An overview of the GADMC and its neutrino physics program

Claudio Savarese

Princeton University

Magnificent CEvNS 2020
Cyberspace, 11/18/2020

Dual-phase argon TPCs

DarkSide-50

3D position reconstruction

- Z from S1-S2 time difference
- XY from S2 light distribution
- Reliable fiducialization
- Multiple scattering rejection

ER rejection

- S2/S1: 10² rejection factor
- PSD with S1 in LAr: f90 parameter
- ER rejection factor:

 $DS-50 > 10^7$, $DEAP > 10^8$

GADMC overview

The 39Ar challenge

- ³⁹Ar is a cosmogenic isotope
- β-decay with 565 keV endpoint
- ~269y of half life
- ~1Bq/kg in atmospheric Ar
- Rejection with PSD, but pile-up!

- No activation in Ar from deep CO₂ wells
- Suppression factor ~1400 already demonstrated in DS-50
- Possibly higher depletion factor

- Extraction of 65t with "Urania"
- Cryogenic distillation for chemical purification with "Aria" column
- Possibility of isotopic distillation

DS-20k new technologies

Membrane cryostat

 Cryostat contribution to the bkg moved far from the TPC

Cryogenic neutron veto

- Neutron capture on Gadolinium
- Gd doped acrylic panels
- γ release energy in instrumented
 LAr buffers

Photodetectors

- New solid state photosensors
- Custom developed SiPMs
- High photo-detection efficiency
 @420nm

SuperNova neutrinos in DS-20k and Argo through CEvNS

SN neutrinos fluxes

- 99% of the total energy of a core collapse SN (~10⁵³ erg) is emitted through the neutrino channel.
- SN phases: neutronization burst (~30ms), accretion phase (~0.2-0.8s), cooling (~10s)

- $\langle E_{\nu} \rangle$ maxes out in the first phases (15MeV) and drops to 5MeV after ~10s.
- Hydrodynamical spherically symmetric simulations by the Garching group.
 Star progenitor is 27M_☉ at 10kpc.

S2-only analysis

Lower the energy threshold \Rightarrow Look at the S2 only events S2 >> S1 (23ph/e⁻ in DS50)

Pros:

- Low energy threshold:
- 100% Trigger eff. > ~30PE

Cons: No S1

- No position reconstruction in z
- No PSD ⇒ No ER rejection
- Poor timing reconstruction,
 limited to the TPC drift time

Detector response to CEVNS

https://arxiv.org/pdf/2011.07819.pdf

Window of observation: up to 100keV_{nr}.

• 70% (50%) of the recoils is <10ke V_{nr} (5ke V_{nr}).

• DS50 performance:

• S2 identification: 100% >30PE

• Trigger efficiency: ~100% >30-40PE

NR deposits detection is 100% >0.46keV_{nr.}

86% of SN CE_VNS would be detected

From DS50 low-mass analysis

Backgrounds

- Internal background: ³⁹Ar, dominant > 1keV_{nr}. Expected rate for N_e<100: 0.5Hz (DS20k) and 4.2Hz (Argo). ⁸⁵Kr will be removed by ARIA distillation column.
- External background: γ from SiPMs and cryostat. Expected rate for N_e<100: 0.3Hz (DS20k) and 1.3Hz (Argo). After fiducial cut: 0.2Hz (DS20k) and 1.1Hz (Argo).
- Single electron background: unknown origin, part due to impurities (observed time correlation with S2 events). Scaled rate from DS-50 for N_e>3: 1.8mHz/tonne, 0.085Hz (DS20k) and 0.65Hz (Argo).

Sensitivity to SN bursts

https://arxiv.org/pdf/2011.07819.pdf

Expected signal and background in 8s for a SN burst at a distance of 10kpc

	DarkSide-20k	Argo
$11-\mathrm{M}_{\odot}~\mathrm{SN}$ - $\nu\mathrm{s}$	181.4	1396.6
$27\text{-}\mathrm{M}_{\odot}~\mathrm{SN} ext{-}\nu\mathrm{s}$	336.5	2591.6
$^{39}\mathrm{Ar}$	4.3	33.8
external background	1.8	8.8
single-electrons	0.7	5.1

- SNR~10² during neutronization and accretion (1s). SNR~10 during cooling (>1s)
- Overall SNR~24(45) for 11M_☉ (27M_☉)
- Sensitivity >5**σ** up to the Milky Way edge for DS-20k and the Small Magellanic Cloud for Argo.

Not only a counting experiment

https://arxiv.org/pdf/2011.07819.pdf

- DS-20k and Argo energy and time resolution allow to reconstruct the mean and total energy of neutrinos from a SN burst. Spectra are fitted excluding the neutronization burst.
- Total neutrino energy reconstruction at 3σ level with 11% (32%) accuracy in Argo (DS-20k).
- Mean neutrino energy reconstruction at 3σ level with 5% (13%) accuracy in Argo (DS-20k)

DarkSide Low Mass

R&Ds: background reduction

- Internal backgrounds (i.e. ³⁹Ar and ⁸⁵Kr): isotopic distillation of UAr with Aria.
- Cryostat: ProtoDune membrane cryostat; a LAr-based gamma veto could be an option.
- Light Detection: drop coverage, use light collectors, develop radiopure cryogenic electronics and/or ASIC signal readout.
- Single Electron background: still to be fully understood. Instrumental for any noble liquid low threshold detector.

Neutrinos in DS-LM

Thanks to E. Picciau for the numbers!

- At low energies neutrinos are a huge/major background
- ~ 178 evts of CE ν NS
- \sim 48 evts of ν -e scattering
- Maybe good occasion to better constraint CEvNS cross-section
- WIMP spectra are very similar to CEvNS spectra
- No way around: that's the essence of the neutrino floor

Projected sensitivity

A lot of assumptions have to be made:

- $\sim 1 \mu Bq^{39}Ar$, no 85Kr
- 10³ suppression of current
 γ Compton continuum
- 2e⁻ threshold
 ⇒ solve the SE rate puzzle
- 1 tonne x year exposure

A lot of potential for interesting physics

Conclusions

- 1. LAr G2 and G3 detectors face considerable technological challenges
- 2. R&D for DS20k is almost completed
- 3. Argon extracted from underground plays a crucial role for multi-tonne experiments
- 4. DS20k and Argo have the sensitivity to detect a SN neutrino burst to the edge of the Milky Way and beyond in the CE_VNS channel.
- 5. DS20k and Argo will be able to constrain the average and total energy of neutrinos from a SN core collapse event.
- 6. LAr technology has a huge potential for the search in the LM range of WIMPs
- 7. DS-LM detector would be also a natural observatory for solar neutrino CEvNS
- 8. Still a lot to be understood before the deployment of such a detector

Thank you!

PSD In LAT

PMT VS SIPM

- QE ~35%
- Noise Rate: negligible
- SNR~15, SPE Res~20%
- Time resolution ~ns

- 25cm² per channel
- PDE > 40%
- DCR < 0.1cps, TCN < 60%
- SNR ~24, SPE Res~4%
- Time resolution ~3.5ns

Argon extraction and purification

³⁹Ar and UAr

Aria

- ³⁹Ar: cosmogenic isotope
- β -decay: Q = 565 keV and $\tau_{1/2}$ ~269y
- ~1Bq/kg in atmospheric Ar
- Rejection possible with PSD. Pile-up!
- No activation in deep CO₂ wells
- Suppression of ~1400 (DS-50)

- CO₂ well: Cortez (CO)
- Extraction plant: Urania
- Rate: ~330kg/d
- Purity: 99.9%
- Total foreseen mass: 60t
- Shipping by sea

- Aria: chemical purification through cryogenic distillation
- 350m tall column in a mine shaft in Italy
- Purification rate: ~1t/d
- Possibility of isotopic separation (³⁹Ar/ ⁴⁰Ar) by difference in vapour pressure (10kg/d)

A key ingredient: Qy measurement

A Q_Y measurement at low energies is still needed

- We're hoping to do it at the TUNL facility
- Pulsed neutron beam
- Huge array of neutron backing detectors
- Flexible beam energy and repetition rate

- 2 beam energies: huge range 0.3-50 keV_{nr}
- Directly measure Q_Y with S2 pulses
- Measure S1 where possible
- Possibly run at more drift fields (0.2,0.5,1kV/cm)
- Small TPC to minimize multiple scattering
- Simulations and design are still embryonal