
1ATLAS workshop                 SLAC      Michael Spannowsky             08/23/2010                   

Subjets at the LHC

New Physics - new tools - new channels

Michael Spannowsky

University of Oregon



2ATLAS workshop                 SLAC      Michael Spannowsky             08/23/2010                   

ph
oto

ns

leptons

MET

Jets
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New energies long for new tools!

• scenarios where subjet techniques can pay off

Outline

• which subjet techniques are there

• do subjet techniques really pay off?
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I. naturally highly boosted signal:

BSMSM
BSM

SM
BSM

Jets Jets
high pT high pT

• At LHC elw scale particles produced beyond threshold 

• Jets highly collimated

• Jet-parton matching breaks down

• Decay products and FSR has to be collected in a fat jet

• UE~R , jet grooming important for reconstruction

very heavy

4
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II. Only mildly boosted signal

SM
BSM

SM
BSM

Jets Jets

interm. pT interm. pT

Proton

Proton

Advantages:
• Jet resolution
• b-tagging
• signal reconstruction efficiency
• lepton identification efficiency
• Reduced combinatorial problems
[Thesis, Piacquadio] [ATL-PHYS-PUB-2009-088]

Disadvantages:
• Low cross section
• large ISR, UE, Pile-up 
contributions

need jet grooming
need big jet cone
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Tools for jet substructure

I. Subjet/grooming techniques

II. Techniques using jet energy flow

Filtering
Pruning
Trimming

“pull“

planar flow
[Almeida et al. PRD 79 (2009)]
[Thaler and Wang JHEP 07 (2008)] 

[Galliccio and Schwartz PRL 105 (2010)]

template 
method

[Almeida et al.  1006.2035]

[Butterworth et al.  PRL 100 (2008)] 

[Ellis et al.  PRD 80 (2009)]

[Krohn et al.  JHEP 1002 (2010)]
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Jet/Event selection

UE, ISR, Pile-up, hard interaction

mH [GeV] 300 400 500 600
σ [fb] σS σB σS σB σS σB σS σB

selection 3.37/0.89 907.3 8.89/0.97 907.3 4.91/0.70 907.3 2.19/0.46 907.3
after analysis 0.29/0.12 0.39 2.02/0.24 3.97 1.11/0.18 3.33 0.46/0.12 1.97
S/B 1.03 0.57 0.39 0.30
S/
√

B10 2.0 3.6 2.2 1.3
selection 17.97/3.83 6200 46.18/4.64 6200 29.48/3.87 6200 15.08/2.90 6200
after analysis 1.34/0.48 2.10 8.96/1.07 19.21 6.32/1.00 18.01 3.15/0.77 11.83
S/B 0.87 0.52 0.41 0.33
S/
√

B10 4.0 7.2 5.5 3.6

Table 1: Signal and backgrounds for the semi-leptonic fat-jet analysis for a collider
energy of 7 TeV (upper) and 14 TeV (lower). The expected significance is calculated
for 10 fb−1. We show gluon fusion (left) and WBF (right) contributions separately
for the signal cross sections. For the numbers of the expected significance we take
both contributions into account.

ρX,Y =
E[(X − E[X])(Y − E[Y ])]

σxσy
(193)

mj1 < 0.8 mj to keep j1 and j2 (194)

|mjjj − 172.3 GeV| < 25 GeV (195)

φ (196)

y (197)
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I.Locate hadronic energy 
deposit in detector by 
choosing initial jet 
finding algorithm, e.g. 
CA, R=1.2

II.Possible to impose jet 
selection cuts on fat jet
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Filtering/Trimming

I.Recombine jet 
constituents with new 
alogrithm, eg CA, R=0.2

Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant massMJet of

the fat jet, expecting to find MJet ≈ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ≈ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an effective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f × Λ , (2.1)

were the hard scale Λ is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =

(
∑

i

pi

)2

. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.

– 3 –
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– 3 –
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– 3 –
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– 3 –
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with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.
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protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some
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to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f × Λ , (2.1)
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the trimmed jet,

M2
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∑

i
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)2

. (2.2)
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MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can
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– 3 –

Filtering/Trimming
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R=0.2

I.Recombine jet 
constituents with new 
alogrithm, eg CA, R=0.2

Filtering:
recombine n subjets

Trimming: 
recombine subjets 
which fulfill

start, we find the largest PT jet in the event.2 This jet should contain the decay products

of the top quark if there is a top quark. To make sure that the decay products are well

contained, we should use a jet finding algorithm that uses a fairly wide angular range.

There is some choice here. We use either the inclusive Cambridge-Aachen algorithm [15]

with a cone size R = 1.5 or the anti-kT algorithm [16] with R = 1.5. Because of the large

angular size used in the jet finding algorithm, we call this the fat jet.

The simplest way to proceed from here would be to measure the invariant massMJet of

the fat jet, expecting to find MJet ≈ Mtop = 174 GeV. However, jets from the background

sample with this angular size can have large masses. Thus we expect that the distribution of

MJet for background events will be substantial around the region of interest, MJet ≈ Mtop.

Furthermore, we cannot expect the signal events to yield a narrow peak near MJet = Mtop

because the fat jet will inevitably contain hadrons from partons that originate in initial state

radiation and from secondary interactions in the underlying event. These extra hadrons

add to MJet and thus smear the signal distribution.3 For these reasons, we need to break

the fat jet into subjets and analyze the structure of the subjets.

Consider first the trimming method [2]. Here, following Ref. [2], we define the fat jet

using the anti-kT algorithm with R = 1.5. The fat jet is made of constituents that we can

take to be individual hadrons or else very narrow jets made from calorimeter towers. Let

us call them the starting protojets. We now apply a sequential clustering algorithm to the

protojets, grouping them into successively fatter protojets. There is a choice of algorithm

to use. We use the kT algorithm [17] with protojet recombination defined by adding the

four-momenta of the protojets. This algorithm has an effective cone size R and here we

choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if

PT,j > f × Λ , (2.1)

were the hard scale Λ is the PT of the fat jet. The fraction f is an adjustable parameter

that we take to be f = 0.03. The starting protojets i contained in the jets j for which the

inequality (2.1) holds constitute the trimmed jet. Now we measure the invariant mass of

the trimmed jet,

M2
Jet =
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∑
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. (2.2)

For background events, trimming reducesMJet for each event and thus reduces the high

MJet part of the jet-mass distribution. For signal events, trimming removes extraneous

parts of the jets, giving a sharper peak near MJet = Mtop. The result is illustrated in

2Jets are considered only if the absolute value of their rapidity y is less than 5. This is a very non-

restrictive cut. However the highest PT jet is quite likely to have |y| much less than 5.
3Indeed, there is not even a clear distinction between partons radiated from the initial state and from

the top quark and its daughters because the quantum amplitudes that represent these two sources can

interfere.
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choose a quite small cone, R = 0.2. After the kT algorithm has combined the starting

protojets up to a kT limit defined by this R, we have a list of jets, each consisting of some

subset of the original starting protojets. There may be, say, ten final jets. We are ready

to trim our list of jets, keeping relatively hard jets and throwing away relatively soft jets.

We keep jet j if
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figure 1. The t̄t signal is clearly visible. We will investigate the statistical significance of

the signal shortly.
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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Pruning

mH [GeV] 300 400 500 600
σ [fb] σS σB σS σB σS σB σS σB

selection 3.37/0.89 907.3 8.89/0.97 907.3 4.91/0.70 907.3 2.19/0.46 907.3
after analysis 0.29/0.12 0.39 2.02/0.24 3.97 1.11/0.18 3.33 0.46/0.12 1.97
S/B 1.03 0.57 0.39 0.30
S/
√

B10 2.0 3.6 2.2 1.3
selection 17.97/3.83 6200 46.18/4.64 6200 29.48/3.87 6200 15.08/2.90 6200
after analysis 1.34/0.48 2.10 8.96/1.07 19.21 6.32/1.00 18.01 3.15/0.77 11.83
S/B 0.87 0.52 0.41 0.33
S/
√

B10 4.0 7.2 5.5 3.6

Table 1: Signal and backgrounds for the semi-leptonic fat-jet analysis for a collider
energy of 7 TeV (upper) and 14 TeV (lower). The expected significance is calculated
for 10 fb−1. We show gluon fusion (left) and WBF (right) contributions separately
for the signal cross sections. For the numbers of the expected significance we take
both contributions into account.

ρX,Y =
E[(X − E[X])(Y − E[Y ])]

σxσy
(193)

mj1 < 0.8 mj to keep j1 and j2 (194)

|mjjj − 172.3 GeV| < 25 GeV (195)

φ (196)

y (197)

R = M(fat jet)/PT(fat jet) (198)
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which
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i,j = (yi − yj)
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is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.

– 4 –

figure 1. The t̄t signal is clearly visible. We will investigate the statistical significance of

the signal shortly.

W+ jets

tt̄

dσ
/d

M
(t
)

Je
t
[f
b
/4

G
eV

] Trimming

M (t)
Jet [GeV]

220200180160140

500

400

300

200

100

0

Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.

– 4 –

If both hold true, 
eg. recombination is wide 
angle and asymmetric, 
veto merging

Pruning

figure 1. The t̄t signal is clearly visible. We will investigate the statistical significance of

the signal shortly.

W+ jets

tt̄

dσ
/d

M
(t
)

Je
t
[f
b
/4

G
eV

] Trimming

M (t)
Jet [GeV]

220200180160140

500

400

300

200

100

0

Figure 1: Mass distribution of trimmed jets for the tt̄ signal and the W + jets background. The
top mass is taken to be 174 GeV.

Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.

– 4 –

19

These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Now consider the pruning method [3, 4]. Here, following Refs. [3, 4], we define the

fat jet using the inclusive Cambridge-Aachen algorithm with R = 1.5. We again take the

fat jet to be composed of very narrow starting protojets and apply a sequential clustering

algorithm to the protojets. This time, we choose a modified version of the Cambridge-

Aachen algorithm [15].4 In this algorithm, in each step we look for the pair of protojets

{i, j} for which

R2
i,j = (yi − yj)

2 + (φi − φj)
2 (2.3)

is the smallest. (Here yi is the rapidity of protojet i and φi is its azimuthal angle.) This

pair of protojets is combined by adding their four-momenta, creating a new protojet.

The normal Cambridge-Aachen algorithm continues until no pair {i, j} of protojets has

Ri,j < Dcut, where Dcut is a parameter that represents an effective cone size for this

algorithm. We take Dcut = M(fat jet)/PT (fat jet) and let the algorithm run until it stops.

At this stage, each pair {i, j} of protojets has Ri,j > Dcut. Now we let protojet combination

continue, but with an additional restriction: for each pair {i, j} of protojets that are ready

to be combined, we look at the momentum fraction

z =
min(pT,i, pT,j)

|"pT,i + "pT,j |
. (2.4)

If z is small, there is a danger that we are including a protojet that is extraneous to the

signal. Therefore, if

z < zcut , (2.5)

4Other successive combination jet algorithms are allowed for the pruning method. With the use of the

Cambridge-Aachen algorithm, the description of how the method works is somewhat simplified.
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These can be characterized in terms of the variables z
and ∆R: recombinations with large ∆R and small z are
much more likely to arise from systematic effects of the
jet algorithm and in QCD jets rather than heavy parti-
cle reconstruction. We expect that removing (pruning)
these recombinations will tend to improve our ability to
measure the mass of a jet reconstructing a heavy parti-
cle. We also expect that this procedure will systemati-
cally shift the QCD mass distribution lower, reducing the
background in the signal mass window. Finally this pro-
cedure is expected to reduce the impact of uncorrelated
soft radiation from the underlying event and pile-up. We
therefore define the following pruning procedure:

0. Start with a jet found by any jet algorithm, and
collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and
zcut for the pruning procedure.

1. Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j → p:

z =
min(pTi, pTj)

pTp
< zcut and ∆Rij > Dcut.

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
“useful” jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

2. If the conditions in 1. are met, do not merge the
two branches 1 and 2 into p. Instead, discard the
softer branch, i.e., veto on the merging. Proceed
with the algorithm.

3. The resulting jet is the pruned jet, and can be com-
pared with the jet found in Step 0.

This technique is intended to be generically applica-
ble in heavy particle searches. It generalizes analysis
techniques suggested by other authors [9, 11], in that
these methods also modify the jet substructure to assist
separate a particular signal from backgrounds. We em-
phasize that pruning can be broadly applied. We have
endeavored to justify this claim with the discussions in
Secs. III-V, which demonstrate that the interpretation of
jet substructure is subject to systematic effects that can
be well characterized. Pruning is not the only option,
but offers some advantages which we explore in further
studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm. When reconstructing a boosted heavy parti-
cle in a single jet, without pruning the reconstruction is
optimized if the value of D is fit to the expected opening
angle of the decay. However, this angle depends on the
mass of the particle (which is not known in a search) and
its pT . We will show that pruning reduces the sensitiv-
ity to D and allows one to use large D jets over a broad

range in pT to search for heavy particles. This makes a
search much more straightforward to carry out by using
pruning.

Values for the two parameters of the pruning proce-
dure, zcut and Dcut, can be well motivated. In the fol-
lowing studies, we will show that the results of pruning
are rather insensitive to the parameters, and that the op-
timal parameters are similar for different searches. That
is, it is not necessary to tune the pruning procedure for
individual searches.

The parameter zcut can be chosen based on the analy-
sis of single-step and multi-step decays in Sec. IV. Near
the limit in boost where decays are reconstructed in a
single jet, the value of z is typically large. It is only at
large boosts, where the production rate of heavy particles
is much smaller, that small values of z are allowed for re-
constructed decays. Therefore, we can choose a value of
zcut that will keep all reconstructed parton-level decays
at small boost, and only remove a small fraction of decays
at larger boosts. For both the kT and CA algorithms, we
set zcut = 0.10 initially, and will study the performance
of pruning as zcut is varied for different searches.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed
parameter procedure. Dcut essentially determines how
much of the jet substructure can be pruned, with smaller
values allowing for more pruning. Dcut should be suf-
ficiently small so that if a decay is “hidden” inside the
jet substructure by late recombinations of, say, UE par-
ticles, the substructure can be pruned and the decay can
be found. A value that is too small, however, will result
in over-pruning. A natural scale for Dcut is the open-
ing angle of the jet. However, this is an infrared unsafe
quantity, as soft radiation can change the opening angle.
Instead, the dimensionless ratio mJ/pTJ for the jet is re-
lated to the opening angle: typically, ∆R12 ≈ 2mJ/pTJ .
Therefore, we choose Dcut to scale with 2mJ/pTJ , and a
value Dcut = mJ/pTJ is a reasonable starting value. We
will study the performance of pruning as a function of
the scaling of Dcut with 2mJ/pTJ .

A. Effects of Pruning

Having defined the pruning procedure, we can demon-
strate how effective it is in reducing systematic effects and
improving the mass resolution of jets. In this study, we
use the parameters Dcut = mJ/pTJ for both algorithms,
and zcut = 0.10 for the CA algorithm and 0.15 for the
kT algorithm. We will motivate these parameters with
the study in Sec. VIII A. First, in Fig. 24, we reproduce
the “hadron-parton” comparison in Fig. 23 from Sec. V,
using pruning at both the hadron level and the parton
level. The parton-level pruning is implemented in the
same way as defined above, treating the three partons of
the reconstructed top quark as the jet.

It is clear by comparing Figs. 23 and 24 that pruning
has removed much of the systematic effects in the CA
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Comparison of the techniques

Pruning/Trimming can be generic tagging tools
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http://silicon.phys.washington.edu/JetsWorkshop/JetModTalk.pdf
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Application of jet grooming techniques
to 

New Physics searches
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HV - Higgs discovery channel

p p

b
e.g.   pp -> ZH bbar

Z -> l+l-

    H -> b,bbar

Collect FSR

Reject ISR and UE
R=1.2

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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HV - Higgs discovery channel

mass drop:
1)  check for mass drop

mj1 < 0.66 mj

2)  check “asymmetry”

physics scenario as well as the detector performance. Im-
portant details of the new physics model include the total
cross section of new physics, the fraction of new physics
produced that can be cleanly separated from standard
model backgrounds, the fraction of this sample that has
Higgs bosons resulting from new heavy particle decays,
and the fraction of these Higgs bosons that are boosted.
Important detector performance details include the b-tag
efficiency, which includes tagging a jet as well as subjets,
the jet energy resolution, fake rates, and so on.

II. BOOSTED HIGGS

A boosted Higgs boson has high transverse momenta
pt ! mh. When the Higgs decays to bb̄, this high
transverse momenta causes the b-jets to be highly col-
limated. Conventional search strategies to identify the
Higgs through the reconstruction of two separate singly
b-tagged jets generally fails since it is much more likely
for the b-jets to be merged into a single jet. Going to
smaller cone size would seem prudent, except that this
has been shown to give poor mass resolution [4].

Instead, we exploit the recently developed technique
to identify subjets within a “fat jet” consistent with the
decay of a Higgs to bb̄ [1]. Identifying subjets inside a
fat jet that resulted from the decay of a massive particle
is not straightforward. Jet mass, determined by some
algorithmic prescription applied to the subjets, is one
indicator. However, the distribution that results from
ordinary QCD production still has a long tail into high
jet masses. For a jet with transverse momentum pt, jet
mass mj , and cone size R2 = ∆η2 + ∆φ2, the leading
order differential QCD jet mass distribution goes as [5, 6]

dσ (R)
dptdmj

∼ αsCi

πm2
j

(
ln

R2p2
t

m2
j

+O (1)

)
. (1)

The challenge is thus to reduce the QCD jet background
without losing significantly in mass resolution. Further,
when a jet with substructure is identified, we also need to
determine the “heavy particle neighborhood” – the region
to which QCD radiation from the Higgs decay products
is expected to be confined.

Analysis of jet substructure has received considerable
attention. Distinct algorithms have been proposed to
identify Higgs decaying to bb̄ [1, 7], fully hadronic decays
of top [7, 8, 9, 10], and even neutralinos decaying to three
quarks [11, 12]. Refs. [13, 14, 15] have also recently in-
troduced a more general “pruning” procedure based on
jet substructure to more easily discover heavy particles.
Our work employs a modified version of the iterative de-
composition algorithm introduced by Ref. [1], which uses
an inclusive, longitudinally invariant Cambridge/Aachen
(C/A) algorithm [16, 17, 18].

III. JET SUBSTRUCTURE ALGORITHM

The starting point to test our algorithm, both for new
physics and SM background processes, is a set of final
(post-showering and hadronization) particles. We gener-
ate signal events using Pythia v6.4 [19], while the back-
ground events are first generated at parton-level using
ALPGENv13 [20]. We use PYTHIA v6.4 for showering
and hadronization of all events. We also use the ATLAS
tune [21] in Pythia to model the underlying event. We do
not perform any detector simulation or smearing of jets.
A realistic ATLAS/CMS specific search in the spirit of
Ref. [2] is beyond the scope of this work. However, since
high pt jets result in a large amount of energy deposited
in the calorimeter cells where energy resolution is excel-
lent, we do not expect smearing to significantly modify
our results.

We group the hadronic output of Pythia into “cells” of
size ∆η×∆φ = 0.1×0.1. We sum the four momentum of
all particles in each cell and rescale the resulting three-
momentum such as to make the cells massless [8]. If the
cell energy is bigger than 1 GeV, the cells become the
inputs to the jet algorithm. We use the inclusive C/A
algorithm as implemented in FastJet [22] to cluster the
input cells in jets with R = 1.2. As we are trying to
identify the Higgs through its decay to bottom quarks,
the b-tag efficiency is paramount. For simplicity we work
with a flat 60% acceptance, with a corresponding fake
rate of 2%. Our algorithm is as follows:

1. The decomposition procedure starts with a b-
tagged jet j. After undoing its last stage of clus-
tering, the two subjets j1 and j2 are labeled such
that mj1 > mj2 .

2. Following Ref. [1], subjets are checked for the ex-
istence of a significant mass drop (mj1 < µmj) as
well as non-existence of an asymmetry defined by

y =
min

“
p2

tj1
,p2

tj2

”

m2
j

∆R2
j1,j2 > ycut. We use µ = 0.68

and ycut = (0.3)2 identical to Ref. [1]. Both subjets
are required to be b-tagged and the pt of the daugh-
ter jet j greater than 30 GeV. If these conditions
are satisfied, this stage of clustering (say, i-th) is
recorded and then the following is calculated:

Si =
min

(
p2

tj1
, p2

tj2

)

(
ptj1

+ ptj2

)2 ∆Rj1j2 . (2)

The quantity Si is an indicator of the similarity of
the two subjets and is weighted by their separation
∆Rj1j2 .

3. Replace j by j1 and repeat from step 1 as long as
j has further subjets.

4. Select the stage of clustering for which Si is the
largest. We anticipate that the two b-tagged sub-
jets, at this stage, are most likely to have originated

2

p p

b
bbar

Z -> l+l-

    H -> b,bbar

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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p p

b
bbar

Z -> l+l-

    H -> b,bbar

g

HV - Higgs discovery channel

Apply filtering and take 
3 hardest subjets

Use b-tagging on 2 
hardest subjets

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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3

on mass resolution and background rejection.

The above results were obtained with HER-
WIG 6.510[17, 18] with Jimmy 4.31 [19] for the under-
yling event, which has been used throughout the sub-
sequent analysis. The signal reconstruction was also
cross-checked using Pythia 6.403[20]. In both cases
the underlying event model was chosen in line with the
tunes currently used by ATLAS and CMS (see for ex-
ample [21] 2). The leading-logarithmic parton shower
approximation used in these programs have been shown
to model jet substructure well in a wide variety of pro-
cesses [23, 24, 25, 26, 27, 28]. For this analysis, sig-
nal samples of WH, ZH were generated, as well as
WW, ZW, ZZ, Z + jet, W + jet, tt̄, single top and dijets
to study backgrounds. All samples correspond to a lu-
minosity ≥ 30 fb−1, except for the lowest p̂min

T dijet sam-
ple, where the cross section makes this impractical. In
this case an assumption was made that the selection ef-
ficiency of a leptonically-decaying boson factorises from
the hadronic Higgs selection. This assumption was tested
and is a good approximation in the signal region of the
mass plot, though correlations are significant at lower
masses.

The leading order (LO) estimates of the cross-section
were checked by comparing to next-to-leading order
(NLO) results. High-pT V H and V bb̄ cross sections were
obtained with MCFM [29, 30] and found to be about 1.5
times the LO values for the two signal and the Z0bb̄ chan-
nels (confirmed with MC@NLO v3.3 for the signal [31]),
while the W±bb̄ channel has a K-factor closer to 2.5 (as
observed also at low-pT in [30]).3 The main other back-
ground, tt̄ production, has a K-factor of about 2 (found
comparing the HERWIG total cross section to [32]). This
suggests that our final LO-based signal/

√
background es-

timates ought not to be too strongly affected by higher
order corrections, though further detailed NLO studies
would be of value.

Let us now turn to the details of the event selection.
The candidate Higgs jet should have a pT greater than
some p̂min

T . The jet R-parameter values commonly used
by the experiments are typically in the range 0.4 - 0.7.
Increasing the R-parameter increases the fraction of con-
tained Higgs decays. Scanning the region 0.6 < R < 1.6
for various values of p̂min

T indicates an optimum value
around R = 1.2 with p̂min

T = 200 GeV.

Three subselections are used for vector bosons: (a) An
e+e− or µ+µ− pair with an invariant mass 80 GeV <
m < 100 GeV and pT > p̂min

T . (b) Missing transverse
momentum > p̂min

T . (c) Missing transverse momentum

2 The non-default parameter setting are: PRSOF=0,
JMRAD(73)=1.8, PTJIM=4.9 GeV, JMUEO=1, with
CTEQ6L [22] PDFs.

3 For the V bb̄ backgrounds these results hold as long as both the
vector boson and bb̄ jet have a high pT ; relaxing the requirement
on pTV leads to enhanced K-factors from electroweak double-
logarithms.
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FIG. 2: Signal and background for a 115 GeV SM Higgs
simulated using HERWIG, C/A MD-F with R = 1.2 and
pT > 200 GeV, for 30 fb−1. The b tag efficiency is assumed
to be 60% and a mistag probability of 2% is used. The qq̄
sample includes dijets and tt̄. The vector boson selections
for (a), (b) and (c) are described in the text, and (d) shows
the sum of all three channels. The errors reflect the statisti-
cal uncertainty on the simulated samples, and correspond to
integrated luminosities > 30 fb−1.

> 30 GeV plus a lepton (e or µ) with pT > 30 GeV,
consistent with a W of nominal mass with pT > p̂min

T . It
may also be possible, by using similar techniques to re-
construct hadronically decaying bosons, to recover signal
from these events. This is a topic left for future study.

To reject backgrounds we require that there be no lep-
tons with |η| < 2.5, pT > 30 GeV apart from those used
to reconstruct the leptonic vector boson, and no b-tagged
jets in the range |η| < 2.5, pT > 50 GeV apart from the
Higgs candidate. For channel (c), where the tt̄ back-
ground is particularly severe, we require that there are
no additional jets with |η| < 3, pT > 30 GeV. The re-
jection might be improved if this cut were replaced by a
specific top veto [5]. However, without applying the sub-
jet mass reconstruction to all jets, the mass resolution
for R = 1.2 is inadequate.

The results for R = 1.2, p̂min
T = 200 GeV are shown

in Fig. 2, for mH = 115 GeV. The Z peak from ZZ and
WZ events is clearly visible in the background, providing
a critical calibration tool. Relaxing the b-tagging selec-
tion would provide greater statistics for this calibration,
and would also make the W peak visible. The major
backgrounds are from W or Z+jets, and (except for the
HZ(Z → l+l−) case), tt̄.

Combining the three sub-channels in Fig. 2d, and sum-
ming signal and background over the two bins in the
range 112-128 GeV, the Higgs is seen with a significance

BDRS Result

• LHC 14 TeV; 30 fb-1

• HERWIG/JIMMY/Fastjet
  cross-checked with PYTHIA
  with “ATLAS tune”

• 60% b-tag; 2% mistag
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ATLAS Simulation

SBDRS ≈ 4.2   versus   SATLAS ≈ 3.7

ATL-PHYS-PUB-2009-088 (Aug 2009)
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Figure 3: Rejection against light-quark jets (left) and against charm-quark jets (right) as a
function of the b-tagging efficiency on the single subjet, for both the COMB and JetFitter b-
tagging algorithms. The performance for the JetFitter algorithm is also shown after dedicated
optimization to reject c-jets.

is expected to be achievable, corresponding to 1% light-jet misidentification efficiency. This is
exactly the value considered in the generator level study [3] in the most optimistic scenario.
Such an efficient rejection of the background is however only valid in the hypothesis that the
background is dominated by light-jets, so that charm-jets do not play an important role.

Since charm-quarks fragment into c-hadrons which possess a significant lifetime and have
similar decay multiplicities to b-hadrons, separating b-jets from c-jets is much harder than sep-
arating b-jets from light jets, as shown in the right plot in Fig. 3. To improve the rejection
against charm-jets, a dedicated b-tagging algorithm is used, JetFitter [26], which provides extra
information, trying for example to identify the PV → b → c decay chain topology, which is
not present in a c-jet. Two discriminating variables are used, one trained against light jets,
the second against c-jets: they are combined by reweighting them respectively according to the
prior light (c(light)) and c-jet (1 − c(light)) relative flavour composition of the background, at
the cost of a reduced light-jet rejection. The value for c(light) has been optimized by scanning
the 0-1 range using 0.2 intervals1).

While b-tagging can easily reduce the number of b-light subjet combinations to an accept-
able level, it is much harder to reduce the b-c component, which most often occurs in the tt̄
backgrounds. In W+jets the dominant contribution comes from the light-light and light-c sub-
jet combinations, as expected from pure QCD production. The most dangerous contribution
comes however from bb̄ pairs (e.g. from gluon splitting), which cannot be reduced by applying
b-tagging.

To determine the optimal b-tagging strategy for the present analysis, the significance, defined
as S√

B
has been analyzed as a function of the signal efficiency given for a certain b-tagging

requirement, for the lνbb̄ channel. This is shown in Fig. 4.

1)Since the b-tagging algorithm was not specifically optimized and trained in the kinematic and topological
region of the present analysis, the prior light jet composition factor c(light) does not necessarily reflect the real
flavour composition of the background.
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Figure 5: Distribution of the invariant mass of the Higgs candidate after all selection cuts. (a)
lνbb̄ channel (b) llbb̄ channel and (c) Emiss

T bb̄ channel. The signals (for mH = 120 GeV) are
shown on top of the backgrounds. All distributions are normalized to an integrated luminosity
of 30 fb−1.

compared to the particle-level result for this channel in Ref. [3] of 3.1. Note that in the particle-
level study, high Emiss

T events were in fact counted in the Emiss
T bb̄ channel regardless of whether

a lepton was identified, thus reducing the relative contribution to the significance from the lνbb̄
channel compared to our result.

The trigger efficiency has not been applied.

4.3 llbb̄ channel

The requirement of leptonic Z decay leads to small branching ratios. However this is coun-
teracted by the fact that it is hard for backgrounds such as tt̄ to emulate this signature. The
selection consists of two parts, firstly a candidate for the hadronic H → bb system is identified
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Figure 5: Distribution of the invariant mass of the Higgs candidate after all selection cuts. (a)
lνbb̄ channel (b) llbb̄ channel and (c) Emiss

T bb̄ channel. The signals (for mH = 120 GeV) are
shown on top of the backgrounds. All distributions are normalized to an integrated luminosity
of 30 fb−1.

compared to the particle-level result for this channel in Ref. [3] of 3.1. Note that in the particle-
level study, high Emiss

T events were in fact counted in the Emiss
T bb̄ channel regardless of whether

a lepton was identified, thus reducing the relative contribution to the significance from the lνbb̄
channel compared to our result.

The trigger efficiency has not been applied.

4.3 llbb̄ channel

The requirement of leptonic Z decay leads to small branching ratios. However this is coun-
teracted by the fact that it is hard for backgrounds such as tt̄ to emulate this signature. The
selection consists of two parts, firstly a candidate for the hadronic H → bb system is identified
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Grooming techniques work differently

combine them to gain more insights

Do they provide complementary information?

If yes,
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Herwig ++Pythia 8

Pythia 6

hardest jet 
pT > 150 GeV

chosen:
R=1.2

Pruning (CA)
Trimming (aKT,KT)with granularity and 

cell pT > 0.5 GeV

Dijet samples
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Combine Mass-Drop/Filtering 
with Pruning and Trimming 

[Soper, MS  JHEP 1008 (2010)]
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Pruning tuning:

Figure 7: Signal (upper row) and background (lower row) mass distribution for hardest jet
for Pruning and Trimming procedure with MH = 120 GeV. We only vary the Pruning zcut =
(0.05, 0.1, 0.2) from left to right.

paper, but a reliable simulation of them is beyond the scope of our work. Thus all results
shown are without detector smearing effects.

A. Analysis of data with relative likelihoods

There is a very general way of analyzing data and of combining different analyses of data
that involves using relative likelihoods. This method, in one form or another, is quite
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M (f)
Jet ∈ Wf

M (f)
Jet ∈ Wf

M (t)
Jet ∈ Wt

M (f)
Jet ∈ Wf

M (p)
Jet ∈ Wp

M (p)
Jet ∈ Wp

M (t)
Jet ∈ Wt

Signal cross section [fb] 0.20 0.18 0.17 0.17

Backgrnd cross section [fb] 0.30 0.20 0.17 0.16

s/b 0.67 0.90 1.0 1.1

s/
√
b (

∫
dL = 30 fb−1) 2.0 2.2 2.3 2.3

〈L(n)〉SB (
∫
dL = 30 fb−1) 1.7 1.9 2.0 2.1

Table 3: Statistical significance of ZH results for an integrated luminosity of 30 fb−1. Here we
simply count the expected number of signal events, s, and background events, b, in certain windows
for the mass of the filtered jet, M (f)

Jet , the mass of the trimmed jet, M (t)
Jet, and the mass of the pruned

jet, M (p)
Jet . The mass windows chosen areWf = (110 GeV, 125 GeV), Wt = (105 GeV, 120 GeV), and

Wp = (110 GeV, 125 GeV). The Higgs mass assumed when generating events is MHiggs = 115 GeV.
In the first column, we ask only that the filtered jet mass be in the window Wf . In the remaining
columns, we combine methods by asking that two masses be in the corresponding windows. For
each type of measurement, we show three measures of statistical significance, s/b, s/

√
b, and the

logarithm of the likelihood ratio based on s and b, eq. (2.8).

can test not only whether the presence of the ZH signal is favored, but how the likelihood

favoring the presence of the signal depends on the assumed mass m. The expectation value

of L({n},m) if the true Higgs boson mass is MHiggs and the signal is present along with

the background is given by

〈L({n},m)〉SB =
∑

J

[
(sJ(MHiggs) + bJ) log

(
1 +

sJ(m)

bJ

)
− sJ(m)

]
. (3.7)

We have computed 〈L({n},m)〉SB for nine assumed values of m and for the three combi-

nations of using two out of three of the filtered jet mass, the trimmed jet mass, and the

pruned jet mass. The results are displayed in figure 7.

We learn three things from figure 7. First, if we look at the case m = MHiggs, we

have a stronger signal using the distribution in two out of the three variables M (f)
Jet , M

(t)
Jet,

and M (p)
Jet together than we have for just one variable. Second, with the distribution in two

variables, we have better resolution in which trial massm best fits the data compared to the

resolution obtained with just one variable. Finally, using M (t)
Jet together with M (p)

Jet , we have

〈L({n},m)〉SB ≈ 2.7. This is better than the corresponding result, 〈L({n},m)〉SB ≈ 2.1,

from table 3, in which we used simply the number of counts in a fixed window in M (t)
Jet and

M (p)
Jet .

We have tried one more small adjustment. In the pruning method, Refs. [3, 4] recom-

mend that the parameter zcut, Eq. (2.5), be set to 0.1. That is the value we have used.

However, we find that the value 0.05 does a better job in this application, as shown in

table 4. Changing to zcut = 0.05 allows the pruned jet to absorb more soft radiation. This

enhances the asymmetry in the jet mass between pruning and trimming. Although the cor-

relation of the jet mass for the signal process is weakened it mainly affects the background

of light parton jets, see figure 8.
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M (p)
Jet ∈ Wp

M (t)
Jet ∈ Wt

Signal cross section [fb] 0.16

Backgrnd cross section [fb] 0.13

s/b 1.3

s/
√
b (

∫
dL = 30 fb−1) 2.4

〈L(n)〉SB (
∫
dL = 30 fb−1) 2.2

Table 4: Statistical significance of ZH results for an integrated luminosity of 30 fb−1 as in table
3 except that here we take zcut in the pruning method to be 0.05 instead of 0.1. This improves the
statistical significance compared to the (M (p)

Jet ,M
(t)
Jet) results in the rightmost column of table 3.

Figure 8: Joint distributions between pairs of the trimmed jet mass M (t)
Jet and the pruned jet

mass M (p)
Jet for the ZH signal (left column) and the background (right column). The events were

generated with MHiggs = 115 GeV and zcut = 0.05.

For a generic resonance tagger, one can look for excess events in a combined window

of two of the pruned, trimmed, and filtered jet masses. Even if a new physics model for

the signal is not anticipated, the approach outlined in this paper can be used to improve

on the statistical significance of a so-called “side bin analysis.” Both s/b and s/
√
b can be

improved for a given window around the resonance mass when different jet mass measures

are used together.

If one has good models for the expected background and the sought signal, one can

gain further statistical significance by using a likelihood analysis based on the models for

signal and background.
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signal (theory SB). The probability that n events are measured if there is only background

is bne−b/n!. The probability that n events are measured if there is a signal plus the

background is (b + s)ne−(s+b)/n!. The ratio of these, known as the likelihood ratio, is

exp(L) where
L(n) = n log

(
1 +

s

b

)
− s . (2.7)

If L is substantially greater than 1, the result strongly favors the interpretation that the tt̄

signal is present. For instance L = 4 favors the presence of the signal by a ratio exp(L) ≈ 55.

We review some properties of the likelihood ratio in appendix A.

The expectation value of L(n) if the SB theory is right is

〈L(n)〉SB = (s+ b) log
(
1 +

s

b

)
− s . (2.8)

Thus, we can expect to reliably see the tt̄ signal if 〈L(n)〉SB is substantially greater than 1.

As a minimum requirement, we may ask for 〈L(n)〉SB > 4. The results are shown in table

1. We see that trimming does better than pruning, but neither method provides enough

statistical power to achieve 〈L(n)〉SB > 4 with an integrated luminosity of just 30 pb−1.

(Of course, the statistical insufficiency goes away with more luminosity, but in this simple

example we imagine that 30 pb−1 is all the luminosity that we have.)

Trimming Pruning

Signal cross section [fb] 590 503

Background cross section [fb] 1571 2480

s/b 0.38 0.20

s/
√
b (

∫
dL = 30 pb−1) 2.6 1.7

〈L(n)〉SB (
∫
dL = 30 pb−1) 3.0 1.4

Table 1: Statistical significance of trimming and pruning results for an integrated luminosity of
30 pb−1. Here we simply count the expected number of signal events, s, and background events, b,
in a top quark mass window 160 GeV < MJet < 200 GeV. The logarithm of the likelihood ratio
based on these expected counts is 〈L(n)〉SB, eq. (2.8).

It is rather artificial to base the SB vs. B assessment on simply the counts in a single

jet mass window. The experiment will give counts nJ in each bin J shown in figures 1

and 2. We can base our assessment on the log likelihood ratio using all of the information.

Then the likelihood ratio is the product of the likelihood ratios for all of the bins used. Its

logarithm is

L({n}) =
∑

J

[
nJ log

(
1 +

sJ
bJ

)
− sJ

]
. (2.9)

Here nJ is the number of events in bin J and sJ and bJ are the corresponding signal and

background cross sections times the integrated luminosity.

The expectation value of L({n}) if the SB theory is right is

〈L({n})〉SB =
∑

J

[
(sJ + bJ) log

(
1 +

sJ
bJ

)
− sJ

]
. (2.10)
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Wp = (110 GeV, 125 GeV). The Higgs mass assumed when generating events is MHiggs = 115 GeV.
In the first column, we ask only that the filtered jet mass be in the window Wf . In the remaining
columns, we combine methods by asking that two masses be in the corresponding windows. For
each type of measurement, we show three measures of statistical significance, s/b, s/

√
b, and the

logarithm of the likelihood ratio based on s and b, eq. (2.8).
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of L({n},m) if the true Higgs boson mass is MHiggs and the signal is present along with

the background is given by

〈L({n},m)〉SB =
∑

J

[
(sJ(MHiggs) + bJ) log

(
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− sJ(m)
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We have computed 〈L({n},m)〉SB for nine assumed values of m and for the three combi-

nations of using two out of three of the filtered jet mass, the trimmed jet mass, and the

pruned jet mass. The results are displayed in figure 7.

We learn three things from figure 7. First, if we look at the case m = MHiggs, we

have a stronger signal using the distribution in two out of the three variables M (f)
Jet , M

(t)
Jet,

and M (p)
Jet together than we have for just one variable. Second, with the distribution in two

variables, we have better resolution in which trial massm best fits the data compared to the

resolution obtained with just one variable. Finally, using M (t)
Jet together with M (p)

Jet , we have

〈L({n},m)〉SB ≈ 2.7. This is better than the corresponding result, 〈L({n},m)〉SB ≈ 2.1,

from table 3, in which we used simply the number of counts in a fixed window in M (t)
Jet and

M (p)
Jet .

We have tried one more small adjustment. In the pruning method, Refs. [3, 4] recom-

mend that the parameter zcut, Eq. (2.5), be set to 0.1. That is the value we have used.

However, we find that the value 0.05 does a better job in this application, as shown in

table 4. Changing to zcut = 0.05 allows the pruned jet to absorb more soft radiation. This

enhances the asymmetry in the jet mass between pruning and trimming. Although the cor-

relation of the jet mass for the signal process is weakened it mainly affects the background

of light parton jets, see figure 8.
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Table 4: Statistical significance of ZH results for an integrated luminosity of 30 fb−1 as in table
3 except that here we take zcut in the pruning method to be 0.05 instead of 0.1. This improves the
statistical significance compared to the (M (p)

Jet ,M
(t)
Jet) results in the rightmost column of table 3.

Figure 8: Joint distributions between pairs of the trimmed jet mass M (t)
Jet and the pruned jet

mass M (p)
Jet for the ZH signal (left column) and the background (right column). The events were

generated with MHiggs = 115 GeV and zcut = 0.05.

For a generic resonance tagger, one can look for excess events in a combined window

of two of the pruned, trimmed, and filtered jet masses. Even if a new physics model for

the signal is not anticipated, the approach outlined in this paper can be used to improve

on the statistical significance of a so-called “side bin analysis.” Both s/b and s/
√
b can be

improved for a given window around the resonance mass when different jet mass measures

are used together.

If one has good models for the expected background and the sought signal, one can

gain further statistical significance by using a likelihood analysis based on the models for

signal and background.
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signal (theory SB). The probability that n events are measured if there is only background

is bne−b/n!. The probability that n events are measured if there is a signal plus the

background is (b + s)ne−(s+b)/n!. The ratio of these, known as the likelihood ratio, is

exp(L) where
L(n) = n log

(
1 +

s

b

)
− s . (2.7)

If L is substantially greater than 1, the result strongly favors the interpretation that the tt̄

signal is present. For instance L = 4 favors the presence of the signal by a ratio exp(L) ≈ 55.

We review some properties of the likelihood ratio in appendix A.

The expectation value of L(n) if the SB theory is right is

〈L(n)〉SB = (s+ b) log
(
1 +

s

b

)
− s . (2.8)

Thus, we can expect to reliably see the tt̄ signal if 〈L(n)〉SB is substantially greater than 1.

As a minimum requirement, we may ask for 〈L(n)〉SB > 4. The results are shown in table

1. We see that trimming does better than pruning, but neither method provides enough

statistical power to achieve 〈L(n)〉SB > 4 with an integrated luminosity of just 30 pb−1.

(Of course, the statistical insufficiency goes away with more luminosity, but in this simple

example we imagine that 30 pb−1 is all the luminosity that we have.)

Trimming Pruning

Signal cross section [fb] 590 503

Background cross section [fb] 1571 2480

s/b 0.38 0.20

s/
√
b (

∫
dL = 30 pb−1) 2.6 1.7

〈L(n)〉SB (
∫
dL = 30 pb−1) 3.0 1.4

Table 1: Statistical significance of trimming and pruning results for an integrated luminosity of
30 pb−1. Here we simply count the expected number of signal events, s, and background events, b,
in a top quark mass window 160 GeV < MJet < 200 GeV. The logarithm of the likelihood ratio
based on these expected counts is 〈L(n)〉SB, eq. (2.8).

It is rather artificial to base the SB vs. B assessment on simply the counts in a single

jet mass window. The experiment will give counts nJ in each bin J shown in figures 1

and 2. We can base our assessment on the log likelihood ratio using all of the information.

Then the likelihood ratio is the product of the likelihood ratios for all of the bins used. Its

logarithm is

L({n}) =
∑

J

[
nJ log

(
1 +

sJ
bJ

)
− sJ

]
. (2.9)

Here nJ is the number of events in bin J and sJ and bJ are the corresponding signal and

background cross sections times the integrated luminosity.

The expectation value of L({n}) if the SB theory is right is

〈L({n})〉SB =
∑

J

[
(sJ + bJ) log

(
1 +

sJ
bJ

)
− sJ

]
. (2.10)
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Wp = (110 GeV, 125 GeV). The Higgs mass assumed when generating events is MHiggs = 115 GeV.
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√
b can be
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exp(L) where
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If L is substantially greater than 1, the result strongly favors the interpretation that the tt̄

signal is present. For instance L = 4 favors the presence of the signal by a ratio exp(L) ≈ 55.

We review some properties of the likelihood ratio in appendix A.

The expectation value of L(n) if the SB theory is right is

〈L(n)〉SB = (s+ b) log
(
1 +

s
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)
− s . (2.8)

Thus, we can expect to reliably see the tt̄ signal if 〈L(n)〉SB is substantially greater than 1.

As a minimum requirement, we may ask for 〈L(n)〉SB > 4. The results are shown in table

1. We see that trimming does better than pruning, but neither method provides enough

statistical power to achieve 〈L(n)〉SB > 4 with an integrated luminosity of just 30 pb−1.

(Of course, the statistical insufficiency goes away with more luminosity, but in this simple

example we imagine that 30 pb−1 is all the luminosity that we have.)
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Table 1: Statistical significance of trimming and pruning results for an integrated luminosity of
30 pb−1. Here we simply count the expected number of signal events, s, and background events, b,
in a top quark mass window 160 GeV < MJet < 200 GeV. The logarithm of the likelihood ratio
based on these expected counts is 〈L(n)〉SB, eq. (2.8).

It is rather artificial to base the SB vs. B assessment on simply the counts in a single

jet mass window. The experiment will give counts nJ in each bin J shown in figures 1

and 2. We can base our assessment on the log likelihood ratio using all of the information.

Then the likelihood ratio is the product of the likelihood ratios for all of the bins used. Its

logarithm is

L({n}) =
∑
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[
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]
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Here nJ is the number of events in bin J and sJ and bJ are the corresponding signal and

background cross sections times the integrated luminosity.

The expectation value of L({n}) if the SB theory is right is
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∑
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[
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Maybe we can gain insight to improve on subjet procedures 

Let‘s check out one more application
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Heavy Higgs search in the ‘forgotten channel‘
Example for naturally boosted scenario

given the amount of Monte Carlo data available (out to q0 between around 9 to 16, i.e., to the level of a
3 to 4! discovery). At present it is not practical to verify directly that the chi-square formula remains
valid to the 5! level (i.e., out to q0 = 25). Thus the results on discovery significance presented here rest
on the assumption that the asymptotic distribution is a valid approximation to at least the 5! level.
The validation exercises carried here out indicate that the methods used should be valid, or in some

cases conservative, for an integrated luminosity of at least 2 fb−1. At earlier stages of the data taking,
one will be interested primarily in exclusion limits at the 95% confidence level. For this the distributions
of the test statistic qµ at different values of µ can be determined with a manageably small number of
events. It is therefore anticipated that we will rely on Monte Carlo methods for the initial phase of the
experiment.

4 Results of the combination

4.1 Combined discovery sensitivity

The full discovery likelihood ratio for all channels combined, "s+b(0), is calculated using Eq. 33. This
uses the median likelihood ratio of each channel, "s+b,i(0), found either by generating toy experiments
under the s+b hypothesis and calculating the median of the "s+b,i distribution or by approximating the
median likelihood ratio using the Asimov data sets with µA,i = 1. Both approaches were validated to
agree with each other. The discovery significance is calculated using Eq. 36, i.e., Z ≈

√

−2ln" (0),
where " (0) is the combined median likelihood ratio.
The resulting significances per channel and the combined one are shown in Fig. 16 for an integrated

luminosity of 10 fb−1.
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Figure 16: The median discovery significance for the various channels and the combination with an integrated
luminosity of 10 fb−1 for (a) the lower mass range (b) for masses up to 600 GeV.

Themedian discovery significance as a function of the integrated luminosity and Higgs mass is shown
colour coded in Fig. 17. The full line indicates the 5! contour. Note that the approximations used do
not hold for very low luminosities (where the expected number of events is low) and therefore the results
below about 2fb−1 should be taken as indications only. In most cases, however, the approximations tend
to underestimate the true median significance.

4.2 Combined exclusion sensitivity

The full likelihood ratio of all channels used for exclusion for a signal strength µ , "b(µ), is calculated
using Eq. 34 with the median likelihood ratios of each channel, "b,i(µ), calculated, either by generating

27

HIGGS – STATISTICAL COMBINATION OF SEVERAL IMPORTANT STANDARD MODEL HIGGS . . .

310

1506

[ATLAS TDR, 2008]

gold plated mode

10 x BR(Z->ll)
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Reconstruction in the 4 lepton gold plated mode:

• at least 4 isolated central muons
• 2 reconstructed Z bosons, requiring

we obtain by scaling the LO value from PYTHIA 6.4 [37] with a factor, K = σNLO/σLO

from HIGLU [38]. The transverse momentum distribution of the Higgs boson simulated
with PYTHIA 6.4 approximates the full calculation with POWHEG very well [40]. Weak
boson fusion we include in the inclusive signal. The NLO corrections to this production
process are known to be small [39], so within errors we assume K=1.0. The dominating
background for the four-muon signature is continuum ZZ production. We simulate this
background using MadEvent [41] and PYTHIA 6.4 [37]. Its NLO cross section comes from
MCFM [42], giving us 7.39 pb at 7 TeV and 19.02 pb at 14 TeV.

To select a muon we demand it to be central and sufficiently hard

|yµ| < 2.5, pT,µ > 7 GeV for |yµ| < 1.1

pT,µ > 13 GeV for |yµ| > 1.1. (2.1)

The muons have to be isolated, that is the hadronic transverse energy in a cone of R = 0.3
around the lepton has to be EThadronic < 0.1 ET,µ. We accept events with at least four
isolated muons passing the staggered pT cuts

pT,µ > 15, 15, 12, 8 GeV . (2.2)

The Z bosons we reconstruct combining two oppositely charged isolated muons, requiring

mZ − 10 GeV < mµµ < mZ + 10 GeV. (2.3)

For this analysis we consider five different Higgs-boson masses. Because the Higgs
width grows very fast with the Higgs mass [28] we widen the mass windows for a recon-
struction according to

(300 ± 30, 350 ± 50, 400 ± 50, 500 ± 70, 600 ± 100) GeV. (2.4)

The mass windows are completely dominated by the physical Higgs width. Detector effects
like the lepton or jet energy scale will have only little effect, which means we keep the
window for reconstructed Higgs mass for the leptonic and the semi-leptonic analyses.

7 TeV 14 TeV
mH [GeV] σS [fb] σB [fb] S/B S/

√
B10 σS [fb] σB [fb] S/B S/

√
B10

300 0.35 0.42 0.8 1.7 1.39 0.56 2.5 5.9
350 0.35 0.38 0.9 1.8 1.52 0.53 2.9 6.6
400 0.28 0.21 1.3 1.9 1.34 0.31 4.4 7.6
500 0.11 0.11 1.0 1.1 0.65 0.18 3.7 4.9
600 0.05 0.07 0.7 0.6 0.30 0.12 2.5 2.7

Table 1: Signal and background cross sections for the purely leptonic H → ZZ analysis. The final
significance we compute for 10 fb−1.
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Reconstruction in the semi-leptonic lljj mode:

we obtain by scaling the LO value from PYTHIA 6.4 [37] with a factor, K = σNLO/σLO

from HIGLU [38]. The transverse momentum distribution of the Higgs boson simulated
with PYTHIA 6.4 approximates the full calculation with POWHEG very well [40]. Weak
boson fusion we include in the inclusive signal. The NLO corrections to this production
process are known to be small [39], so within errors we assume K=1.0. The dominating
background for the four-muon signature is continuum ZZ production. We simulate this
background using MadEvent [41] and PYTHIA 6.4 [37]. Its NLO cross section comes from
MCFM [42], giving us 7.39 pb at 7 TeV and 19.02 pb at 14 TeV.

To select a muon we demand it to be central and sufficiently hard

|yµ| < 2.5, pT,µ > 7 GeV for |yµ| < 1.1

pT,µ > 13 GeV for |yµ| > 1.1. (2.1)

The muons have to be isolated, that is the hadronic transverse energy in a cone of R = 0.3
around the lepton has to be EThadronic < 0.1 ET,µ. We accept events with at least four
isolated muons passing the staggered pT cuts

pT,µ > 15, 15, 12, 8 GeV . (2.2)

The Z bosons we reconstruct combining two oppositely charged isolated muons, requiring

mZ − 10 GeV < mµµ < mZ + 10 GeV. (2.3)

For this analysis we consider five different Higgs-boson masses. Because the Higgs
width grows very fast with the Higgs mass [28] we widen the mass windows for a recon-
struction according to

(300 ± 30, 350 ± 50, 400 ± 50, 500 ± 70, 600 ± 100) GeV. (2.4)

The mass windows are completely dominated by the physical Higgs width. Detector effects
like the lepton or jet energy scale will have only little effect, which means we keep the
window for reconstructed Higgs mass for the leptonic and the semi-leptonic analyses.

7 TeV 14 TeV
mH [GeV] σS [fb] σB [fb] S/B S/

√
B10 σS [fb] σB [fb] S/B S/

√
B10

300 0.35 0.42 0.8 1.7 1.39 0.56 2.5 5.9
350 0.35 0.38 0.9 1.8 1.52 0.53 2.9 6.6
400 0.28 0.21 1.3 1.9 1.34 0.31 4.4 7.6
500 0.11 0.11 1.0 1.1 0.65 0.18 3.7 4.9
600 0.05 0.07 0.7 0.6 0.30 0.12 2.5 2.7

Table 1: Signal and background cross sections for the purely leptonic H → ZZ analysis. The final
significance we compute for 10 fb−1.
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• Require fat jet (CA, R=1.2, pT>150 GeV)
• Leptonic Z reconstruction with two isolated central muons
• Hadronic Z reconstruction with filtering + mass drop
• Apply Pruning vs Trimming, requiring

Figure 2: pT distribution of the leading Z boson for different Higgs masses mH .

Fat jet — Our fat jet requirement on this calorimeter simulation uses the C-A algorithm
implemented in FastJet [45] with R = 1.2. For this jet we require |yj| < 2 and
pTj > 150 GeV.

Leptonic Z reconstruction — As part of our selection cuts we ask for exactly two iso-
lated muons with pT > 15 GeV and |η| < 2.5. Their invariant mass has to match
mZ ± 10 GeV.

Hadronic Z reconstruction — To reconstruct the hadronic Z we follow Ref. [14]. For
the hardest jet in the event we undo the last stage of clustering. The two result-
ing subjets in the splitting j → j1j2 are labeled such that mj1 > mj2. If there
is a significant mass drop, mj1 < µmj, and the splitting is not too asymmetric,
y = ∆R2

j1,j2min(p2
T,j1

, p2
T,j2

) > ycutm2
j , the jet j is expected to be the resonance’s

neighborhood and the declustering stops, otherwise redefine j to be equal to j1. This
process continues until the mass drop condition is met. If this does not happen the
event is removed. We choose µ = 0.67 and ycut = 0.09. Varying µ = 0.33− 0.67 does
not improve S/

√
B. After the mass drop condition is met we filter the fat jet [14]: the

constituents of the two subjets which survive the mass drop condition are recombined
with the higher resolution Rfilt = min(0.3,∆Rj1,j2/2) and the three hardest filtered
subjets are required to give mrec

Z = mZ ± 10 GeV.

Higgs reconstruction — If both Z bosons in the signal are correctly reconstructed their
invariant mass peaks around the Higgs boson mass, m2

H = (pZ,lep + pZ,had)2. The
shape of the mH distribution is determined by the width of the Higgs boson and the
ability of the algorithm to remove underlying event and initial state radiation from
the hadronic Z reconstruction. In practice, such an analysis would be combined with

– 5 –

For calculation of significance take Higgs mass reconstruction with

[Hackstein, MS  1008.2202]  



42ATLAS workshop                 SLAC      Michael Spannowsky             08/23/2010                   

‘Gold plated mode‘ is great, but suffers from few events

7 TeV 14 TeV

we obtain by scaling the LO value from PYTHIA 6.4 [37] with a factor, K = σNLO/σLO

from HIGLU [38]. The transverse momentum distribution of the Higgs boson simulated
with PYTHIA 6.4 approximates the full calculation with POWHEG very well [40]. Weak
boson fusion we include in the inclusive signal. The NLO corrections to this production
process are known to be small [39], so within errors we assume K=1.0. The dominating
background for the four-muon signature is continuum ZZ production. We simulate this
background using MadEvent [41] and PYTHIA 6.4 [37]. Its NLO cross section comes from
MCFM [42], giving us 7.39 pb at 7 TeV and 19.02 pb at 14 TeV.

To select a muon we demand it to be central and sufficiently hard

|yµ| < 2.5, pT,µ > 7 GeV for |yµ| < 1.1

pT,µ > 13 GeV for |yµ| > 1.1. (2.1)

The muons have to be isolated, that is the hadronic transverse energy in a cone of R = 0.3
around the lepton has to be EThadronic < 0.1 ET,µ. We accept events with at least four
isolated muons passing the staggered pT cuts

pT,µ > 15, 15, 12, 8 GeV . (2.2)

The Z bosons we reconstruct combining two oppositely charged isolated muons, requiring

mZ − 10 GeV < mµµ < mZ + 10 GeV. (2.3)

For this analysis we consider five different Higgs-boson masses. Because the Higgs
width grows very fast with the Higgs mass [28] we widen the mass windows for a recon-
struction according to

(300 ± 30, 350 ± 50, 400 ± 50, 500 ± 70, 600 ± 100) GeV. (2.4)

The mass windows are completely dominated by the physical Higgs width. Detector effects
like the lepton or jet energy scale will have only little effect, which means we keep the
window for reconstructed Higgs mass for the leptonic and the semi-leptonic analyses.

7 TeV 14 TeV
mH [GeV] σS [fb] σB [fb] S/B S/

√
B10 σS [fb] σB [fb] S/B S/

√
B10

300 0.35 0.42 0.8 1.7 1.39 0.56 2.5 5.9
350 0.35 0.38 0.9 1.8 1.52 0.53 2.9 6.6
400 0.28 0.21 1.3 1.9 1.34 0.31 4.4 7.6
500 0.11 0.11 1.0 1.1 0.65 0.18 3.7 4.9
600 0.05 0.07 0.7 0.6 0.30 0.12 2.5 2.7

Table 1: Signal and background cross sections for the purely leptonic H → ZZ analysis. The final
significance we compute for 10 fb−1.
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[Hackstein, MS  1008.2202]  
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from HIGLU [38]. The transverse momentum distribution of the Higgs boson simulated
with PYTHIA 6.4 approximates the full calculation with POWHEG very well [40]. Weak
boson fusion we include in the inclusive signal. The NLO corrections to this production
process are known to be small [39], so within errors we assume K=1.0. The dominating
background for the four-muon signature is continuum ZZ production. We simulate this
background using MadEvent [41] and PYTHIA 6.4 [37]. Its NLO cross section comes from
MCFM [42], giving us 7.39 pb at 7 TeV and 19.02 pb at 14 TeV.
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|yµ| < 2.5, pT,µ > 7 GeV for |yµ| < 1.1

pT,µ > 13 GeV for |yµ| > 1.1. (2.1)

The muons have to be isolated, that is the hadronic transverse energy in a cone of R = 0.3
around the lepton has to be EThadronic < 0.1 ET,µ. We accept events with at least four
isolated muons passing the staggered pT cuts

pT,µ > 15, 15, 12, 8 GeV . (2.2)

The Z bosons we reconstruct combining two oppositely charged isolated muons, requiring

mZ − 10 GeV < mµµ < mZ + 10 GeV. (2.3)

For this analysis we consider five different Higgs-boson masses. Because the Higgs
width grows very fast with the Higgs mass [28] we widen the mass windows for a recon-
struction according to

(300 ± 30, 350 ± 50, 400 ± 50, 500 ± 70, 600 ± 100) GeV. (2.4)

The mass windows are completely dominated by the physical Higgs width. Detector effects
like the lepton or jet energy scale will have only little effect, which means we keep the
window for reconstructed Higgs mass for the leptonic and the semi-leptonic analyses.

7 TeV 14 TeV
mH [GeV] σS [fb] σB [fb] S/B S/

√
B10 σS [fb] σB [fb] S/B S/

√
B10

300 0.35 0.42 0.8 1.7 1.39 0.56 2.5 5.9
350 0.35 0.38 0.9 1.8 1.52 0.53 2.9 6.6
400 0.28 0.21 1.3 1.9 1.34 0.31 4.4 7.6
500 0.11 0.11 1.0 1.1 0.65 0.18 3.7 4.9
600 0.05 0.07 0.7 0.6 0.30 0.12 2.5 2.7

Table 1: Signal and background cross sections for the purely leptonic H → ZZ analysis. The final
significance we compute for 10 fb−1.
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‘Gold plated mode‘ is great, but suffers from few events

7 TeV 14 TeV

we obtain by scaling the LO value from PYTHIA 6.4 [37] with a factor, K = σNLO/σLO

from HIGLU [38]. The transverse momentum distribution of the Higgs boson simulated
with PYTHIA 6.4 approximates the full calculation with POWHEG very well [40]. Weak
boson fusion we include in the inclusive signal. The NLO corrections to this production
process are known to be small [39], so within errors we assume K=1.0. The dominating
background for the four-muon signature is continuum ZZ production. We simulate this
background using MadEvent [41] and PYTHIA 6.4 [37]. Its NLO cross section comes from
MCFM [42], giving us 7.39 pb at 7 TeV and 19.02 pb at 14 TeV.

To select a muon we demand it to be central and sufficiently hard

|yµ| < 2.5, pT,µ > 7 GeV for |yµ| < 1.1

pT,µ > 13 GeV for |yµ| > 1.1. (2.1)

The muons have to be isolated, that is the hadronic transverse energy in a cone of R = 0.3
around the lepton has to be EThadronic < 0.1 ET,µ. We accept events with at least four
isolated muons passing the staggered pT cuts

pT,µ > 15, 15, 12, 8 GeV . (2.2)

The Z bosons we reconstruct combining two oppositely charged isolated muons, requiring

mZ − 10 GeV < mµµ < mZ + 10 GeV. (2.3)

For this analysis we consider five different Higgs-boson masses. Because the Higgs
width grows very fast with the Higgs mass [28] we widen the mass windows for a recon-
struction according to

(300 ± 30, 350 ± 50, 400 ± 50, 500 ± 70, 600 ± 100) GeV. (2.4)

The mass windows are completely dominated by the physical Higgs width. Detector effects
like the lepton or jet energy scale will have only little effect, which means we keep the
window for reconstructed Higgs mass for the leptonic and the semi-leptonic analyses.

7 TeV 14 TeV
mH [GeV] σS [fb] σB [fb] S/B S/

√
B10 σS [fb] σB [fb] S/B S/

√
B10

300 0.35 0.42 0.8 1.7 1.39 0.56 2.5 5.9
350 0.35 0.38 0.9 1.8 1.52 0.53 2.9 6.6
400 0.28 0.21 1.3 1.9 1.34 0.31 4.4 7.6
500 0.11 0.11 1.0 1.1 0.65 0.18 3.7 4.9
600 0.05 0.07 0.7 0.6 0.30 0.12 2.5 2.7

Table 1: Signal and background cross sections for the purely leptonic H → ZZ analysis. The final
significance we compute for 10 fb−1.
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[Hackstein, MS  1008.2202]  
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mH [GeV] 300 400 500 600
σ [fb] σS σB σS σB σS σB σS σB

selection 3.37/0.89 907.3 8.89/0.97 907.3 4.91/0.70 907.3 2.19/0.46 907.3
after analysis 0.29/0.12 0.39 2.02/0.24 3.97 1.11/0.18 3.33 0.46/0.12 1.97
S/B 1.03 0.57 0.39 0.30
S/
√

B10 2.0 3.6 2.2 1.3
selection 17.97/3.83 6200 46.18/4.64 6200 29.48/3.87 6200 15.08/2.90 6200
after analysis 1.34/0.48 2.10 8.96/1.07 19.21 6.32/1.00 18.01 3.15/0.77 11.83
S/B 0.87 0.52 0.41 0.33
S/
√

B10 4.0 7.2 5.5 3.6

Table 1: Signal and backgrounds for the semi-leptonic fat-jet analysis for a collider
energy of 7 TeV (upper) and 14 TeV (lower). The expected significance is calculated
for 10 fb−1. We show gluon fusion (left) and WBF (right) contributions separately
for the signal cross sections. For the numbers of the expected significance we take
both contributions into account.

14

7 TeV:

14 TeV:

7 TeV 14 TeV

Semileptonic mode compensates worse S/B with more events
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More Higgs searches in the SM and beyond

• Searches for a very light Higgs

• tth

• MSSM Higgs searches in cascade decays

[Plehn, Salam, MS  PRL 104 (2010)]
tt̄bb̄

tt̄z
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-Development of Higgs and top 
tagger for busy final state

-Improvement of S/B from 1/9 to 1/2

-Insensitive to large SUSY parameter space

-Generic way of Higgs detection if decays of 
Neutralinos or Charginos to Higgs not too rare

[Kribs, Martin, Roy, MS PRD 81 (2010) and 1006.1656] 

mH [GeV] 300 400 500 600
σ [fb] σS σB σS σB σS σB σS σB

selection 3.37/0.89 907.3 8.89/0.97 907.3 4.91/0.70 907.3 2.19/0.46 907.3
after analysis 0.29/0.12 0.39 2.02/0.24 3.97 1.11/0.18 3.33 0.46/0.12 1.97
S/B 1.03 0.57 0.39 0.30
S/
√

B10 2.0 3.6 2.2 1.3
selection 17.97/3.83 6200 46.18/4.64 6200 29.48/3.87 6200 15.08/2.90 6200
after analysis 1.34/0.48 2.10 8.96/1.07 19.21 6.32/1.00 18.01 3.15/0.77 11.83
S/B 0.87 0.52 0.41 0.33
S/
√

B10 4.0 7.2 5.5 3.6

Table 1: Signal and backgrounds for the semi-leptonic fat-jet analysis for a collider
energy of 7 TeV (upper) and 14 TeV (lower). The expected significance is calculated
for 10 fb−1. We show gluon fusion (left) and WBF (right) contributions separately
for the signal cross sections. For the numbers of the expected significance we take
both contributions into account.

ρX,Y =
E[(X − E[X])(Y − E[Y ])]

σxσy
(193)

mj1 < 0.8 mj to keep j1 and j2 (194)

|mjjj − 172.3 GeV| < 25 GeV (195)

φ (196)

y (197)

R = M(fat jet)/PT(fat jet) (198)

h→ ηη → 4g (199)

14

-Possible to ‘unbury‘ with subjet techniques

[Falkowski et al.  1006.1650][Chen et al.   1006.1151]
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top tagging - a major application

[HEPTopTagger]

Jet substructure review (p. 20)

Top Tagging boosted top-quarks

Many papers on top tagging in ’08-’10: jet mass + something extra.

Questions

! What efficiency for tagging top?
! What rate of fake tags for normal jets?

Rough results for top quark with pt ∼ 1 TeV
“Extra” eff. fake

[from T&W] just jet mass 50% 10%
Brooijmans ’08 3,4 kt subjets, dcut 45% 5%
Thaler & Wang ’08 2,3 kt subjets, zcut + various 40% 5%
Kaplan et al. ’08 3,4 C/A subjets, zcut + θh 40% 1%
Ellis et al. ’09 C/A pruning 10% 0.05%
ATLAS ’09 3,4 kt subjets, dcut MC likelihood 90% 15%
Chekanov & P. ’10 Jet shapes 60% 10%
Almeida et al. ’08–’10 Template + shapes 13% 0.02%
Plehn et al. ’09–’10 C/A MD, θh/Dalitz [busy evs, pt ∼ 300] 35% 2%

Will focus on Plehn et al = HEPTopTagger (Heidelberg-Eugene-Paris)

HEPTopTagger is being tested in ATLAS framework with good results
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HEPTopTagger
(Plehn, Salam, MS, Takeuchi)

I. Find fat jets (C/A, R=1.5, pT>200 GeV) 

II. Find hard substructure using mass drop criterion

III. Filter and choose pairing

Undo clustering,

pi + pj (177)

ZZγ/WWγ (178)

S/B ! 1/9 (179)

S/
√

B ! 2.2 (180)

30 fb−1 (181)

σNLO = 702 fb (182)

pT,j ≥ 200 GeV (183)

pT,l ≥ 15 GeV (184)

tt̄bb̄ (185)

tt̄jbjb̄ (186)

Wjj (187)

tt̄z (188)

$ 0.1 fb (189)

m2
T (190)

m2
T + p2

T (191)

60 fb−1 (192)

ρX,Y =
E[(X − E[X])(Y − E[Y ])]

σxσy
(193)

mj1 < 0.8 mj to keep j1 and j2 (194)

13

Take 3 hard objetcs, filter them, take 5 filered 
subjets, keep pairing with best top mass

top candidate

pi + pj (177)

ZZγ/WWγ (178)

S/B ! 1/9 (179)

S/
√

B ! 2.2 (180)

30 fb−1 (181)

σNLO = 702 fb (182)

pT,j ≥ 200 GeV (183)

pT,l ≥ 15 GeV (184)

tt̄bb̄ (185)

tt̄jbjb̄ (186)

Wjj (187)

tt̄z (188)

$ 0.1 fb (189)

m2
T (190)

m2
T + p2

T (191)

60 fb−1 (192)

ρX,Y =
E[(X − E[X])(Y − E[Y ])]

σxσy
(193)

mj1 < 0.8 mj to keep j1 and j2 (194)

|mjjj − 172.3 GeV| < 25 GeV (195)

13
no b-tag, no W mass cut yet



  

tt vs. QCD, W+jets
.   4 checkmass ratios

  Cluster top candidate constituents into 3 subjets 
   
   After imposing top mass cut, 2 independent mass ratios.

                          tt                             W+jets                         QCD
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,∆Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:

0.2 < arctan
m13

m12
< 1.3 and Rmin <

m23

m123
< Rmax

R2
min

(
1 +

(
m13

m12

)2
)

< 1−
(

m23

m123

)2

< R2
max

(
1 +

(
m13

m12

)2
)

and
m23

m123
> 0.35

R2
min

(
1 +

(
m12

m13

)2
)

< 1−
(

m23

m123

)2

< R2
max

(
1 +

(
m12

m13

)2
)

and
m23

m123
> 0.35 (A1)

with Rmin = 85%×mW /mt and Rmax = 115%×mW /mt. The numerical soft cutoff at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest ∆mt +AW ∆mW +Ah∆ cosh. In that case, the tagging efficiency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply efficient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ∼ 0 give

m2
t ≡ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,∆Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:

0.2 < arctan
m13

m12
< 1.3 and Rmin <

m23

m123
< Rmax

R2
min

(
1 +

(
m13

m12

)2
)

< 1−
(
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)2
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m12

)2
)

and
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m123
> 0.35

R2
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(
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(
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)2
)

< 1−
(
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m123

)2

< R2
max

(
1 +

(
m12

m13

)2
)

and
m23

m123
> 0.35 (A1)

with Rmin = 85%×mW /mt and Rmax = 115%×mW /mt. The numerical soft cutoff at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest ∆mt +AW ∆mW +Ah∆ cosh. In that case, the tagging efficiency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply efficient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ∼ 0 give

m2
t ≡ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)



  

tt vs. QCD, W+jets
.   4 checkmass ratios

  Cluster top candidate constituents into 3 subjets 
   
   After imposing top mass cut, 2 independent mass ratios.

                          tt                             W+jets                         QCD

47ATLAS workshop                 SLAC      Michael Spannowsky             08/23/2010                   

12
/m

13
arctan m

0 0.5 1 1.5

1
2

3
/m

2
3

m

0

0.2

0.4

0.6

0.8

1

W
=m

23
m

W
=m

12
m

W
=m

13
m

12
/m

13
arctan m

0 0.5 1 1.5

1
2

3
/m

2
3

m

0

0.2

0.4

0.6

0.8

1

W
=m

23
m

W
=m

12
m

W
=m

13
m

12
/m

13
arctan m

0 0.5 1 1.5

1
2

3
/m

2
3

m

0

0.2

0.4

0.6

0.8

1

W
=m

23
m

W
=m

12
m

W
=m

13
m

IV. check mass ratios
Cluster top candidate into 3 subjets

8

12
/m

13
arctan m

0 0.5 1 1.5

1
2
3

/m
2
3

m

0

0.2

0.4

0.6

0.8

1

W
=m

23
m

W
=m

12
m

W
=m

13
m

12
/m

13
arctan m

0 0.5 1 1.5

1
2
3

/m
2
3

m

0

0.2

0.4

0.6

0.8

1

W
=m

23
m

W
=m

12
m

W
=m

13
m

12
/m

13
arctan m

0 0.5 1 1.5

1
2
3

/m
2
3

m

0

0.2

0.4

0.6

0.8

1

W
=m

23
m

W
=m

12
m

W
=m

13
m

Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,∆Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:

0.2 < arctan
m13

m12
< 1.3 and Rmin <

m23

m123
< Rmax

R2
min

(
1 +

(
m13

m12

)2
)

< 1−
(

m23

m123

)2

< R2
max

(
1 +

(
m13

m12

)2
)

and
m23

m123
> 0.35

R2
min

(
1 +

(
m12

m13

)2
)

< 1−
(

m23

m123

)2

< R2
max

(
1 +

(
m12

m13

)2
)

and
m23

m123
> 0.35 (A1)

with Rmin = 85%×mW /mt and Rmax = 115%×mW /mt. The numerical soft cutoff at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest ∆mt +AW ∆mW +Ah∆ cosh. In that case, the tagging efficiency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply efficient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ∼ 0 give

m2
t ≡ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,∆Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:
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with Rmin = 85%×mW /mt and Rmax = 115%×mW /mt. The numerical soft cutoff at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest ∆mt +AW ∆mW +Ah∆ cosh. In that case, the tagging efficiency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply efficient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ∼ 0 give

m2
t ≡ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)



  

tt vs. QCD, W+jets
.   4 checkmass ratios

  Cluster top candidate constituents into 3 subjets 
   
   After imposing top mass cut, 2 independent mass ratios.

                          tt                             W+jets                         QCD
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,∆Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:
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with Rmin = 85%×mW /mt and Rmax = 115%×mW /mt. The numerical soft cutoff at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest ∆mt +AW ∆mW +Ah∆ cosh. In that case, the tagging efficiency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply efficient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ∼ 0 give

m2
t ≡ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)
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Figure 3: Distribution of all events in the arctanm13/m12 vs m23/m123 plane. We show tt̄ (left). W+jets (center) and
pure QCD jets (right) samples. More densely populated regions of the phase space appear in red.

2. for each fat jet, find all hard subjets using a mass drop criterion: when undoing the last clustering of the
jet j, into two subjets j1, j2 with mj1 > mj2 , we require mj1 < 0.8 mj to keep j1 and j2. Otherwise, we
keep only j1. Each subjet ji we either further decompose (if mji > 30 GeV) or add to the list of relevant
substructures.

3. iterate through all pairings of three hard subjets: first, filter them with resolution Rfilter =
min(0.3,∆Rjk/2). Next, use the five hardest filtered constituents and calculate their jet mass (for less
than five filtered constituents use all of them). Finally, select the set of three-subjet pairings with a jet
mass closest to mt.

4. construct exactly three subjets j1, j2, j3 from the five filtered constituents, ordered by pT . If the masses
(m12, m13, m23) satisfy one of the following three criteria, accept them as a top candidate:
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with Rmin = 85%×mW /mt and Rmax = 115%×mW /mt. The numerical soft cutoff at 0.35 is independent
of the masses involved and only removes QCD events. The distributions for top and QCD events we show
in Fig. 3.

5. finally, require the combined pT of the three subjets to exceed 200 GeV.

In step 3 of the algorithm there exist many possible criteria to choose three jets from hard subjets inside a fat
jet. For example, we can include angular information (the W helicity angle) in the selection criterion and select
the smallest ∆mt +AW ∆mW +Ah∆ cosh. In that case, the tagging efficiency increases, but simultaneously the
fake rate also increases, so to reach the best signal significance we simply select the combination with the best
mt. This allows us to apply efficient orthogonal criteria based on the reconstructed mW and on the radiation
pattern later.

In step 4, the choice of mass variables shown in Figure 3 is of course not unique. In general, we know that
in addition to the two mass constraints (m123 = mrec

t as well as mjk = mrec
W for one (j, k)) we can exploit one

more mass or angular relation of the three main decay products. Our three subjets jk ignoring smearing and
assuming p2

i ∼ 0 give

m2
t ≡ m2

123 = (p1 + p2 + p3)2 = (p1 + p2)2 + (p1 + p3)2 + (p2 + p3)2 = m2
12 + m2

13 + m2
23 , (A2)
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HEPTopTagger in stop search
(Plehn, MS, Takeuchi, Zerwas)

3

σ [pb] Nsimulated εPW εPSTZ σ · εPW [fb] σ · εPSTZ [fb] Ref. [8]
t̃1t̃

∗
1 3.2 120000 (1.5 ± 0.1) · 10−3 (1.2 ± 0.03) · 10−2 4.8 38 56

tt̄ 550 500000 (8.6 ± 1.3) · 10−5 (4.3 ± 0.3) · 10−4 47.3 237 20
W + 4j 56.5 397698 (3.5 ± 0.9) · 10−5 (3.8 ± 0.3) · 10−4 2.0 21.5 ∼ 2.7
W + bbjj 0.63 761937 (3.1 ± 0.2) · 10−4 (2.7 ± 0.06) · 10−3 0.2 1.7 ∼ 1.5
SM total 49.5 260.2 ∼ 24.2
S/B 0.096 0.15 2.3
S/
√

B10 fb−1 2.2 7.5 36

Table I: Signal and backgrounds for the semi-leptonic stop analysis. The three sets of results correspond to the analysis
suggested in Ref. [8] including ISR/FSR, hadronization and fast detector simulation (PW), a slightly modified version
of the same analysis including ISR/FSR, hadronization and fast detector simulation (PSTZ), and the numbers from
Ref. [8] adjusted for all electron and muon final states, without ISR/FSR or hadronization or a complete fast detector
simulation. All rates are given at leading order, to allow for a comparison with the original numbers in the last column.

The background results in Table I should still be taken with a grain of salt. While our signal efficiencies are
in good agreement between Pythia and Herwig (Fortran and C++), the background numbers are sensitive to
the underlying event. We can check this effect by turning on/off the multi-parton interactions in Herwig++,
which leads to a decrease of the background rejection by an order of magnitude. However, this does not affect
the conclusion of this section, namely that semi-leptonic stop searches are very unlikely to be visible at the
LHC. This is a generic statement in the sense that looking at the systematic uncertainties we need to overcome
a relative factor of O(200) between the stop signal and the top background rates and to our knowledge there
is no kinematic cut which for generic mass spectra significantly improves this ratio after including detector
smearing and fakes [20].

III. HADRONIC FAT-JET ANALYSIS

Given that the semi-leptonic analysis shown in the last section is unlikely to work at all, an alternative strategy
would be to search for stop pairs in purely hadronic top decays. Those would allow us to fully reconstruct the
final state and analyze the angular correlation in detail:

pp→ t̃1t̃
∗
1 → (tχ̃0

1) (t̄χ̃0
1)→ (bjjχ̃0

1) (b̄jjχ̃0
1) . (5)

Our hadronic stop analysis is based on two tagged hadronic top quarks, using the algorithm described in the
Appendix. Tagging W bosons in their decays to geometrically large jets [21] has been around in the LHC
literature for quite a while, including its applications in searches for supersymmetry [22]. Higgs tags can be
implemented in a similar manner, and as it turns out they show the best performance [9, 11, 22, 23] when based
on the purely geometric C/A jet algorithm [24, 25]. Inspired by searches for very heavy resonances decaying
to top pairs [27] several top taggers have been developed, again in the same spirit, but based on different jet
algorithms as well as on jet shapes [10, 11, 28, 29]. One disadvantage of most of these top taggers is that they
are not designed to work for the kind of transverse momenta we can expect in Standard Model processes. This
means that unlike the W and Higgs taggers [9, 30], top taggers might be very hard to establish experimentally.
Following the tt̄H analysis [11] we slightly refine our top tagger for moderate top boosts and apply it to this
new challenge: extract a new-physics signal from purely hadronic final states and reconstruct its kinematics.

For triggering we expect our signal events to pass the jets plus missing energy trigger at the LHC. To extract it
from the backgrounds we can employ the recently developed fat-jet tools which aim at tagging a boosted top jet
without being killed for example by combinatorics. We start by constructing jets using the Cambridge/Aachen
algorithm [24], implemented in Fastjet [25], with R = 1.5 and requiring at least two jets with

pT,j > 200/200 GeV /pT > 150 GeV . (6)

Those two cuts are chosen to obtain the largest signal-to-background ratio S/B. To reduce the probability of
fake missing energy due to detector effects we require the two-dimensional missing energy vector to be well
separated from the jets, to avoid cases where missing energy is generated by just mis-measuring one jet. This
should leave us with a suppression factor of 1% for fake missing energy above /pT > 150 GeV in QCD jet events

cuts:
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Figure 1: Normalized mT2 distributions for the stop signal (mt̃ = 340 GeV) and the tt̄ background, after reconstructing
two (real of fake) hadronic top quarks. The hypothetical LSP mass we set to mχ̃0

1
= 0 GeV (left) or to the correct value

of mχ̃0
1

= 98 GeV (right).

without any physical missing energy [19], which we apply in the following. Next, we veto isolated leptons with
pT,! > 15 GeV, |η!| < 2.5, requiring Ehad

T < 0.1Elep
T within R < 0.3 around the lepton.

At this level we apply the top tagger described later and in the Appendix and require two tops to be identified
and reconstructed. Finally, after requiring one b tag inside the first tagged top we construct mT2 [26]. Assuming
we do not know the LSP mass, i.e. setting it to zero in the mT2 construction, we require

mT2 > 250 GeV . (7)

While in Table II we will see that this cut has hardly any impact on the signal significance S/
√

B, at least for
small stop masses, we apply it to increase the signal-to-background ratio S/B and hence become less sensitive
to systematic and theory errors.

Constructing the mT2 distributions has two motivations, of which the background rejection cut might even
be the lesser. From the two panels of Figure 1 we see that mT2 with an assumed massless LSP is better suited
to distinguish the stop signal from the top background. As expected, Figure 1 also shows that for larger stop
masses this cut becomes increasingly effective. More importantly, once we know the correct value of mχ̃0

1
we

can determine the stop mass from the endpoint of the mT2 distribution. Determining the uncertainties of such
a mass measurement, however, is beyond the scope of our phenomenological analysis. Obviously, due to the
wrong decay topology the endpoint of the tt̄ background has nothing to do with the physical top mass, so we
cannot use it to gauge the stop mass measurement.

For a double Standard Model top tag the mis-tagging probability when applied to a pure QCD or W+jets
sample after our process specific cuts turns out to be (not much) below 0.1%, comparable to the numbers
quoted in the Appendix, Table III. From the first column of Table II it is clear that such a reduction rate is
not sufficient. Therefore, we follow the example of the Higgs tagger [9, 11] and apply an additional b tag inside
the main constituents of the first tagged top. Limiting this b tag to the three main constituents of one specific
tagged top reduces the fake rate in particular from charm jets or gluons splitting into bb̄ pairs. Assuming a
60% tagging efficiency and a light-flavor rejection around 1/50 this will give the first top tag a mistag rate
well below 0.1%. As it will turn out, this is sufficient to render the QCD and W+jets backgrounds negligible
compared to the tt̄ background. Charm jets in the QCD jets sample we do not expect to be a problem. On the
one hand, they have a 10% mis-tagging probability for our b tag, but on the other hand the will appear much
less frequently, based for example on the reduced probability of gluon jets splitting into quarks — a factor 1/4
from counting quark flavors in g → qq̄ alone. Last but not least, given the moderate boost of the top quarks
we check that including a (0.1, 0.1) granularity of the detector in a lego plot has no impact on our analysis.

The large transverse momentum of the two candidate fat jets in Eq.(6) allows us not to worry about triggering
on the one hand and to generate events with a sizeable efficiency — for the actual analysis this cut has little
effect, because inside the top tagger we apply a lower cut on the transverse momentum of the reconstructed
top prec

T,t > 200 GeV. We explicitly check this by lowering the acceptance cuts to pT,j > 100 GeV and find no
effect on the final numbers of the analysis.

6

t̃1t̃
∗
1 tt̄ QCD W+jets Z+jets S/B S/

√
B10 fb−1

mt̃[GeV] 340 390 440 490 540 640 340
pT,j > 200 GeV, ! veto 728 447 292 187 124 46 87850 2.4 · 107 1.6 · 105 n/a 3.0 · 10−5

/pT > 150 GeV 283 234 184 133 93 35 2245 2.4 · 105 1710 2240 1.2 · 10−3

first top tag 100 91 75 57 42 15 743 7590 90 114 1.2 · 10−2

second top tag 15 12.4 11 8.4 6.3 2.3 32 129 5.7 1.4 8.3 · 10−2

b tag 8.7 7.4 6.3 5.0 3.8 1.4 19 2.6 <∼ 0.2 <∼ 0.05 0.40 5.9
mT2 > 250 GeV 4.3 5.0 4.9 4.2 3.2 1.2 4.2 <∼ 0.6 <∼ 0.1 <∼ 0.03 0.88 6.1

Table II: Signal (for different stop masses) and backgrounds for the hadronic fat-jet analysis. All numbers given in fb,
the significance is computed for 10 fb−1. The t̃1t̃

∗
1 and tt̄ rates are normalized to their higher-order values [12, 13].

Z+jets we simulate with the neutrino decay specified.

Moreover, it is clear that from the endpoints of the mT2 distributions we should be able to measure the stop
mass (or better the stop–neutralino mass difference) in this process. While making this quantitative statement
does not require any further work, actually estimating the experimental error on stop mass measurements using
fat jets goes far beyond what we can do in this paper. We therefore refrain from quoting any number for the
stop mass measurements and leave it at this statement and the encouragement for a detailed experimental
analysis including full detector simulation. For supersymmetric parameter analyses such a measurement would
of course be hugely beneficial [31, 32].

IV. OUTLOOK

We have shown that while semi-leptonically decaying stops are unlikely to be observed at the LHC, a fat-jet
analysis should be able to discover purely hadronically decaying stops with typical integrated luminosities of
10 fb−1 at 14 TeV. This is true for stop masses above 340 GeV (for mLSP = 98 GeV) and extends to stop masses
well above this range. The stop mass reach based on hadronic decays can be extended more by scaling the
different cuts with the stop-neutralino mass difference. Moreover, our limiting factor is somewhat inefficient
cuts to improve S/B, so we expect this result to improve significantly once modern statistical methods are
applied.

The dominant background after cuts and reconstruction is exclusively tt̄ production, which we can reduce
to the S/B ∼ 1 level. QCD jet production is suppressed to a small fraction of the tt̄ background, and V +jets
backgrounds are negligible. This promising result relies on two tagged and reconstructed top quarks, which in
turn allow us to use mT2 constructed from the top momenta and the missing energy vector. Combinatorics are
automatically resolved by the top tagging algorithm.

The fact that we can reconstruct the top momenta should allow the LHC to analyze in detail the nature
of a top partner decaying to a top quark and a dark matter agent. Moreover, because of the large signal-to-
background ratio S/B = O(1) we will be able to use the endpoints of the mT2 distribution to measure the stop
mass once we know the LSP mass. Determining the experimental uncertainties for this mass measurement we
have to leave to an experimental study including a full detector simulation.

As shown in detail in the Appendix our HEPTopTagger algorithm is not only well suited to detect stop pairs
at the LHC. It can be tested in Standard Model top pair production and it can be applied to a large variety
of problems where standard methods fail, for example due to jet combinatorics. In one such application, high
multiplicities of final states from longer decay chains will be automatically resolved. In the current form the
top tagger relies on a Cambridge/Aachen algorithm with a mass drop criterion and a set of invariant mass
constraints. Once we require a fat jet with pT > 200 GeV our top tagging efficiency can reach the 40% to 50%
range for reasonably boosted tops with mis-tagging probabilities around a few per-cent.
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Conclusion

Jet substructure yields new possibility to improve on NP 
searches 

Studies are promising,
tools and taggers should be tested with 

early data

On MC level improved reconstruction of 
resonances by removal of UE and Pile-up 

contributions
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