Astronomy in the Lab Supernova Forecast and Origin of Supermassive Black Holes

Volodymyr Takhistov Kavli IPMU, University of Tokyo

Large Direct Dark Matter Detection Experiments

Look for particle DM interactions in detector → nuclear (and electron) recoils

- Typical setup:
 - heavy target material (A ~ 30-130)
 - very low threshold (~ keV)
 - potentially scalable (Argon, Xenon)

- Generation-2: ton-scale
 - → Generation-3: multi-ton scale

benchmark

Target	Mass	Threshold	Reference
	(tons)	(keV)	
Ar	300	0.6	ARGO
Xe	50	0.7	DARWIN

Neutrino Floor

No convincing signs of DM yet → probe further

* exciting excesses keep community vigorous

Eventually will encounter irreducible neutrino-background from CEvNS
 → "neutrino floor"

Important to consider target complementarity and different DM interactions

[Gelmini, VT, Witte, 2018]

see [Strigari, Dutta, Dent, Lang, Billard, O'Hare...]

Magnificent CEvNS

- <u>Coherent elastic neutrino-nucleus scattering</u> interaction with nucleus as a whole
- Proposed 40+ years ago [Freedman] → recently observed [Akimov+ (COHERENT), Science, 2017]
- Dominant neutrino interaction for $Ev \leq 50 \text{ MeV}$
- Features:
 - all-flavor sensitivity
 - X-section scales as ~N²

 \rightarrow big "new" window into v's as well as new physics [Scholberg, Dent, Strigari, Dutta, Lindner, Shoemaker, Denton, Kim, Newstead...]

Dark Matter Experiments as Neutrino Telescopes

CEvNS a curse for DM detection, but a blessing for neutrino physics!
 → big DM experiments as "effective neutrino telescopes"

- Complementarity with conventional neutrino experiments
 - enhanced coherent scattering
 - \rightarrow bypass IBD threshold
 - \rightarrow probe all v's flavors
 - very low energy threshold
 - → <u>gain access to unexplored regimes</u> *Example:* geo-neutrinos [Gelmini, VT, Witte, 2018]

Astronomy in the Lab

Supernova Forecast

Historic v-Astronomy Breakthrough: SN 1987a

<u>Core-collapse SN</u>: most energy released as neutrinos → mechanism confirmed by SN1987a

Many unknowns \rightarrow hunt for v's from next Galactic SN (rate ~1/30 yrs) a major target

Last Stages of Stellar Evolution

Rapid changes in composition

• Increase of density/temperature

Increase of neutrino emission

A. C. Phillips, The Physics of Stars, 2nd Edition (Wiley, 1999)

Supernova Forecast with Pre-Supernova Neutrinos

Super-K-GD (2020), besides likely first DSNB observation, will see hundreds pre-SN v's within ~day before SN explosion @ Betelgeuse (0.2 kpc)

Pre-SN neutrinos are low-energy (~ few MeV) → <u>a new opportunity for CEvNS!</u>

Pre-SN v's in DM experiments: signal

[Raj, **VT**, Witte, 2019]

Pre-SN v's in DM experiments: detection

[Raj, VT, Witte, 2019]

Do Not Suffer Oscillation Effects

Work on Non-neutrino Background Suppression Essential

Astronomy in the Lab

Origin of Supermassive Black Holes

Supermassive Black Holes

high redshift quasars $(M\sim 10^9 M_\odot)$

[Benados+, Nature, 2018; Wu+, Nature, 2015...]

${ m galactic\ centers}\ (M\sim 10^6 M_{\odot})$

Supermassive Black Holes from Supermassive Stars

• Several formation pathways go through supermassive star ($\geq 10^4 \text{ M}\odot$) "seeds"

Neutrinos from Supermassive Star Collapse

Collapse of SMS leads to huge neutrino flux ~ fraction of binding energy ~10⁵⁹ erg

...however, neutrinos are low energy, also redshifted (unknown, follows quasars?) → detection via IBD in standard neutrino experiments limited [Shi, Fuller, 1998]

Neutrinos from Supermassive Star Collapse

• **Exploit CEvNS!** → catch low-energy neutrinos

Target	Mass	Threshold	Reference
	(tons)	(keV)	
Ar	300	0.6	ARGO
Xe	50	0.7	DARWIN
Pb	2.4	1.0	RES-NOVA

SMS burst

[Fuller, Munoz, VT, Witte, prep.]

New Contribution to Diffuse Neutrino Background

Additional potential background for DM searches !

[Fuller, Munoz, VT, Witte, prep.]

Conclusions

• Magnificent CEvNS open a new exciting window for neutrino physics

Future large DM experiments well positioned to exploit CEvNS
 → effective neutrino telescopes

New opportunities to explore neutrino astronomy (and other topics) in a complementary way