## A Platform for Characterizing the Thermodynamic Stability and Proportional Scintillation Signals of Argon-Xenon Mixtures

**Ethan Bernard**<sup>\*</sup>, Nathaniel Bowden<sup>\*</sup>, Igor Jovanovic<sup>‡</sup>, Eli Mizrachi<sup>†</sup>, Sergey Pereverzev<sup>\*</sup>, Teal Pershing<sup>\*</sup>, David Trimas<sup>‡</sup>, and Jingke Xu<sup>\*</sup>





- \* Lawrence Livermore National Laboratory Nuclear and Chemical Sciences Division
- <sup>+</sup> University of Maryland Physics Department
- <sup>‡</sup> University of Michigan Department of Nuclear Engineering and Radiological Sciences

| vanted Distillation    | Considerations for Circulation System Design                                                                                               | Xenon strongly prefe<br>over the gas |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Henry's Law:           | $H^{cc} = \frac{Fractional\ concentration\ of\ Xe\ in\ liquid}{Fractional\ concentration\ of\ Xe\ in\ gas} \sim 250 - 450\ at\ 90 - 95\ K$ | 50 ppm in gas → 1.2<br>liquid        |
| n is concentrated in t | he liquid by the evaporation process. Circulation must                                                                                     |                                      |
| this concentrated xe   | non to mix with the main argon bath.                                                                                                       |                                      |

