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Introduction

In experiments dedicated to detection of Coherent Elastic Neutrino
Nucleus Scattering (CEνNS), ionization only detectors, the signal
entails the detection of the ionization produced by the recoiling target
ions following a scattering event.

The electronic excitation produced by a recoiling ion is typically
smaller than that produced by an electron of the same energy, we
name this as quenching ([eVnr]→ [eVee]).
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Quenching Factor for ν experiments

For CEνNS searches with pure crystals the quenching plays an
important role for calibration and efficiency.

Different quenching, change significantly the rate for CEνNs signal.
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Many experiments that rely on quenching factors

Y.Sarkis (ICN) Phys. Rev. D 101, 102001 (2020) Magnificent CEνNS 5 / 27



6/27

Nuclear recoil in a pure material

Suppose that the ion recoils from the interaction with an energy ER , after
recoiling with an incident particle (e.g., a neutrino).

Energy U is lost to some disruption of the atomic bonding, then
ER = E + U, then the ion moves with a kinetic energy E .

The moving ion sets off a cascade of slowing-down processes that dissipate
the energy E throughout the medium.
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Lindhard’s model

Lindhard’s theory concerns with determining the fraction of ER which
is given to electrons, H, and that which is given to atomic motion, N,
with ER = N + H.

Defining reduced dimensionless quantities,
εR = cZER , η = cZH, ν = cZN where cZ = 11.5/Z 7/3keV.

This separation is written as εR = η̄ + ν̄ (“average”).

The quenching factor (fn) for a nuclear recoil is then defined as the
fraction of ER which is given to electrons (u = cZU):

fn =
η̄

εR
=
ε+ u − ν̄
ε+ u

(1)

When u=0 one recovers the usual definition.
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Basic integral equation and approximations

∫
dσn,e︸ ︷︷ ︸

total cross section

ν̄
(
E − Tn −

∑
i

Tei

)
︸ ︷︷ ︸

A

+ ν̄ (Tn − U)︸ ︷︷ ︸
B

+ ν̄(E)︸ ︷︷ ︸
C

+
∑
i

ν̄e (Tei − Uei )︸ ︷︷ ︸
D

 = 0 (2)

Lindhard’s (five) approximations

I Neglect contribution to atomic motion
coming from electrons.

II Neglect the binding energy, U = 0.

III The energy transferred to ionized
electrons is small compared to that
transferred to recoiling ions.

IV Effects of electronic and atomic collisions
can be treated separately.

V Tn is also small compared to the energy
E .
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Lindhard quenching factor

In 1963, for E.q (2) Lindhard used the above
approximations, in which the most important was
U=0.

He gave a parametrization for ν̄, but only works for
εR & 0.1 (when U=0, εR = ε).

ν̄L(ε) =
ε

1 + kg(ε)
,

g(ε) = 3ε0.15 + 0.7ε0.6 + ε.

First principles (e) stopping power
Se = kε1/2, k = 0.133Z 2/3/A1/2(≈ .15).

Hence the QF at energies of few keV,
start to deviate from measurements.

PRD Chavarria et all, 94, 082007(2016)
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Simplified equation with binding energy

In order to keep the binding energy, a more general equation has to be built
relaxing approximations II, III and V. We considered u constant, Se = kε1/2,
and nuclear stopping dσn(t) with t = ε2 sin2(θ/2), so Eq.(2) transform:

− 1

2
kε3/2ν̄′′(ε)+kε1/2︸ ︷︷ ︸

Se

ν̄′(ε) =

∫ ε2

εu

dt
f
(
t1/2

)
2t3/2︸ ︷︷ ︸
dσn

[ν̄(ε−t/ε)+ ν̄(t/ε−u)− ν̄(ε)] (3)

We recover Lindhard’s approach with u=0 and removing the red term. So the
equation predicts a threshold εthresholdR = 2u. The function f (t) is related to the
inter-atomic potential (e.g Thomas-Fermi).

The equation admits a solution featuring a “kink” at ε = u.
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Numerical solution

Shooting method

This equation can be solved numerically
from ε > u. Considering the physics and
the properties of the model, Eq.(3)
required the parametrization,

ν̄(ε) =

{
ε+ u, ε < u
ε+ u − λ(ε), ε ≥ u

(4)

where λ is a continuous function. To
solve for λ it’s possible to implement a
shooting method since there exists
boundary condition for ε� 1.
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Atomic constant binding energy U model

In general, U includes both the energy needed to remove the ion from its
site and contributions to excitation of bound atomic electrons, therefore
incorporates the Migdal effect.

Silicon* Germanium*
Shell U(eV) #e Shell U(eV) #e

[Ne]4 4 [Ar]18 18
2p 100 6 3d 30 10

Average e − h 3.7 4 Average e − h 3.0 4
Dislocation 36 Dislocation 23

* E. Clementi and D.L.Raimondi, J. Chem. Phys. 1963, 38, 2686.
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Results (Error band approximate cover the data fluctuation)

Germanium QF in good agreement with recent data, U = 0.02 keV and
k = 0.162.
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Results

Consistent with recent measurements2 cutoff (0.3± 0.1keV), U = 0.15
keV and k = 0.161.

2PRD,Chavarria et all,94, 082006(2016)
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Some remarks:

This model is very general and can be applied to crystals and noble
gases.

We can include the effects of atomic binding, especially important at
low energies (sub keV).

We can study the direct effects of inter-atomic potentials for QF.

Investigate the effects of different models for electronic stopping
power, especially at low energies.
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Noble gases

Xe Light and Charge yields
We can compute the total
quanta (Ne + Nex) from the
total energy minus the
atomic movement.

Using Thomas-Imel box
model its possible to obtain
the Charge and Light
Yields.

Its also possible to add
Penning effect directly.

The binding energy obtained
is compatible with the
bindings for Xe atomic
shells.
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Beyond constant U model

Going further down in energy we have to considered an energy
dependent binding energy.

Inelastic interactions generally takes place against a background of
elastic scattering in colliding nuclei.

Consequently, at any point of the phase space the electron gas is
expected to be only slightly excited.

In the low energy (< 1keV ) region, Se departures from velocity
proportionality due to Coulomb repulsion effects.

Several theoretical results are available now that discuss the above
remarks; e.g Tilinin3, Kishinevsky.4

3PRA,I.S Tilinin,51,3058(1995)
4Kishinevsky, L.M., 1962, Izv. Akad. Nauk SSSR, Ser. Fiz. 26, 1410.
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Figure: Preliminary QF in Si using a model beyond constant binding energy. The
threshold is near the Frenkel-pair energy ≈ 60 eV.

Y.Sarkis (ICN) Phys. Rev. D 101, 102001 (2020) Magnificent CEνNS 18 / 27



19/27

Conclusions

1 We found an appropriate form for the basic integro-differential
equation describing the energy given to atomic motion by nuclear
recoils in Si and Ge, when a constant binding energy is considered
and 0.1 < k < 0.2.

2 Also this model can describe the total quanta in noble liquids (e.g.
Xe). Light and charge yields can be computed.

3 This model can be extended considering energy variable binding
energy. Also we are working in incorporate low energy effects in the
electronic stopping power.
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Backup
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Ansatz

We can implement a good
analytical approximation to
solve the integral equation.

The idea is to lessen the
ionization contribution,
subtracting a fraction of the
electronic stopping power.

η̄ = η̄lind − cε1/2 − c ′ where c,
c’ and u are estimated from a fit
to the available data.

Where η̄ = ε− ν̄. ε 
3−10 2−10 1−10 1

ν

3−10

2−10

1−10

1

 Correctedν

 Lindhard onlyν

+uε=ν
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4.88 12.78 36.66 47.21 71.40 99.07 129.47 162.04 

6.90 2.47 4.48 7.09 14.73 25.21 38.05 52.90 

13.17 5.78 1.95 2.35 5.26 10.63 18.11 27.39 

47.13 40.03 34.85 34.43 35.24 38.01 42.46 48.38 
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Introduction

Lindhard parametrization was deduced based in the following:

i Neglect atomic movement from electrons, since is negligible at low
energies.

ii Neglect the binding energy U = 0.

iii Energy transferred to ionized electrons is small compared to that
transferred to recoiling ions.

iv Effects of electronic and atomic collisions can be treated separately.

v Tn is also small compared to the energy E.

The main achievement of this work is to incorporate in the physical
model the binding energy U.
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Fits to data

We set a grid of 7x7 points in U and k region, in an acceptable ranges,
and compute the χ2/ndf of each (U,k) point to determine the optimal
value, we do this for Si and Ge.
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Lindhard’s model

1 Using dimensionless units (ε = 11.5E (keV)/Z7/3, ), the quenching
factor is defined:

quenching =
total ionization energy

total deposited energy
= fn =

η̄

εR

where η̄ and εR are the ionization energy and the total recoil energy in
adimensional units.

2 We concern about determining the fraction of εR which is given to
electrons, η̄, and that which is given to atomic motion,ν̄, assuming
ε̄R = η̄ + ν̄. Hence; η̄ = εR − ν̄.
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