Recent Advances in NLO QCD (V-boson+jets)

In collaboration with BlackHat: C.F.Berger, Z.Bern, L.J.Dixon, F.Febres Cordero, D.Forde, D.A.Kosower, D.Maitre; +Sherpa: T.Gleisberg

Harald Ita, (UCLA+NSF TI-fellow) US ATLAS Hadronic Final State Forum SLAC, Aug 23rd 2010

QCD omnipresent @ the LHC

Fundamental stuff: masses, couplings, fields, strategies, theories ...

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

Signals in multi-jet final states

- New particles, e.g. supersymmetry, Higgs boson(s) typically decay through cascades into multi-jet final states
- Kinematic signatures not always clean (e.g. mass bumps) if dark matter, neutrinos, or other escaping particles present

Need **precise Standard Model backgrounds** for a variety of processes with multiple jets, to maximize potential for new physics discoveries.

QCD factorization & parton model

Heavy fundamental particles produced in high energy interactions → Factorization:

- Protons appear as clouds of point-like partons (quarks + gluons).
- Asymptotic freedom guarantees that hard interactions between partons well described by perturbative QCD.

Quantitative first principle predictions.

How best to control SM backgrounds?

1. Get the **best theoretical prediction** you can, whether

- Basic Monte Carlo [PYTHIA, HERWIG, Sherpa, ...]
- LO QCD parton level

Increasing availability →

- LO QCD matched to parton showers [MadGraph/MadEvent, ALPGEN/PYTHIA, Sherpa, ...]
- NLO QCD at parton level
- NLO matched to parton showers [MC@NLO, POWHEG,...]
- NNLO inclusive at parton level
- NNLO with flexible cuts at parton level
- 2. Take ratios whenever possible
 - QCD effects cancel when event kinematics are similar
 - Closely related to "data driven" strategies

Want NLO for multi-jets

Typical scale variation W+n jets

Number of Jets	LO	NLO
1	16 %	7 %
2	30 %	10 %
3	42 %	12 %

• Reduced dependence on unphysical renormalization and factorization scales.

• NLO importance for scale dependence grows with increasing number of jets.

- NLO captures more physics:
- multiple partons merged to jets
- initial state radiation
- more types of initial state partons included

Shape changes

NLO required for quantitative control of multi-jet final states

NLO motivation from SUSY search

Aim for NLO background: Z (→ neutrinos) + 4 jets • Signature: multijet + Missing $E_T + X$

Irreducible background:
 Z (→ neutrinos) + 4 jets

 Signal excess over LO background with normalization still quite uncertain

The Les Houches Wish List (2001)

		Run II Monte Carlo Workshop, April 2001		
Single boson	Diboson	Triboson	Heavy flavour	
$W + \leq 5j$	$WW + \le 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$	
$W + b\overline{b} + \leq 3j$	$WW + b\overline{b} + \le 3j$	$WWW + \frac{b\overline{b}}{b} + \leq 3j$	$t\overline{t} + \gamma + \leq 2j$	
$W + c\overline{c} + \leq 3j$	$WW + c\overline{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\overline{t} + W + \leq 2j$	
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma+\leq 3j$	$t\overline{t} + Z + \leq 2j$	
$Z + b\overline{b} + \leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\overline{t} + H + \leq 2j$	
$Z + c\bar{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$tar{b}+\leq 2j$	
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$bar{b}+\leq 3j$	
$\gamma + b \overline{b} + \leq 3 j$	$\gamma\gamma+bar{b}+\leq 3j$			
$\gamma + c \bar{c} + \leq 3j$	$\gamma\gamma+car{c}+\leq 3j$			
	$WZ + \leq 5j$			
	$WZ + b\overline{b} + \leq 3j$			
	$WZ + c\overline{c} + \leq 3j$			
	$W\gamma + \leq 3j$			
	$Z\gamma + \leq 3j$			

• Five-particle processes under good control with Feynman diagram based approaches.

• Problem posed for over 10 years. Solution clear only recently!

Les Houches Wish List (2005)

Descope!

	Les Houches 2005
process wanted at NLO	background to
($V \in \{Z,W,\gamma\}$)	
1. $pp ightarrow VV + {\sf jet}$	$tar{t}H$, new physics
2. $pp ightarrow H+2$ jets	H production by
	vector boson fusion (VBF)
3. $pp ightarrow t ar{t} b ar{b}$	$tar{t}H$
4. $pp ightarrow tar{t}+2$ jets	$tar{t}H$
5. $pp ightarrow VV b ar{b}$	$VBF o H o VV$, $tar{t}H$, new physics
6. $pp ightarrow VV + 2$ jets	VBF o H o VV
7. $pp ightarrow V+3$ jets	new physics
8. $pp ightarrow VVV$	SUSY trilepton

NLO bottleneck: loops

state of the art: $pp \rightarrow t\bar{t}b\bar{b} + X$ (Bredenstein, Denner, Dittmaier,

• Traditional methods:

Simplify loop-level Feynman diagrams analytically.

Reduce tensor integrals.

Factorial growth of number of diagrams with multiplicity. Intricate tensor reductions.

Bern, Dixon & Kosower Britto, Cachazo & Feng Ossola, Pittau & Papadopoulos Giele, Kunszt & Melnikov

Recursive & on-shell/unitarity methods:
 Use unitarity and factorization
 properties to assemble amplitudes from
 (on-shell) tree amplitudes numerically.

Efficiently drops unphysical parts (ghosts,...). Automatable for many processes.

Example: new insights

twistor string [Witten 03']:

Remarkable simplicity: Tree amplitudes supported on lines in twistor space. **Obscure** from Feynman diagrams!

Tree recursions: [Britto, Cachazo, Feng, Witten 05'] Fast QCD tree amplitudes from lower point on-shell amplitudes.

Loop recursions: [Bern, Dixon, Kosower 05'] Most efficient for parts of loop amplitudes (rational terms).

Leads to *rewriting of and rethinking* about perturbative QFT.

05' Wishlist 2 \rightarrow 4 processes

• $pp \rightarrow t^{-}tb^{-}b$:

- 09' Bredenstein, Denner, Dittmaier and Possorini [traditional]
- 09' Bevilacqua, Czakon, Papadopoulos, Pittau and Worek [unitarity]

• pp \rightarrow W+3 jets:

– 09' Ellis, Melnikov and Zanderighi (leading color approx) [unitarity]
– 09' BlackHat [unitarity]

• pp \rightarrow Z+3 jets:

- 10' BlackHat [unitarity]
- pp → b⁻bb⁻b (q⁻q-channel):
 09' Binoth, Greiner, Guffanti, Reuter, Guillet and Reiter [traditional]
- $pp \rightarrow t^{-}tjj$:
 - 10' Bevilacqua, Czakon, Papadopoulos and Worek [unitarity]
- pp \rightarrow W⁺W⁺+2 jets:
 - 10' Melia, Melnikov, Rontsch, Zanderighi [unitarity]

Selected recent NLO

• pp \rightarrow WWW, WWZ, ... ZZZ:

- 08' Binotha, Ossola, Papadopoulos, Pittau [unitarity]

• pp \rightarrow H+2 jets:

– 09'+10' Campbell, Ellis, Zanderighi, Badger, Williams; Dixon, Sofianatos [unitarity]

• pp \rightarrow tt⁻+1 jet:

- 07' Dittmaier, Uwer, Weinzierl [traditional]
- 10' Melnikov, Schulze [unitarity]

The Les Houches Wish List (2010)

2040

	2010	
process wanted at NLO	background to	
1. $pp ightarrow VV + {\sf jet}$	$tar{t}H$, new physics Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi	Feynman
2. $pp ightarrow H+2$ jets	<i>H</i> in VBF Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier	diagram methods
3. $pp ightarrow t ar{t} b ar{b}$	ttHBredenstein, Denner Dittmaier, Pozzorini;Bevilacqua, Czakon, Papadopoulos, Pittau, Worek	now joined
4. $pp ightarrow tar{t}+2$ jets	$tar{t}H$ Bevilacqua, Czakon, Papadopoulos, Worek	by
5. $pp ightarrow VV b ar{b}$	$VBF o H o VV$, $tar{t}H$, new physics	
6. $pp ightarrow VV + 2$ jets	$VBF o H o VV_{Melia}$, Melnikov, Rontsch, Zanderighi	unitarity
	VBF: Bozzi, Jäger, Oleari, Zeppenfeld	based
7. $pp ightarrow V + 3$ jets	new physics	methods
В	erger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre; Ellis, Melnikov, Zanderighi	
8. $pp ightarrow VVV$	SUSY trilepton	
	Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld; Binoth, Ossola, Papadopoulos, Pittau	
9. $pp ightarrow b \overline{b} b \overline{b}$	Higgs, new physics GOLEM	

First $2 \rightarrow 5$ process

$pp \rightarrow W+4$ jets:

– 10' BlackHat (leading color, preliminary) [unitarity]

•First $2 \rightarrow 5$ NLO computation as needed for SUSY background •Background to top quark studies

The Les Houches Wish List (2001)

		Run II Monte Carlo Workshop, April 2001		
Single boson	Diboson	Triboson	Heavy flavour	
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$	
$W + b\overline{b} + \leq 3j$	$WW + b\overline{b} + \leq 3j$	$WWW + \mathbf{b}\overline{\mathbf{b}} + \leq 3j$	$t\bar{t} + \gamma + \leq 2j$	
$W + c\bar{c} + \leq 3j$	$WW + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \le 3j$	$t\bar{t} + W + \leq 2j$	
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \leq 2j$	
$Z + b\overline{b} + \leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 2j$	
$Z + c\bar{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\bar{b} + \leq 2j$	
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\bar{b} + \leq 3j$	
$\gamma + b\overline{b} + \leq 3j$	$\gamma\gamma + bar{b} + \leq 3j$			
$\gamma + c\bar{c} + \leq 3j$	$\gamma\gamma + c\bar{c} + \leq 3j$			
	$WZ + \leq 5j$			
	$WZ + b\overline{b} + \leq 3j$			
	$WZ + c\bar{c} + \leq 3j$			
	$W\gamma + \leq 3j$			
	$Z\gamma + \leq 3j$			

Comparing tools

T. Aaltonenet al. [CDF Collaboration], data: 320 pb⁻¹ arXiv:0711.4044

LO+shower: •SMPR-model: Madgraph+Pythia •MLM-model: Alpgen+Herwig NLO-parton level (MCFM)

CDF: JETCLU R=0.4, f=0.75 (IR unsafe) NLO: SISCone: R=0.4, f=0.5

> NLO has smallest uncertainties on distributions. NLO deviation of Data/Theory smaller than other calculations.

Comparing tools

Third jet in W+3 jets

[BlackHat,0907.1984]

- Reduced scale dependence at NLO
- Shape change small compared to LO scale variation

NLO + Shower MCs

- Recent NLO progress $(2 \rightarrow 4,5)$ at parton level: no parton shower, no hadronization, no underlying event.
- Methods for matching NLO parton-level results to parton showers:
 - [Frixione, Webber 02', ...] MC@NLO
 - POWHEG [Nason 04'; Frixione, Nason, Oleari 07';...]
 - GenEvA [Bauer, Tackmann, Thaler 08']
 - **ME NLO PS** [Gehrmann, Höche, Krauss, Schönherr; Hamilton, Nason; Alioli, Nason, Oleari, Re 10']
- Technical status:
 - no complex multi-jet NLO included yet
 - E.g.: NLO: Z, LO: Z+1/2/3/...+ parton shower Hamilton & Nason '10; SHERPA, prelim; NLO: Z & Z+j + parton shower, Alioli et al, prelim

Meanwhile:

- NLO parton-level gives best normalizations away from shower-dominated regions.
- Ratios will be considerably less sensitive to shower + ٠ nonperturbative effects.

NLO + Shower MCs: samples

Merged Z and Z +1 jet events [Alioli, Nason, Oleari, Re 10']

Some LHC processes available, but see above references more complete account.

- W/Z production
- Higgs production
- *Z* + 1 jet
- vector boson pairs
- heavy quark pairs
- single top
- lepton pairs
- Higgs bosons in association with a W or Z

Multi-jet systematics: W+n jets.

- Reduction of crosssection by power of strong coupling for each added jet.
- Jets prefer lowerst p_T.
- Growth of LO scale variation and NLO reduction.
- Complete input for MC@NLO approaches for W+4 jets

Multi-jet systematics: jet-algorithms Z+n jets.

CDF: Phys. Rev. Lett. 100, 102001 (2008) [BlackHat: 0912.4927, 1004.1659] See also talk by J. Huston

# of jets	LO parton SISCONE	NLO parton SISCONE	$\begin{array}{c} \text{LO parton} \\ \text{anti-}k_T \end{array}$	$\begin{array}{c} \text{NLO parton} \\ \text{anti-}k_T \end{array}$	Non-pert correction
1	$4635(2)^{+928}_{-715}$	$6080(12)^{+354}_{-402}$	$4635(2)^{+928}_{-715}$	$5783(12)^{+257}_{-334}$	~1.1
2	$429.8(0.3)^{+171.7}_{-111.4}$	$564(2)^{+59}_{-70}$	$481.2(0.4)^{+191}_{-124}$	$567(2)^{+31}_{-57}$	~1.2
3	$24.6(0.03)^{+14.5}_{-8.2}$	$35.9(0.9)^{+7.8}_{-7.2}$	$37.88(0.04)^{+22.2}_{-12.6}$	$44.9(0.3)^{+4.7}_{-7.1}$	~1.4

 σ (stat) ± scale var

 σ in [fb]

# of jets		CDF Is there a bes	F Need non-perturbative corrections to ere a best value for R?		
1	$7003 \pm$	study	Jet alg R	Non-pert corr	
2	695	CDF: W+n jets	R=0.4	<10%	
3	60 =	CDF: Z+n jets	R=0.7	10-40%	

 $\sigma \pm \text{stat} \pm \text{sys} \pm \text{lum}$

Scale Choices

- Need to choose scales event-by-event
- Functional form of scale choice is also important

• $E_{\rm T}^{\rm W}$ is not suitable; $\hat{H}_{\rm T}$ is

Scale Choices

• $E_{\rm T}^{\rm W}$ is not suitable; $\hat{H}_{\rm T}$ is

- NLO calculation is self-diagnosing, LO isn't
- In the absence of an NLO calculation, should use a scale like $\hat{H}_{\rm T}$

Shape change: W+3jets.

• compare: Les Houches study [Hoche, Huston, Maitre, Winter, Zanderighi, 10'] comparing to SHERPA with ME matching & showering • $\Delta R(1^{st}, 2^{nd})$ jet

• Physics of leading jets not modeled

well at LO: additional radiation allows jets to move closer

 \Rightarrow Shapes can change!

High-E_T W Polarization

- Polarization of low- p_T , longitudinal, Ws is textbook material [Ellis, Stirling & Webber] \Rightarrow dilution in charged-lepton rapidity distribution asymmetry at Tevatron
- This is a *different* effect! Ws are also polarized at high p_T
- Universal:
 - Present at LO
 - Present for fewer jets too

[BlackHat 09',10']

High-E_T W Polarization: analyzed by leptons

- Ratio: E_T of e^+ over E_T of e^- [BlackHat 09']
- W Polarization analyzed by

 $\Rightarrow E_T$ dependence of e^+/e^- ratio and missing E_T in W^+/W^- at LHC.

• Useful for distinguishing "prompt" Ws from daughter Ws in top decay (or new heavy-particle decays)!

High-E_T W Polarization

Semi-leptonic tt⁻-decay

- Semi-leptonic top decay involves left-handed W⁺
- But charge conjugate top decay involves righthanded W⁻

 \Rightarrow Electron and positron have almost identical p_T distributions.

Nice handle on separating W + jets from semi-leptonic top pairs.

Jet-Production Ratios: Z+jets.

- Ratios of jet cross sections should be less sensitive jet energy scale and non-pert corrections
- Ratios are stable LO \rightarrow NLO
- But hide a lot of structure in differential distributions:
 - Kinematic constraints at low p_T in 2/1
 - Factorization & IR $\ln(p_T / p_{T \min})$ s at intermediate p_T
 - Phase-space & pdf suppression at higher p_{τ} .

Interesting developments

Multi-jet computation time-consuming:

- need to integrate over multi particle phase space
- amplitudes themselves take longer to evaluate

Or get efficiency gain from graphics cards? [Hagiwara et al '09, Giele, Stavenga & Winter '09-10]

Generation of ROOT tuples: [Huston,...; BlackHat in progress]

- Re-analysis possible
- Distribute distributions
- Flexibility for studying scale variations
- Flexibility for computing error estimates associated with PDFs

Conclusions

- NLO calculations required for reliable QCD predictions at the Tevatron and LHC
- New efficient computational approaches to one-loop QCD amplitudes, exploiting unitarity & factorization properties, are now method of choice for important LHC backgrounds.
- Many new processes: W/Z + 1,2,3,4 jets, tt + 1,2 jets, VV+1,2 jets,... now known at NLO!
- Most complex NLO results are still at parton level and not embedded in a full Monte Carlo. Best use of these results may sometimes be via ratios – as aids to data-driven analysis of backgrounds. Interesting recent progress from NLO parton-shower approaches.
- Discussed some new understanding from multi-jet NLO for V+n jets: scale choices, jet-algorithms,...
- Left-handed W polarization large and universal and allows to, leading to further charge-asymmetric effects in W + n jets.

Thanks.