Status and Future of the COHERENT Liquid Argon Program

Jacob Daughhetee

The Magnificent CEvNS Nov 19th, 2020

COHERENT at the SNS

COHERENT Program

Multi-target program to measure CEvNS cross section over wide range of N

Staged approach: Observation -> Precision

COHERENT Current Operations

CENNS-10

- Loaned from J. Yoo *et al* from Fermilab.
- Single-phase liquid Ar scintillation detector located 28 m from SNS target (~2 x $10^7 v / s$)
- Engineering Run: Dec 2016 -> May 2017
 - 80 keVnr threshold
 - No Pb shielding
 - Analysis Results -> Phys. Rev. D100 (2019) no. 11, 115020
- First Production Run: July 2017 -> December 2018
 - Dramatically improved light yield results in lower threshold (20 keVnr)
 - 2x 8" Hamamatsu PMTs with 18% eff @ 400 nm
 - Tetraphenyl butadiene (TPB) wavelength shifter coating Teflon walls and PMT glass.

arXiv:2003.10630

• 24 kg fiducial volume.

Data Collection

CENNS-10 Production Configuration Data

J. Daughhetee | Magnificent CEvNS | Nov 19, 2020

Data Selection / Analysis Steps

- 33 µs readout window roughly centered about POT time.
- Identical readout performed after delay of 14 ms to **directly measure** steady-state backgrounds while SNS is operating.
- Pulse finding algorithm applied to triggered waveforms; requirement of 2 photons in first 90ns on both PMTs.
- Pulse-shape discrimination variable "F90" is computed: (Integral of WF in first 90 ns / Total WF Integral)
- Beam-related neutrons (BRN) measured with dedicated 'neutron' runs which lack water shielding.
- Cuts on energy, F90, and time established prior to boxopening.
- 3D Likelihood fit applied to final dataset .

Energy Calibrations

- Calibrations performed using multiple gamma • sources (⁵⁷Co, ²⁴¹Am, ^{83m}Kr).
- Observed light yield: 4.6 \pm 0.4 p.e./keVee •
- 9.5% resolution at 41.5 keVee. •
- Provides ADC -> keVee conversion. (ee • electron equivalent).
- Global QF fit provides keVnr->keVee conversion.

Neutron Calibrations

- **AmBe** Used to measure NR response in detector and model CEvNS signal.
- **DT Generator** Used to confirm veracity of external neutron simulations

arXiv:2010.11258

J. Daughhetee | Magnificent CEvNS | Nov 19, 2020

600

100

Beam-Related Neutrons

magnitude with tank drained.

- Understanding beam-related neutrons is essential for CEvNS analysis due to ability to mimic signal.
- Previous measurement by SciBath detector provided information on BRN flux and spectral shape in CENNS-10 location.
- Multiple data taking periods without water shielding (0.54 GWhr of integrated beam power).
- Data from these "neutron" runs as well as data from earlier detector configuration show no evidence for delayed neutrons.

Predictions and Systematics

- 3D binned likelihood fit in energy, F90, and time.
- Waveform / event quality cuts.
- Analysis Cuts:
 - Energy -> 0-120 keVee
 - F90 -> 0.5-0.9
 - Time -> -0.1-4.9 µs

Sample Predictions

Predicted SM CEvNS	128 ± 17
Predicted Beam Related Neutrons	497 ± 160
Predicted Beam Unrelated Background	3154 ± 25
Predicted Late Beam Related Neutrons	33 ± 33

CEvNS Rate Measurement Systematic Errors		
Error Source	Total Event Uncertainty	
Quenching Factor	1.0%	
Energy Calibration	0.8%	
Detector Model	2.2%	
Prompt Light Fraction	7.8%	
Fiducial Volume	2.5%	
Event Acceptance	1.0%	
Nuclear Form Factor	2.0%	
SNS Predicted Neutrino Flux	10%	
Total Error	13.4%	

	Additional Likelihood Fit Shape-R	elated Errors	
•	Error Source	Fit Event Uncertainty	
	CEvNS Prompt Light Fraction	4.5%	
	CEvNS Arrival Mean Time	2.7%	
	Beam Related Neutron Energy Shape	5.8%	
	Beam Related Neutron Arrival Time Mean	1.3%	
	Beam Related Neutron Arrival Time Width	3.1%	
	Total Error	8.5%	

Largest Systematics

Fit Results

Data Events	3752
Fit CEvNS	$159 \pm 43 \text{ (stat.)} \pm 14 \text{ (syst.)}$
Fit Beam Related Neutrons	553 ± 34
Fit Beam Unrelated Background	3131 ± 23
Fit Late Beam Related Neutrons	10 ± 11
$2\Delta(-\ln L)$	15.0
Null Rejection Significance	3.5σ (stat. + syst.)

- Null hypothesis rejected at **3.5**σ (stat+syst).
- Parallel analysis rejects null at 3.1σ.
- Result within 1- σ of SM prediction.
- BRNs constrained by high-energy data.

J. Daughhetee | Magnificent CEvNS | Nov 19, 2020

CENNS-10 Physics Results

• Combine best fit CEvNS counts with flux, fid. volume, efficiency uncertainties.

$$\frac{N_{meas}}{N_{SM}} = 1.2 \pm 0.4$$

• Obtain flux-averaged cross section:

$$\sigma_{meas} = \frac{N_{meas}}{N_s \phi \epsilon} = (2.3 \pm 0.7) \times 10^{-39} \ cm^2$$

arXiv:2003.10630

stat dominated

NSI Constraints: Assume non-zero electron flavordiagonal vectorlike NSI (all other ε set to 0).

Future of CENNS-10

- Additional data to be analyzed (16 GWhr accumulated in current configuration) with potential improvements in analysis methods and understanding of systematics.
- Potential modifications / testing:
 - Reduced steady-state bkg with underground Ar.
 - Xe-doping for increased light output.
 - Test machine learning techniques for reconstruction and background rejection.
 - Test photon detection schemes for planned ton-scale detector.

COH-Ar-750

- Scaled up single-phase LAr detector featuring 610 kg fiducial mass.
- Photon detection system designed to maintain or exceed 20 keVnr threshold.
- Will fit in existing CENNS-10 location.
- Two possible configurations (SiPMs or 3" PMTS)
- Ongoing R&D at IU, ORNL, and Tufts.

(0)

COH-Ar-750 Development

Design in hand which accounts for spatial constraints in deployment.

Testing of light collection at cryogenic temperatures underway.

Copper liquefier cup designed and assembled.

Precision Physics with COH-Ar-750

- Design capable of handling dynamic range necessary for inelastic neutrino interactions as well as CEvNS recoils.
- Signal expectation of \sim 3000 CEvNS per SNS-year
- Approx. 400 inelastic CC and NC events per SNS-year

Inelastic Interactions

Use of UAr would dramatically reduce steady-state bkg.

CEvNS

J. Daughhetee | Magnificent CEvNS | Nov 19, 2020

16

Accelerator-Produced Dark Matter

• Potential for portal DM via neutral pions produced at the target:

Vector portal: $\mathcal{L} = \mathcal{L}_{\chi} - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} m_V^2 V_{\mu} V^{\mu} - \frac{\kappa}{2} V^{\mu\nu} F_{\mu\nu}$ Baryonic portal: $\mathcal{L}_B = \mathcal{L}_{\chi} - \frac{1}{4} V_{\mu\nu}^B V_{\mu\nu}^B + \frac{1}{2} m_B^2 V_{\mu}^B V_{\mu}^B + \sum_{N=n,p} i\bar{N} \not DN$ deNiverville et al., Phys Rev D92 095005 (2015)

- Signal Expectation:
 - NR events with beam timing profile
 - Recoil spectrum depends on mediator and DM mass.
 - Harder spectrum than CEvNS
- Improved understanding and mitigation of beam-related neutrons improves sensitivity.

Accelerator-Produced Dark Matter

- Significant constraints on DM models can be place with 3 years of COH-Ar-750 data.
- Prompt CEvNS events represent primary background, but delayed sideband analysis can constrain error on prompt CEvNS estimate.
- Knowledge of beam T₀ is important; recent dedicated timing studies have helped reduce this uncertainty.

Future Opportunities

Second Target Station

- Neutrino Alley has served as an excellent location, but new target station provides opportunity for a more dedicated neutrino physics space.
- Potential for two larger mass detectors ($\sim 10 \text{ tons}$) with one likely being LAr.
- Accelerator DM production will be boosted in beam direction; possibility to deploy detectors at smaller angles w.r.t. beam axis.
- Understanding neutron propagation and necessary shielding is important!

Summary

- Analysis of CENNS-10 data has resulted in the first detection of CEvNS on Ar.
- Upcoming analysis will feature more than double the statistics.
- R&D underway for successor COH-Ar-750 detector with CENNS-10 serving as a testbed for new ideas.
- COH-Ar-750 offers rich physics potential for CEvNS and accelerator dark matter.
- Future upgrades to SNS power and the addition fo the STS present an excellent opportunity for larger detectors and interesting physics!

Auxiliary Slides

Parallel Analysis Comparison

- Separate blind analysis performed by Russian collaborators.
- Independent reconstruction software and stricter cuts for analysis level dataset.
- Results consistent with US analysis.

Moscow analysis results		
Predicted CEvNS	101 ± 12	
Fit CEvNS	$121 \pm 36 \text{ (stat.)} \pm 15 \text{ (syst.)}$	
$2\Delta(-\ln L)$	12.1	
Null Rejection Significance	3.1σ (stat. + syst.)	

^{83m}Kr Component Analysis

- For ER events, relationship between peak height and total event integral can be established.
- Search for delayed peak (> 152 ns) in combined waveform which comes from 9.4 keV electron.
- Average amplitude of late peak distribution can be converted to expected total integral.

Confirmation of detector linearity well into CEvNS energy ROI.

Non-Standard Interactions

Presence of these interactions can lead to suppression or enhancement of CEvNS rate w.r.t. Standard Model.