Potential for Discoveries at the (7 TeV) LHC

Eder Izaguirre

SLAC

With: Daniele Alves and Jay G. Wacker

Based on: arXiv:1003.3886, arXiv:1008.0407, arXiv:1009.xxxx

Jets + MET

Large production rates

Reason to be optimistic for seeing excesses

Dark Matter
Wimp Miracle: DM a thermal relic if mass is 100 GeV to 1 TeV
Usually requires a dark sector, frequently contains new colored particles

Outline

- Simplified Models and Tevatron sensitivity
- Early ATLAS results and interpretations

Prospects for $1 \mathrm{fb}^{-1}$

Simplified Models

Models are created to solve problems or demonstrate mechanisms Realistic ones tend to be complicated and most details are irrelevant for searches

Limits of specific theories

Only keep particles and couplings relevant for searches

Captures many specific models (MSSM, UED, etc)

Easy to notice \& explore kinematic limits

Two Simplified Models

$$
p p \rightarrow \widetilde{g} \widetilde{g}
$$

Free parameters
$\sigma_{p p \rightarrow \widetilde{g} \widetilde{g}} \quad m_{\widetilde{g}} m_{\widetilde{\chi}^{0}}$

One Step Decays

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\\
\hline \\
\\
\widetilde{g} \\
\widetilde{\chi}^{ \pm} \\
\widetilde{\chi}^{0}
\end{array}\right. \\
& \widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
\end{aligned}
$$

Free parameters

$$
\sigma_{p p \rightarrow \widetilde{g} \widetilde{g}} \quad m_{\widetilde{g}} \quad m_{\widetilde{\chi}^{0}} \quad m_{\chi^{ \pm}}
$$

Spectrum in Different Theories

MSSM

High Cut-Off
Large Mass Splittings
$\delta m=\frac{g^{2}}{16 \pi^{2}} m \log \Lambda$

Universal Extra Dimensions
Low Cut-Off
Small Mass Splittings

$$
\delta m=\frac{g^{2}}{16 \pi^{2}} \frac{\Lambda^{2}}{m}
$$

mSugra has "Gaugino Mass Unification"

$$
m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}}=\alpha_{3}: \alpha_{2}: \alpha_{1} \simeq 6: 2: 1
$$

Chosen benchmarks miss some important kinematics

Lack of diversity (contrast with pMSSM)
Berger, Gainer, Hewett, Rizzo. arXiv:0812.0980

Outline

Simplified Models and Tevatron sensitivity

 Early ATLAS results and interpretations Prospects for $1 \mathrm{fb}^{-1}$
Expected Sensitivity at the Tevatron

$$
\left(m_{\widetilde{g}}=210 \mathrm{GeV}, m_{L S P}=100 \mathrm{GeV}\right)
$$

$H_{T} \geq 300 \mathrm{GeV} \quad E_{T} \geq 225 \mathrm{GeV} \quad H_{T} \geq 150 \mathrm{GeV} \quad E_{T} \geq 100 \mathrm{GeV}$

Difficult Searches

	$1 j+E_{T}$	$2 j+E_{T}$	$3 j+E_{T}$	$4^{+} j+E_{T}$
$E_{T j_{1}}$	≥ 150	≥ 35	≥ 35	≥ 35
$E_{T j_{2}}$	<35	≥ 35	≥ 35	≥ 35
$E_{T j_{3}}$	<35	<35	≥ 35	≥ 35
$E_{T j_{4}}$	<20	<20	<20	≥ 20
H_{T}	Various	Various	Various	Various
E_{T}	Various	Various	Various	Various

Vary Signal Region Cuts?
 $$
\widetilde{g} \rightarrow q \bar{q} \widetilde{\chi}^{0}
$$

Gluino Expected Sensitivity at the Tevatron

Lessons Learned So Far

Simplified Models let you capture different kinematic limits

Example of Tevatron's reach

Outline

Simplified Models and Tevatron sensitivity

Early ATLAS results and interpretations
Prospects for $1 \mathrm{fb}^{-1}$

ATLAS NOTE
ATLAS-CONF-2010-065

20 July, 2010

Early supersymmetry searches in channels with jets and missing transverse momentum with the ATLAS detector

Abstract

This note describes a first set of measurements of supersymmetry-sensitive variables in the final states with jets, missing transverse momentum and no leptons from the $\sqrt{s}=7 \mathrm{TeV}$ proton-proton collisions at the LHC. The data were collected during the period March 2010 to July 2010 and correspond to a total integrated luminosity of $70 \pm 8 \mathrm{nb}^{-1}$. We find agreement between data and Monte Carlo simulations indicating that the Standard Model backgrounds to searches for new physics in these alrannels are under control.

ATLAS Search

$$
\mathcal{L}=70 \mathrm{nb}^{-1}
$$

Performed 4 searches

Cut	Topology	$1 j+E_{T}$	$2^{+} j+Z_{T}$	$3^{+} j+E_{T}$	$4^{+} j+Z_{T}$
1	$p_{T 1}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$
2	$p_{T n}$	$\leq 30 \mathrm{GeV}$	$>30 \mathrm{GeV}(n=2)$	$>30 \mathrm{GeV}(n=2,3)$	$>30 \mathrm{GeV}(n=2-4)$
3	$B_{T \mathrm{EM}}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$
4	$p_{T \ell}$	$\leq 10 \mathrm{GeV}$	$\leq 10 \mathrm{GeV}$	$\leq 10 \mathrm{GeV}$	$\leq 10 \mathrm{GeV}$
5	$\Delta \phi\left(j_{n}, E_{T \mathrm{EM}}\right)$	none	$[>0.2,>0.2]$	$[>0.2,>0.2,>0.2]$	$[>0.2,>0.2,>0.2, \mathrm{none}]$
6	म $_{\text {TEM }} / M_{\text {eff }}$	none	>0.3	>0.25	>0.2
	$N_{\text {Pred }}$	46_{-14}^{+22}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{\text {Obs }}$	73	4	0	1

Low instantaneous luminosity allows low triggers. Loose cuts.

 Backgrounds under good control
Sets limit on
 $\sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon$

Cut	Topology	$1 j+E_{T}$	$2^{+} j+E_{T}$	$3^{+} j+E_{T}$	$4^{+} j+E_{T}$
1	$p_{T 1}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$	$>70 \mathrm{GeV}$
2	$p_{T n}$	$\leq 30 \mathrm{GeV}$	$>30 \mathrm{GeV}(n=2)$	$>30 \mathrm{GeV}(n=2,3)$	$>30 \mathrm{GeV}(n=2-4)$
3	$E_{T E M}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$	$>40 \mathrm{GeV}$
4	$p_{T \ell}$	$\leq 10 \mathrm{GeV}$	$\leq 10 \mathrm{GeV}$	$\leq 10 \mathrm{GeV}$	$\leq 10 \mathrm{GeV}$
5	$\Delta \phi\left(j_{n}, E_{T E M}\right)$	none	[$>0.2,>0.2$]	$[>0.2,>0.2,>0.2]$	$[>0.2,>0.2,>0.2$, none]
6	$\mathbb{E}_{T E M} / M_{\text {eff }}$	none	>0.3	>0.25	>0.2
	$N_{\text {Pred }}$	46_{-14}^{+22}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{\text {Obs }}$	73	4	0	1
	$\left.\sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon\right\|_{95 \%}$ C.L.	663 pb	46.4 pb	20.0 pb	56.9 pb

$3^{+} j+E_{T}$ usually most effective

How far can you reach with

$$
\sigma(p p \rightarrow \tilde{g} \tilde{g})=20 \mathrm{pb} ?
$$

Can get above the Tevatron's sensitivity with reasonable efficiencies

How far can you reach with

$$
\sigma(p p \rightarrow \tilde{g} \tilde{g})=20 \mathrm{pb} ?
$$

Can get above the Tevatron's sensitivity with reasonable efficiencies

How far can you reach with

$$
\sigma(p p \rightarrow \tilde{g} \tilde{g})=20 \mathrm{pb} ?
$$

Can get above the Tevatron's sensitivity with reasonable efficiencies

How far can you reach with

$$
\sigma(p p \rightarrow \tilde{g} \tilde{g})=20 \mathrm{pb} ?
$$

Can get above the Tevatron's sensitivity with reasonable efficiencies

Sensitivity Estimate

Madgraph \longrightarrow Pythia \longrightarrow PGS \longrightarrow Cuts

$$
\begin{aligned}
& p p \rightarrow \tilde{g} \tilde{g}+\leq 2 j \quad \widetilde{g} \rightarrow q \bar{q} \widetilde{\chi}^{0} \\
& \begin{array}{l}
(\text { MLM matched }) \\
\\
\\
\\
\end{array} \quad \widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
\end{aligned}
$$

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

21

Putting it all together

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

21

Matching: An Example

150 GeV particle going to 140 GeV LSP and 2 jets

In rest frame of each gluino: two 3 GeV "jets" and a LSP with 3 GeV momentum

Parton level
\tilde{B}
Detector level

Obscured by QCD with $\sqrt{\hat{s}}_{\mathrm{BG}} \sim 20 \mathrm{GeV}$

Matching

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

Cascade Decays

Harder to see these events, lower MET, higher HT

$$
\tilde{g} \rightarrow q \bar{q}^{\prime} \chi^{ \pm} \rightarrow q \bar{q}^{\prime}\left(\chi^{0} W^{ \pm(*)}\right)
$$

Chose a slice through the parameter space

$$
m_{\chi^{ \pm}}=\frac{1}{2}\left(m_{\tilde{g}}+m_{\chi^{0}}\right)
$$

Missing energy changes dramatically between

$$
W^{ \pm} \text {vs } W^{ \pm *}
$$

Cascade Decays

$$
\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
$$

26

Cascade Decays

$$
\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
$$

Cascade Decays

$$
\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
$$

Cascade Decays

$$
\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
$$

26

Cascade Decays

$$
\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
$$

Cascade Decays

$$
\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
$$

Cascade Decays

$$
\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)
$$

Lessons Learned So Far

ATLAS has accumulated enough data (already!) to explore previously inaccessible ground

Outline

Simplified Models and Tevatron sensitivity

Early ATLAS results and interpretations
Prospects for $1 \mathrm{fb}^{-1}$

Going Forward to $1 \mathrm{fb}^{-1}$

Cut	Topology	$1 j+\mathbb{E}_{T}$	$2^{+} j+E_{T}$	$3^{+} j+Z_{T}$	$4^{+} j+Z_{T}$
1	$p_{T 1}$	$>100 \mathrm{GeV}$	$>100 \mathrm{GeV}$	$>100 \mathrm{GeV}$	$>100 \mathrm{GeV}$
2	$p_{T n}$	$\leq 50 \mathrm{GeV}$	$>50 \mathrm{GeV}$	$>50 \mathrm{GeV}$	$>50 \mathrm{GeV}$
3	B_{T}				
4	H_{T}				
5	E_{T} / M_{eff}	nonl	>0.3	>0.25	>0.2

Optimize cuts $H_{T} E_{T}$
for simplified models

Direct Decays Sensitivity

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

30

Direct Decays Sensitivity

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

31

Direct Decays Sensitivity

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

X

Direct Decays Sensitivity

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

X

Direct Decays Sensitivity

$$
\tilde{g} \rightarrow \chi q \bar{q}
$$

X

Matching (Revisited)

Cascade Decays

33

Cascade Decays

34

One-Step Cascade Decay

X
(D) $\sigma_{\mathrm{prod}} \times \mathcal{B}=\sigma_{\tilde{g}}^{\mathrm{QCD}-\mathrm{NLO}}$
(E) $\sigma_{\text {prod }} \times \mathcal{B}=3 \sigma_{\tilde{g}}^{\text {QCD-NLO }}$
(F) $\sigma_{\text {prod }} \times \mathcal{B}=0.2 \sigma_{\tilde{g}}^{\mathrm{QCD}-\mathrm{NLO}}$

One-Step Cascade Decay

X
(D) $\sigma_{\operatorname{prod}} \times \mathcal{B}=\sigma_{\tilde{g}}^{\mathrm{QCD}-\mathrm{NLO}}$
(E) $\sigma_{\operatorname{prod}} \times \mathcal{B}=3 \sigma_{\tilde{g}}^{\mathrm{QCD}-\mathrm{NLO}}$
(F) $\sigma_{\mathrm{prod}} \times \mathcal{B}=0.2 \sigma_{\tilde{g}}^{\mathrm{QCD}-\mathrm{NLO}}$
x

One-Step Cascade Decay

X
(D) $\sigma_{\text {prod }} \times \mathcal{B}=\sigma_{\tilde{g}}^{Q C D-N L O}$
(E) $\sigma_{\operatorname{prod}} \times \mathcal{B}=3 \sigma_{\tilde{g}}^{Q C D-N L O}$
(F) $\sigma_{\text {prod }} \times \mathcal{B}=0.2 \sigma_{g}^{\text {acb-NLo }}$

Lessons Learned

There is a lot of ground the Tevatron could have covered, had it stepped away from benchmarks

At such an early stage
ATLAS capable of reaching uncharted territory

> Looking ahead to next year good reasons to be optimistic

Future Work

Multiple Cascade Decays

Can further reduce MET and increase HT
How bad is it and how to recover reach
b-tagging \& anti-b-tagging
Heavy flavor can appear in final states
Top is a big background at moderate MET, w/o heavy flavor final states, anti-b-tagging may help

Thank You

Back Up Slides

Lower Systematics, similar searches

$$
\widetilde{g} \rightarrow q \bar{q} \widetilde{\chi}^{0}
$$

30% Systematic

High H_{T}

Prospects for Discovery

We define a theory discoverable if: $\quad S>5 \sqrt{S L(B)^{2}+\left(\epsilon_{\text {syst }} * B\right)^{2}}$

$$
\widetilde{g} \rightarrow q \bar{q} \tilde{\chi}^{0}
$$

$H_{T}>400 \mathrm{GeV} \quad E_{T}>400 \mathrm{GeV}$
$H_{T}>800 \mathrm{GeV} \quad E_{T}>300 \mathrm{GeV}$

50% Syst

Prospects for Discovery

$\widetilde{g} \rightarrow q q^{\prime} \widetilde{\chi}^{ \pm} \rightarrow q q^{\prime}\left(W^{*} \chi^{0}\right)$
$H_{T}>900 \mathrm{GeV} \quad E_{T}>225 \mathrm{GeV} \quad H_{T}>700 \mathrm{GeV} \quad E_{T}>400 \mathrm{GeV}$

How we used this result

$$
\begin{gathered}
N_{s}=\mathcal{L} \sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon\left(m_{\tilde{g}}, m_{\chi}\right) \\
P\left(N_{s+b} \leq N_{\mathrm{obs}}\right) \geq 5 \% \\
P\left(N_{s+b} \leq N_{\mathrm{obs}}\right)=\sum_{n}^{N_{\mathrm{obs}}} \operatorname{Poisson}\left(n ; N_{s+b}\right) \\
\quad \operatorname{Poisson}(n ; \lambda)=\frac{\lambda^{n}}{n!} e^{-\lambda}
\end{gathered}
$$

How we used this result

$$
\begin{gathered}
N_{s}=\mathcal{L} \sigma(p p \rightarrow \tilde{g} \tilde{g} X) \epsilon\left(m_{\tilde{g}}, m_{\chi}\right) \\
P\left(N_{s+b} \leq N_{\text {obs }}\right) \geq 5 \% \\
P\left(N_{s+b} \leq N_{\mathrm{obs}}\right)=\sum_{n}^{N_{\mathrm{obs}}} \operatorname{Poisson}\left(n ; N_{s+b}\right) \\
\quad \operatorname{Poisson}(n ; \lambda)=\frac{\lambda^{n}}{n!} e^{-\lambda}
\end{gathered}
$$

Fold in uncertainties:

$$
\int d \mathcal{L} f^{\prime}\left(\mathcal{L} ; \mu_{\mathcal{L}}, \sigma_{\mathcal{L}}\right) . \quad \mathcal{L}=70 \pm 8 \mathrm{nb}^{-1}
$$

$\int d N_{B} f\left(N_{b} ; \mu_{b}, \sigma_{b}\right) . \quad N_{b 3^{+}{ }_{j}}=1.9 \pm 0.9$
Log Normal distribution (keeps backround positive)

3 jet channel most important

Best limit on cross section

$$
\sigma_{3+j} \epsilon \leq 20 \mathrm{pb} \quad \text { vs } \quad \sigma_{4^{+} j} \epsilon \leq 57 \mathrm{pb}
$$

Efficiency lower to get 4 jets with $p_{T}>30 \mathrm{GeV}$

$$
\text { for }\left(m_{\tilde{g}}, m_{\chi}\right) \simeq(300,0) \mathrm{GeV}
$$

leads to jet with energies of $E_{j} \sim 100 \mathrm{GeV}$
only 50% of the events that pass $\mathrm{p}_{\mathrm{T} 3}>30 \mathrm{GeV}$, pass $\mathrm{p}_{\mathrm{T} 4}>30 \mathrm{GeV}$

Our validation procedure

PGS MET mock up

Missing transverse momentum is computed from calorimeter cells belonging to topological clusters at the electromagnetic scale [30]. No corrections for the different calorimeter response of hadrons and electrons/photons or for dead material losses are applied. The transverse missing momentum

"true" MET/"EM" MET

Effectively raises 4 MET cut by 35% to 50%

Straight PGS MET

PGS/1.5

PGS MET with linear fit to Sum ET

rel. norm. $=94 \%$
cut $\varepsilon_{\text {ATLAS }}=84 \%$
cut $\varepsilon_{\text {model }}=86 \%$

The slight loss of sensitivity at lower LSP mass from fractional MET cut

$$
f=\frac{E_{T}}{H_{T}+E_{T}}
$$

In limit $m_{\chi} \rightarrow m_{\tilde{g}}, p_{\chi}=E_{j}$ maximizes f, and drops for lighter LSP

Best searches, 4^{+}Jets, Large MET

$E_{T}>400 \mathrm{GeV}$

$$
\begin{aligned}
& \widetilde{g} \rightarrow q \bar{q} \widetilde{\chi}^{0} \\
& 50 \% \text { Syst }
\end{aligned}
$$

$$
\text { contours: } \quad 1-\frac{\sigma_{\text {lim }}^{\text {optimal }}}{\sigma_{\text {lim }}^{\text {these cuts }}}
$$

_ Optimal set of searches
—— This search

Additional reach from lower MET search

Best sensitivity for lower masses

(close to nominal ATLAS SUSY search)

$$
H_{T}>500 \mathrm{GeV} \quad E_{T}>100 \mathrm{GeV}
$$

