Magnificent CEVNS, November 16-20 2020, Cyberspace

COHERENT at SNS and Csl[Na] effort update Alexey Konovalov (ITEP, MEPhI)
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COHERENT uses the SNS facility
neutrino source (ORNL)

The main goal is to look for new
physics using coherent elastic
v—nucleus scattering

CEvNS search and study experiments around the world



SNS facility at ORNL 2
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Physics with COHERENT detectors

Hg TARGET
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Multiple detectors
complement each other in
a chase for rich physics

NIN Cubes

20 m of steel, concrete and
gravel with no voids in the
direction of the target

COHERENT detectors are hosted by the target building basement

8 MWE vertical overburden

Large background suppression comes from the
construction materials and beam timing
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D The sum is greater than the individual measurement

| All measurements benefit from neutrino flux normalization

The status and future of COHERENT detectors will be covered in the talks by D. Pershey and J. Daughhetee



Csl[Na] experiment 4
Crystal manufactured by Amcrys-H, Ukraine; set up created in the University of Chicago
energy, keV
l | | 3450i‘2‘0‘H‘3‘0..‘."]0‘."5|0‘.‘.Blo‘...7|°‘..‘8‘°‘
J | g 400 'H %gigfgsigpi}om 57.6 keV (nv) 57.6 keV + NR
Length 34 cm _— i o o
SN = S 11 S
. - 1t HT o | L 1 ¢++ L +|TT
Diameter |11 cm Wit Hry T 1T e T
250_—\ + + kS
—  %Cf neutron +
Weight 14 6 kg 200;— calibration in situ + i 59.5 keV from 2Am
’ 150 f— “!Am calibration in ++
— the UC lab (x0.2) . "
100 = / K-shell escape from 59.5 keV -
= (28.6 and 30.9 keV for Cs and I) - *
50 == ‘+‘+” . “+ *.
u 1 Read out by single R877-100 PMT T B ™ v a a 9(')0le0106| oo
- integral,
Light yield of the crystal is ~¥13.3 PE/keV and it’s uniform within 3% across the crystal length

Layer HDPE Low backg. lead Lead Muon veto Water
Shieldinq desiqn Thickness 3 2 4 2 4
Colour . [ ]
More information in J. Collar et al., NIM A773, 56 (2015) B.J. Scholz PhD thesis (2017)




First CEVNS observation and consequent data taking 5

6.70 significance result was reported E | i
in 2017, 43 years after prediction O,ﬁmmﬂmq _¢+_ +f+_+
I L Y S I S
5 15 25 35 45 5 15 25 35 45
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B.J. Scholz (U.Chicago) thesis (2017), Sl | shomptn
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Data taking continued up to June 10 2019, then detector was decommissioned
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Csl[Na] data analysis approach

We acquire 70 us waveform traces based on the external “POT” signal with no hardware threshold
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We look at two regions (ROIs) — coincidence (C) and anti-coincidence (AC), residual spectra of signals’

integral and arrival time correspond to beam-related interactions. Each ROl is preceded by pretrace (PT).

2]
w

Signal onset - first pulse (PE) in the ROI, integral is calculated within [onset, onset+3uS]




Csl[Na] data analysis approach and new look in the systematics 7

Cuts summary:

1. Quality (muon veto, ADC range issues)
2. Afterglow (N,.< 3) — pulses in PT

3. “Cherenkov” (N, = 8) — pulses in ROI

4. Risetimes ( To50/ T10-9o)

Signal acceptance fraction

From D. Akimov et al., Science vol. 357 (2017), B.J. Scholz (U.Chicago) thesis (2017)
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Investigation of systematics and new features in the Csl[Na] data analysis

g

“ultra-prompt” events

time-dependent efficiency and
events with misidentified onset

\

nuclear recoil spectra  quenching factor
smearing



Steady-state BG model and “ultra prompt events” 8

We use integral and timing information from the AC events to construct the background PDF. In the case of
interaction-induced events integral and arrival time are independent, PDF is factorized.

Counts (/2 PE-ps ) Steady-state background PDF
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Finely sampled data show deviation from the
exponential model in the first 100ns.

12

Artificial excess in the first 100 ns would be
observed for (data-model) “as is”
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PhD thesis (2017)
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It turns out that low energy signals having few PE in PT pass the cuts
on the number of pulses in PT and are accepted as ROI events

sl “ultra-prompt” events B

For this analysis we require no pulses in the latest 200 ns of PT which
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Time-dependent efficiency: where from does exponent come

What happens if an afterglow pulse appears here?
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We utilize the time delay between the first and the second
pulse At; (<520ns) in the signal to suppress contribution
from “messed up” events by the factor of ~5

In 2017 the problem of “messed up” events was addressed
by risetime cuts, but the time-dependency and existence of
“lost” events was not taken into account.

We don’t use risetime cuts in this version of analysis

» Misidentified onset
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“messed up” — distorted
timing and integral info

At(afterglow-signal) >= 3 ps

“lost” — event doesn't
make it to the spectra

Simulation based on the AC events first pulse appearance
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Afterglow coincidence events and Cherenkov cut

10

We use a cut on the number of pulses in the signal N (“Cherenkov” cut). We used N_28 in the 2017 analysis.

AC data for Ng, cuts below Ni5,29 show deviation
from the expected independency between time and

integral

“Prompt” BG component have more low integral events
than “delayed” part (normalized by a total integral in each) *
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The reason — signals from the random coincidence of afterglow pulses within 3 us integration time. They tend to
have “earlier” arrival time relative to reqular interaction-induced events (higher local afterglow rates contribute)

In this analysis we use Ny, 29 Cherenkov cut to avoid bias connected to the integral-time conspiracy in the AC data.

Pretrace cut Np;<5 is an optimal pair for Nz, 29.

Final efficiency:
e(PE, t,ec) = eg(PE) X g¢(tyec)
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Nuclear recoil spectrum smearing
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We use Polya/gamma distributions
for tracking of the SPE charge

counts/|ADE unil"2ns)

J.R. Prescott, NIM 39.1 (1966)

PA.Amaudruz et al., NIM A 922 (2019)
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Since the SPE integral spectrum RMS/mean =0.5 we can’t ignore smearing contribution induced by SPE shape
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Csl[Na] quenching factor
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At the time of the first CEVNS observation (2017) the QF value uncertainty dominated the prediction uncertainty

Gray marks 8 8 +1 7% value
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The uncertainty was estimated by
discrepancy in results of two
measurements by COHERENT

Over the following years there were Prof. J. Collar’s and COHERENT updates on QF values issue

J. Collar et al.,

1.
2.

PRD 100 (2019):
New Chicago-3 data
Re-analysis of Chicago-1

PMT non-linearity claim and

PE / keV @ 59.5 keV

corrections to COHERENT data
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Scrutiny of H11934-200 PMT non-linearity claim

13

Scale of the 59.5 keV signals in COHERENT-2 measurement (-935V) Crude estimate from the manufacturer’s info

amplitude, ADC units
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-3 Us integral of T
- ~1000 PE
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- max amp. of about 40mV,
- 20nV*s PE amp. of about 3mV
— 000 Zo00 @000 4000 B000. 8000

Let it be 1200 PE signal from the PMT at -950V

Let the gain be 2:10° at 950V (from the manufacturer info)

2.4-10°e = 4-1010C

— |11.3mA | vs. 2% at 20mA

time, ns

Tests with the crystal — relative light yield
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energy, keV

300 ns (vs. 3us) from Hamamatsu info

No change in the rel. LY in 840V-980V bias voltage for
the lines in [30, 662] keV energy range

Change in the rel. LY with energy comes from the Csl[Na]
non-kinearity and is consistent with the literature

G. K. Salakhutdinov et al., Instr. Exp. Tech. 58 (2015)

W. Mengesha et al., IEEE TNS 45 (1998)

P.R. Beck et al., IEEE TNS 62 (2015)




H11934-200 PMT characterization with controlled light sources

14
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COHERENT Csl[Na] QF meas.
and PMT linearity tests

BV= -1000V
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H11934 average anode current, mA

1E-5

“Convolution” fit

The test of H11934-200 vs. the reference FEU-143 suggests the
charge non-linearity scale at ~ 1000 nV*s / 0.75 us -> 30 mA, which
is close to manufacturer’s info (£ 2% at 20 mA, £ 5% at 60 mA)

Linearity in the signal ROI scale is also confirmed by the
two pulse method in 935-1000V within 4%

COHERENT data are not affected by the anode

current non-linearity either

“Gaussian” fit
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Simple Gaussian model doesn’t describe observed spectra
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Thanks to Yu. Melikyan
(INR RAS) for help
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We refute the H11934-200 non-linearity claim with the PMT which was used for the measurements
and don’t agree with the corrections applied to QF measurements in PRD 100 (2019) paper



COHERENT Csl[Na] QF measurements 15

QF efforts on COHERENT side: Cross-check confirms results of initial analysis, few corrections:
1. COHERENT-1(2017) cross-check =—=> 1. Issue in the energy calibration (-3% to QF values)
ex. COHERENT (Duke) 2. Mean afterglow contribution of 0.3PE — included in unc-ty

Cross-check doesn’t confirm the initial results, full scaled re-analysis is performed

2. COHERENT-2 (2017) =———> Initial authors don’t agree, but were not available for the joint re-analysis

ex. COHERENT (Chicago) / Chicago-2 in PRD 100 (2019)

3. COHERENT-3 (2020) =——=> Single ~17.5 keV NR energy measurement, QF = 9.86+0.40%

No NR energy tagging, continuous NR

4. COHERENT-4 (2020) [“The endpoint” measurement] ——> spectrum for hypothesis test



Global QF data fit 16

14 For the global QF fit we utilize data from:
12 1
S Chicago-1 (2015/2019)
< 10 COHERENT-1 (2017)
@]
|9 8 -
“g COHERENT-2 (2017/2020)
£ ¢l
5 ° Chicago-3 (2019)
2 41 4 parketal.(2002) 4 COHERENT 1 (2017) COHERENT-3 (2020)
+  Guo et al. (2016) # COHERENT 2 (2017/20)
27 Collar et al. (2019) COHERENT 3 (2020)
# Collar et al. (2015/19) all with the same small Csl[Na] crystal, produced by

0 20 40 60 50 the manufacturer of the SNS crystal from the same
Nuclear recoil energy (keV)
The global fit is performed in the “scintillation energy [keV, ]” vs. “recoil energy [keV, ]” to

avoid double counting of E,, uncertainty.



Global QF data fit

17
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“Default” uncertainties:

1. No propagation of the NR energy spread into vertical
uncertainty for COHERENT data

2. Chicago-1/3 data are taken with X-axis uncertainty from

the PRD 100 (2019), which is stated to be NR energy
spread, zero X axis uncertainty is considered as
systematic excursion

MCMILC fit of the global data with 4t degree polynomial function, best fit (E, in MeV):

Sc(Eny) = 0.0616006 x Eyr + 3.37111 x E2, — 77.9909 x E3. + 519.958 x EZ,



Global QF data fit: systematic excursion check
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In order to address possible concerns the approaches to sharing of raw COHERENT QF data are discussed

We also will provide the summary table of existing measurements for use
of community together with the data release



Summary 19

We addressed several issues in the steady-state background PDF evaluation making it more robust
e “ultra-prompt events” component is discovered and suppressed

e “afterglow coincidence” component is understood and supressed

e time-dependent efficiency is included in the 2D PDFs of beam related signals

We found and fixed an issue in the beam power database leading to the overestimate of cumulative

BP/underestimate of observed CEVNS (7% effect)

We improved understanding of the Csl[Na] QF uncertainty reducing corresponding systematic unc-ty

Thank you for your attention! The exciting results are just few steps away...




Backup: H11934-200 linearity tests with a Csl[Na] crystal B1
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We don’t observe the saturation-like behavior in the
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[900,960]V bias voltage range neither for 59.5 keV nor '*°

for 356 keV gamma line
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Gaussian SPE model fails at description of spectra
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bias voltage

Non-gaussian shape of the distribution was confirmed
in the laser pulse calibration of the PMT
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Backup: possible bias sources in QF analyses B2

1. H11934-200 SPE pulse shape and integration thresholds

Manufacturer’sinfo ~ Our measurement with 30 ps laser pulse
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2. Afterglow contribution

There’s a chance that afterglow pulse accidentally sneaks into the NR signal integration window biasing the integrals
to larger values — the average contribution is ~0.3 PE/3 us, but depends on the radiation load of a crystal. That’s
enough to bias the low NR energy QF by few to 10%.

COHERENT data either convolve afterglow contribution with MC prediction or expand unc-ty to take it into account



Backup: possible bias sources in QF analyses B3

2. Binning of prediction

If Poissonian photostat. smearing is used to produce prediction based on the simulated NR energy spectrum, bin
centers should be in the integer number of “PE” both for the prediction and the data. For a prediction spectrum in
PE space with bin centers in non-integer PE values Poisson photostat. smearing redistributes counts to integer
values -> lower bin edges which creates 0.5 PE between bias between obtained prediction (representative values
stored at lower bin edge) and data (representative value of non-integer data stored at bin center).

3. Inelastic scattering n escapes contribution

In the act of inelastic scattering of neutron off nuclei sometimes high energy gamma is generated, this high
energy gamma may escape the material sample generating single observable NR with distorted energy
deposition. This effect is most noticeable at large scattering angles. Inelastic escapes contribution should be
either included in prediction or suppressed by backing detector energy deposition/TOF.



Backup: COHERENT-4 — “The endpoint” measurement B4
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Backup: risetimes cuts in 2017 analysis

B5

Plots from B.J. Scholz PhD thesis (University of Chicago), 2017
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Figure 7.10: A: Two dimensional rise-time distributions for events in the *3*Ba calibration
data set that are pass all quality cuts with an additional Cherenkov cut of a\’i"‘:,”' = 5. Only
events with an energy of 5 < Npe < 20 are shown. Red (black) data points represent the
C (AC) data set. The shaded blue region represents one of the proposed rise-time cuts. B:
T10—gg distribution marginalized over Tj_5¢. C: Ty—50 marginalized over T7p—gg. An excess
of coincidence events over anti-coincidences 1s readily visible in all panels.
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Figure 9.19: Rise-time distributions of ON events passing all optimized data cuts during
CEvNS search runs. The C (AC) data is shown in red (black). The events of both data
sets mainly cluster around the same rise-times seen in Fig. 7.11. In addition an excess is
readily visible for the C data over the AC data, which is caused by CEvNS-induced events.
This excess is therefore fully comprised of nuclear recoils. The residual R=C-AC is shown
in Fig. 9.20. A tail above the Th_5yp = Tig—gn diagonal can be identified, that is caused
by misidentified event onsets due to a preceding SPE. The shaded blue region shows the
optimized rise-time cut window.



Backup: SPE charge and PT cut acceptance at SNS B5
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