ ΔR(q,b) & ΔR(q,q') < R_{cone}
- tī signal starts to look a lot like QCD multijet background.

B. Lillie et al., JHEP 0709:074,2007

Hadronic Final State Analysis

the ATLAS Experiment

- Analysis of events with hadronic final state.
 - Cluster calorimeter energy with a cone called a jet and correct jet energy back to parton/particle-level.

Our Unfortunately p^T won't help us with $g_{KK} \rightarrow t_R t_L$.
 $\sigma_{jj}(p_T > 500 \text{ GeV}) \gg \sigma_{g_{KK} \rightarrow t\bar{t}}(p_T > 500 \text{ GeV})$

Moving Beyond Jet P_T

- What about the jet mass since top is much heavier compared to other hadrons?
 - Does M_{jet} equal M_{top}?

$$M_j = \sqrt{\sum_i E_i - \sum_i \vec{p_i}}$$

Jet mass seems to be a good discriminator of top-jets and light-jets once the top-jet $p_T > 500$ GeV.

Moving Beyond Jet Mass

A related quantity is the jet size (width) defined as

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N} \sum_{jets}^{N} \frac{p_T(r - \frac{\Delta r}{2}, r + \frac{\Delta r}{2})}{p_T(0, R)} \quad , \ 0 < r < R$$

Expect highly boosted objects to be more collimated (narrow).

- Still these quantities based on entire jet (all constituents)
- What if jet actually has two or more "hard" constituents?
 - Will show up in mass and ρ, but resolution will be poor.

Looking For Jet Substructure

- Using cone-jets we lose information about the clusters that make up the jet.
 - Solution Look for sum of energy above threshold in η - ϕ space.
- Another method is to combine clusters based on on their energy, p_T, or angle with respect to other clusters.
 - Also keep record of cluster ordering.
- k_T / CA (Cambridge-Aachen) Algorithms:
 - k_T merges clusters in order of smallest relative momentum until cutoff reached.
 - CA merges clusters in order of smallest relative angle until all mergers are separated by cutoff angle.

Ordering Scales For Top Decay

- Use k_T / CA ordering to unwrap the jet
- If looking at entire jet, still expect bump in jet-mass distribution.

Ordering Scales For Top Decay

Use k_T / CA ordering to unwrap the jet ATL-COM-PHYS-2008-001 star S350 Volumber of Volumer of If looking at entire jet, still expect bump in jet-mass distribution. 200 150 ATL-COM-PHYS-2008-001 400 100 350 :op-jet mass [GeV] y_{23} 50 300 250 20 60 80 100 200 150 $Z' \to t\bar{t}$ $M_{Z'} = 2 \text{ TeV}$ 00 $M_{Z'} = 3 \text{ TeV}$ 50 ზ³⁰⁰ ATLAS Preliminary ă E 250 N 500 1000 1500 2000 top-jet p_T [GeV] 200

If we look at k_T splitting scales, we also see the 2nd-to-last splitting (y_{23} : W \rightarrow qq) and last splitting (y_{12} : t \rightarrow Wb)

q'

the ATLAS Experiment

YScale 1-2 (GeV)

ATLAS applies this technique in the following analyses

tt Resonance

- As seen earlier top pairs may be produced through g_{KK} or other intermediary resonances.
-) One possibility is $pp \to Z' \to t\bar{t}$.
 - Narrow spin-1 resonance (color singlet).
- If M(Z') > 1 TeV then tops are highly boosted.
 - As before, standard reconstruction fails.
- Study semileptonic tt (lepton+jets) decay channel.
 - Mix of branching ratio and combinatorics.

Much of analysis inspired by work of *Thaler & Wang [JHEP 07 (2008) 092]*

Leptonic Top-Jet Selection

0.2 0.4 0.6 0.8 1 x_μ

- Solution Require electron or muon with $p_T > 20$ GeV
 - Muon require track match and $|\eta| < 2.5$ and electrons require *medium* shower shape and $|\eta| < 2.5$ excluding crack region.
- Solution Require jet with pT > 200(300) for muon(electron) events and $\Delta R(\ell, \text{ jet}) < 0.6$
 - Call nearest jet the b-jet from top decay.

 $x_{\ell} \equiv 1 - \frac{m_{b}}{m_{b+\ell}}$ $y_{\ell} \equiv p_{\ell\perp b} \times \Delta R(\ell, b)$ $x_{\ell, b}$ $x_{\ell, b}$ $x_{\ell, b}$

Make triangle cut to remove much of combinatoric and QCD background.

V

 y_{23}

 \mathbf{Q} y₃₄ should represent hardest hadronic fragmentation.

Construct likelihood to distinguish signal from background.

Likelihood for signal and QCD background.

Results For Z' → tt̄

Results presented for cuts on the likelihood output.

Cut @ $y_L > 0.6, 0.9, 1.2$

m = 2 TeV	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$
QCD multijet	1.9 ± 0.5	0.7 ± 0.2	0.16 ± 0.04
SM $t\bar{t}$	$21.9 \pm 1.0 \pm 3.9$	$14.2 \pm 0.9 \pm 2.6$	$4.0 \pm 0.5 \pm 0.7$
Total	23.8 ± 4.1	14.9 ± 2.8	4.2 ± 0.9
m = 3 TeV	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$
OCD multijet	0.5 ± 0.2	0.2 ± 0.1	0.07 ± 0.03
QOD manifor	0.0 ± 0.2	0.2 ± 0.1	0.01 ± 0.00
$\begin{array}{c} \mathbb{Q} \cup \mathbb{D} \text{ matchjet} \\ \mathbb{SM} t\bar{t} \end{array}$	$2.9 \pm 0.1 \pm 0.5$	0.2 ± 0.1 $1.8 \pm 0.1 \pm 0.3$	$0.7 \pm 0.1 \pm 0.1$

9	95% $\begin{bmatrix} ATLAS \text{ Preliminary} \\ 0.8 \\ 0.6 $	nits for 3 cuts on likelihood ($\sigma x BR(Z' \rightarrow tt)$)				
		$x BR(t\bar{t})$ (fb)	$y_L > 0.6$	$y_L > 0.9$	$y_L > 1.2$	
	200 400 600 800 1000 1200 1400 1600 1800	eV	550	650	1400	
	m = 2	eV	160	180	450	J

- Analysis assumes $\sqrt{s} = 14$ TeV with 1 fb⁻¹.
- Still more data required for discovery or evidence of $> 3\sigma$.

R-Parity Violating SUSY

- Search for R-parity violating SUSY with baryon number violation ($\lambda'' \neq 0$) through 3-jet neutralino decays.
 - Analysis inspired by recent work of Butterworth *et al.* (Phys.Rev.Lett.103:241803,2009)
- mSUGRA benchmark point SPS1a chosen as baseline signal.
 - See Key features: light neutralino (96.1 GeV) and high cross section (17.4 pb @ √s = 14 TeV).
- High QCD multijet rate usually limits RPV searches to use slepton decay.
- Analysis assumes highly boosted $\tilde{\chi}_1^0$ whose hadronic decay will produce 3 collimated jets.
 - Solution Look for high p_T jet with 3 sub-jets

Boosted Jet Selection for RPV SUSY

- \bigcirc Require two jets with p_T > 275 GeV (highly boosted $\tilde{\chi}_1^0$ candidates)
- \ge 40% of $\tilde{\chi}_1^0$ result from squark decay (require two more jets with p_T > 135 GeV)

the ATLAS Experiment

Q

-) ${ ilde \chi}_0^{\scriptscriptstyle 1} o q q q$ will have two decay vertices (two scales)
 - Make triangle cut in 2D plane of last (y₁) and second-to-last (y₂) splitting scale.
 - Solution Expect S:B = 1/3 with dijets as dominant background.

Expected Results for RPV SUSY

- Inspect jet mass distribution for bump in falling background.
- Background shape and normalization is largest uncertainty (using MC).

the ATLAS Experiment

Expect to reduce this uncertainty using data to model the background.

Important: Allows $\tilde{\chi}_1^0$ search without leptons in the final state.

Recovering H \rightarrow **bb** At The LHC

- Solution Low mass Higgs ($M_H \approx 120$ GeV) searches are challenging at the LHC.
 - Increased $b\overline{b}$ backgrounds w.r.t Tevatron + pp vs pp.
 - Tevatron searches in WH \rightarrow lvbb and ZH \rightarrow II(vv)bb not as powerful at LHC.
- Current strategy merges several production modes all with low rates.

- Recent paper by Butterworth et al.
 [Phys. Rev. Lett. 100, 242001 (2008)] Suggest that
 H → bb measurement may still be possible at LHC.
 - Idea: Look for boosted Higgs decaying to single $b\overline{b}$ -jet.

Boosted Higgs-Jet Analysis

- A boosted Higgs ($p_T \gg m_H$) requires recoiling from another boosted object.
- Solution Look for W+H and Z+H in three decay channels.

- Each channel requires one jet with $p_T(j) > 200$ GeV and $\Delta \Phi(H,V) > 1.2$ rad.
- Look for "mass drop" within the jet using last clustering step (CA).
 - Given Higgs-jet should have two hard subjets that ~ share m_H ($p_T(b) \sim m_H/2$).
 - Background jets tend to have more asymmetric p_T sharing and no large mass drop.
- b $H y_{1,2} \equiv \frac{1}{m_j^2} \min(p_{T,1}^2, p_{T,2}^2) \Delta R^2 > 0.1$ netric $m_{j1} < \frac{1}{\sqrt{3}} m_j$

Further Higgs-Jet Analysis

- Effect of mass drop cut and asymmetric p_T sharing cut is quite efficient for signal.
- Further improve mass resolution by rerunning CA on selected jets but with $R = \min(0.3, R_{b\bar{b}}/2)$.
 - Choose two hardest subjects within these newly clustered jets.

- Helps remove soft QCD radiation \Rightarrow good for mass resolution.
- Lastly, look for displaced tracks within cone (ΔR < 0.4) of subjects.</p>
 - Scan operating point to maximize significance.

Results for Higgs → bb

Results presented for a mass window cut assuming $m_H = 120$ GeV.

Q	S:B ~ 2:3 for lvbb	

Channel	signal	t_i	w_i	z_i	S/\sqrt{B}
$llb\overline{b}$	5.34	0.98	0.0	11.2	1.5
$l\nu b\overline{b}$	13.5	7.02	12.5	0.78	3.0
$\nu\nu b\overline{b}$	16.3	45.2	27.4	31.6	1.6
Combined					3.7

Results assume perfect knowledge of signal acceptance and backgrounds after collecting 30 fb⁻¹ @ $\sqrt{s} = 14$ TeV.

Flat 10% system 400Flat 15% system 500 300Diboson resonance 400 300Diboson resonance 500Will be seen before Higgs thus providing a standard candle.

Before We Observe New Physics

Only three new physics signatures presented, but many more possibilities.

Summary & Outlook

Many ongoing analyses within ATLAS using jet substructure as tool for isolating new physics signals.

the ATLAS Experiment

- Plenty of work to prove SM signals before claiming new physics.
 - Calibration of new substructure and validation of jet mass
- Extremely active field with strong interplay between theory and experiment.

http://www.physics.ox.ac.uk/boost2010

Analysis of coming year's dataset will be very valuable for future substructure searches.

The Large Hadron Collider

MontBlanc

Proton-proton collisions w/ $\sqrt{s} = 7$ TeV

ATLAS

JE BICh

E.

The ATLAS Detector

"Standard" HEP Detector IP \rightarrow Tracking Detector \rightarrow Calorimeter \rightarrow Muon System