Potential for Discoveries at the (7 TeV) LHC

Eder Izaguirre

SLAC

With: Daniele Alves and Jay G. Wacker

Based on: arXiv:1003.3886, arXiv:1008.0407, arXiv:1009.xxxx

US ATLAS Hadronic Final State Forum

August 23, 2010

Monday, August 23, 2010

Jets + MET

Large production rates

Reason to be optimistic for seeing excesses

Dark Matter

Wimp Miracle: DM a thermal relic if mass is 100 GeV to 1 TeV

Usually requires a dark sector, frequently contains new colored particles

Outline

- Simplified Models and Tevatron sensitivity
- Early ATLAS results and interpretations
- Prospects for 1 fb^{-1}

4

Simplified Models

Models are created to solve problems or demonstrate mechanisms Realistic ones tend to be complicated and most details are irrelevant for searches

Limits of specific theories

Only keep particles and couplings relevant for searches

Captures many specific models (MSSM, UED, etc) Easy to notice & explore kinematic limits

5

Alwall, Le, Lisanti, Wacker. arXiv:0809.3264, arXiv0803.0019

Two Simplified Models

 $pp \to \widetilde{g}\widetilde{g}$

Direct Decays

$$\widetilde{g} \to q \overline{q} \widetilde{\chi}^0$$

Free parameters

$$\sigma_{pp
ightarrow \widetilde{g}\widetilde{g}} \ m_{\widetilde{g}} \ m_{\widetilde{\chi}^0}$$

Free parameters $\sigma_{pp \to \widetilde{g}\widetilde{g}} m_{\widetilde{g}} m_{\widetilde{g}} m_{\widetilde{\chi}^0} m_{\chi^{\pm}}$

Spectrum in Different Theories

Universal Extra Dimensions

Low Cut-Off

Small Mass Splittings

$$\delta m = \frac{g^2}{16\pi^2} \frac{\Lambda^2}{m}$$

7

mSugra has "Gaugino Mass Unification"

 $m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}} = \alpha_3: \alpha_2: \alpha_1 \simeq 6: 2: 1$

Chosen benchmarks miss some important kinematics

Lack of diversity (contrast with pMSSM)

8

Berger, Gainer, Hewett, Rizzo. arXiv:0812.0980

Outline

Simplified Models and Tevatron sensitivity
 Early ATLAS results and interpretations
 Prospects for 1 fb⁻¹

9

Expected Sensitivity at the Tevatron $(m_{\tilde{g}} = 210 \text{GeV}, m_{LSP} = 100 \text{GeV})$

10

Difficult Searches

	$ 1j + \not\!\!E_T $	$2j + \not\!\!E_T$	$3j + \not\!\!E_T$	$4^+j + \not\!\!E_T$
$E_{T j_1}$	≥ 150	≥ 35	≥ 35	≥ 35
$\left E_{T j_2} \right $	< 35	≥ 35	≥ 35	≥ 35
$\left E_{T j_3} \right $	< 35	< 35	≥ 35	≥ 35
$\left E_{T j_4} \right $	< 20	< 20	< 20	≥ 20
H_T	Various	Various	Various	Various
$\not\!$	Various	Various	Various	Various

Gluino Expected Sensitivity at the Tevatron

Lessons Learned So Far

Simplified Models let you capture different kinematic limits

Example of Tevatron's reach

Outline

Simplified Models and Tevatron sensitivity

Early ATLAS results and interpretations
 Prospects for 1 fb⁻¹

ATLAS NOTE

ATLAS-CONF-2010-065

20 July, 2010

Early supersymmetry searches in channels with jets and missing transverse momentum with the ATLAS detector

Abstract

This note describes a first set of measurements of supersymmetry-sensitive variables in the final states with jets, missing transverse momentum and no leptons from the $\sqrt{s} = 7$ TeV proton-proton collisions at the LHC. The data were collected during the period March 2010 to July 2010 and correspond to a total integrated luminosity of $70 \pm 8 \text{ nb}^{-1}$. We find agreement between data and Monte Carlo simulations indicating that the Standard Model backgrounds to searches for new physics in these **che**annels are under control.

ATLAS Search

 $\mathcal{L} = 70 \text{ nb}^{-1}$

Performed 4 searches

Cut	Topology	$1j + \not\!\!E_T$	$2^+j + E_T$	$3^+j + E_T$	$4^+j + \not\!\!\!E_T$
1	p_{T1}	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$
$\boxed{2}$	p_{Tn}	$\leq 30 {\rm GeV}$	$> 30 \mathrm{GeV}(n=2)$	$> 30 \operatorname{GeV}(n=2,3)$	$> 30 \operatorname{GeV}(n = 2 - 4)$
3	$ \not\!\!\!E_{T\mathrm{EM}} $	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$
4	$p_T \ell$	$\left \leq 10 {\rm GeV} \right.$	$\leq 10 { m GeV}$	$\leq 10{ m GeV}$	$\leq 10{ m GeV}$
5	$\Delta \phi(j_n, \not\!\!\!E_{TEM})$	none	[> 0.2, > 0.2]	[> 0.2, > 0.2, > 0.2]	[> 0.2, > 0.2, > 0.2, none]
6	$E_{T \mathrm{EM}} / M_{\mathrm{eff}}$	none	> 0.3	> 0.25	> 0.2
	N_{Pred}	46^{+22}_{-14}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{ m Obs}$	73	4	0	1

Low instantaneous luminosity allows low triggers. Loose cuts. Backgrounds under good control

Sets limit on

 $\sigma(pp \to \tilde{g}\tilde{g}X) \ \epsilon$

Cut	Topology	$1j + \not\!\!E_T$	$2^+j + E_T$	$3^+j + E_T$	$4^+j + \not\!$
1	p_{T1}	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$
2	p_{Tn}	$\leq 30 \mathrm{GeV}$	$> 30 \operatorname{GeV}(n=2)$	$> 30 \operatorname{GeV}(n=2,3)$	$> 30 \operatorname{GeV}(n = 2 - 4)$
3		$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$
4	$p_{T\ell}$	$\leq 10 \mathrm{GeV}$	$\leq 10 { m GeV}$	$\leq 10 { m GeV}$	$\leq 10 { m GeV}$
5	$\Delta \phi(j_n, \not\!\!\!E_{T\mathrm{EM}})$	none	[> 0.2, > 0.2]	[> 0.2, > 0.2, > 0.2]	[> 0.2, > 0.2, > 0.2, none]
6	$E_{T{ m EM}}/M_{ m eff}$	none	> 0.3	> 0.25	> 0.2
	$N_{\rm Pred}$	46^{+22}_{-14}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{ m Obs}$	73	4	0	1
	$\sigma(pp \to \tilde{g}\tilde{g}X)\epsilon _{95\% \text{ C.L.}}$	663 pb	46.4 pb	20.0 pb	56.9 pb

$3^+j + \not\!\!\!E_T$ usually most effective

Sensitivity Estimate

Matching: An Example

150 GeV particle going to 140 GeV LSP and 2 jets

Obscured by QCD with $\sqrt{\hat{s}}_{BG} \sim 20 \text{ GeV}$

Matching $\tilde{g} \rightarrow \chi q \bar{q}$

Cascade Decays

Harder to see these events, lower MET, higher HT

$$\tilde{g} \to q\bar{q}'\chi^{\pm} \to q\bar{q}' \ (\chi^0 \ W^{\pm(*)})$$

Chose a slice through the parameter space

$$m_{\chi^{\pm}} = \frac{1}{2}(m_{\tilde{g}} + m_{\chi^0})$$

Missing energy changes dramatically between $W^{\pm} \text{ vs } W^{\pm *}$

Cascade Decays $\widetilde{g} \to qq' \widetilde{\chi}^{\pm} \to qq' (W^* \chi^0)$

Cascade Decays $\widetilde{g} \to qq' \widetilde{\chi}^{\pm} \to qq' (W^* \chi^0)$

Lessons Learned So Far

ATLAS has accumulated enough data (already!) to explore previously inaccessible ground

Outline

Simplified Models and Tevatron sensitivity Early ATLAS results and interpretations

• Prospects for 1 fb^{-1}

Going Forward to 1fb⁻¹

Cut	Topology	$1j + \not\!\!E_T$	$2^+j + \not\!\!\!E_T$	$3^+j + \not\!\!E_T$	$4^+j + \not\!$
1	p_{T1}	$> 100 \mathrm{GeV}$	$> 100 \mathrm{GeV}$	$> 100 \mathrm{GeV}$	$> 100 \mathrm{GeV}$
2	p_{Tn}	$\leq 50 \mathrm{GeV}$	$> 50 \mathrm{GeV}$	$> 50 \mathrm{GeV}$	$> 50 \mathrm{GeV}$
3	E_T				
4	H_T				
5	$E_T/M_{\rm eff}$	none	> 0.3	> 0.25	> 0.2
Optimize cuts $H_T \not\!$					
for simplified models					
29					

Direct Decays Sensitivity $\tilde{g} \rightarrow \chi q \bar{q}$

Matching (Revisited)

One-Step Cascade Decay

One-Step Cascade Decay

One-Step Cascade Decay

Lessons Learned

There is a lot of ground the Tevatron could have covered, had it stepped away from benchmarks

At such an early stage ATLAS capable of reaching uncharted territory

Looking ahead to next year good reasons to be optimistic

Future Work

Multiple Cascade Decays Can further reduce MET and increase HT How bad is it and how to recover reach

b-tagging & anti-b-tagging Heavy flavor can appear in final states Top is a big background at moderate MET, w/o heavy flavor final states, anti-b-tagging may help

Thank You

Back Up Slides

Lower Systematics, similar searches $\widetilde{g} \to q \bar{q} \widetilde{\chi}^0$

30 % Systematic

Prospects for Discovery

50% Syst

40

Prospects for Discovery $\widetilde{g} \to qq' \widetilde{\chi}^{\pm} \to qq' (W^* \chi^0)$

 $H_T > 900 \text{ GeV} \quad \not\!\!\!E_T > 225 \text{ GeV}$

 $H_T > 700 \text{ GeV} \quad E_T > 400 \text{ GeV}$

How we used this result

$$N_{s} = \mathcal{L} \ \sigma(pp \to \tilde{g}\tilde{g}X) \ \epsilon(m_{\tilde{g}}, m_{\chi})$$

$$P(N_{s+b} \le N_{obs}) \ge 5\%$$

$$P(N_{s+b} \le N_{obs}) = \sum_{n}^{N_{obs}} \text{Poisson}(n; N_{s+b})$$

$$Poisson(n; \lambda) = \frac{\lambda^{n}}{n!} e^{-\lambda}$$

How we used this result

$$N_{s} = \mathcal{L} \ \sigma(pp \to \tilde{g}\tilde{g}X) \ \epsilon(m_{\tilde{g}}, m_{\chi})$$

$$P(N_{s+b} \le N_{obs}) \ge 5\%$$

$$P(N_{s+b} \le N_{obs}) = \sum_{n}^{N_{obs}} \text{Poisson}(n; N_{s+b})$$

$$Poisson(n; \lambda) = \frac{\lambda^{n}}{n!}e^{-\lambda}$$
Fold in uncertainties:

$$\int d\mathcal{L} \ f'(\mathcal{L}; \mu_{\mathcal{L}}, \sigma_{\mathcal{L}}) \cdot \qquad \mathcal{L} = 70 \pm 8 \text{ nb}^{-1}$$

$$Normal \text{ distribution}$$

$$\int dN_{B} \ f(N_{b}; \mu_{b}, \sigma_{b}) \cdot \qquad N_{b} \ _{3+j} = 1.9 \pm 0.9$$
Log Normal distribution (resp background positive)

Log Normal distribution (keeps background positive)

42

3 jet channel most important

Best limit on cross section $\sigma_{3+j} \epsilon \leq 20 \text{ pb vs} \quad \sigma_{4+j} \epsilon \leq 57 \text{ pb}$

Efficiency lower to get 4 jets with $p_T > 30 \text{ GeV}$ for $(m_{\tilde{g}}, m_{\chi}) \simeq (300, 0) \text{ GeV}$ leads to jet with energies of $E_j \sim 100 \text{ GeV}$

only 50% of the events that pass $p_{Tj3} > 30$ GeV, pass $p_{Tj4} > 30$ GeV

Our validation procedure

PGS MET mock up

Missing transverse momentum is computed from calorimeter cells belonging to topological clusters at the electromagnetic scale [30]. No corrections for the different calorimeter response of hadrons and electrons/photons or for dead material losses are applied. The transverse missing momentum

PGS MET with linear fit to Sum ET

Effectively raises4MET cut by 35% to 50%

Straight PGS MET

PGS/1.5

PGS MET with linear fit to Sum ET

The slight loss of sensitivity at lower LSP mass from fractional MET cut

In limit $m_{\chi} \to m_{\tilde{g}}$, $p_{\chi} = E_j$ maximizes *f*, and drops for lighter LSP

Additional reach from lower MET search

Best sensitivity for lower masses

(close to nominal ATLAS SUSY search)

 $H_T > 500 \text{ GeV}$

 $\not\!\!E_T > 100 \text{ GeV}$

