
Efficient Event Generation with Normalizing Flows
— IML Machine Learning Working Group Meeting —

Claudius Krause

Fermi National Accelerator Laboratory

September 8, 2020

In collaboration with: Christina Gao, Stefan Höche, Joshua Isaacson, Holger Schulz
arXiv: 2001.05486, ML:ST and arXiv: 2001.10028, PRD

gitlab.com/i-flow/i-flow

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 1 / 30

Efficient Event Generation with Normalizing Flows

Part I: Monte Carlo Integration with
Importance Sampling

Part II: i-flow and its Applications

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 2 / 30

I: Importance Sampling is an efficient tool to
estimate an integral.

∫ 1

0

f (~x) d~x
MC−−→ 1

N

∑
i

f (~xi) ~xi . . . uniform

=

∫ 1

0

f (~x)

q(~x)
q(~x)d~x

MC−−−−−−−−−−−−→
importance sampling

1

N

∑
i

f (~xi)

q(~xi)
~xi . . . q(~x)

We therefore have to find a q(~x) that approximates the shape of f (~x)
and is “easy” enough such that we can sample from its inverse cdf.

⇒ This q(~x) is also important for event generation!

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 3 / 30

I: The unweighting efficiency measures the quality
of the approximation q(~x).

If q(~x) = const., each event ~xi would require a weight of f (~xi) to
reproduce the distribution of f (~x). ⇒ “Weighted Events”

If q(~x) ∝ f (~x), all events would have the same weight as the
distribution reproduces f (~x) directly. ⇒ “Unweighted Events”

To unweight, we need to accept/reject each event with

probability f (~xi)
max f (~x) . The resulting set of kept

events is unweighted and reproduces the shape of f (~x).

The unweighting efficiency η gives the fraction of events
that “survives” this procedure.

η = # accepted events
all events = mean w

max w , with wi = f (~xi)
q(~xi)

.

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 4 / 30

I: The usual definition of unweighting efficiency is
unstable if many events are generated.

Problems of the old definition:

The maximum grows with the number of
events drawn.

If more points are drawn than used in
training, the chance for outliers increases a
lot.

Generating smaller subsets doesn’t work,
because we want a globally unweighted set
of events.

Our new definition:

Assuming we used Nopt events during optimization, draw nNopt events.

Now, select m replicas of Nopt events each and find their maximum weight.

Compute the total maximum as the median of the individual maxima.

We expect a few overweight events that can either be discarded or included
with their weights set to wmax (Requiring further control plots!).

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 5 / 30

I: The usual definition of unweighting efficiency is
unstable if many events are generated.

Problems of the old definition:

The maximum grows with the number of
events drawn.

If more points are drawn than used in
training, the chance for outliers increases a
lot.

Generating smaller subsets doesn’t work,
because we want a globally unweighted set
of events.

Our new definition:

Assuming we used Nopt events during optimization, draw nNopt events.

Now, select m replicas of Nopt events each and find their maximum weight.

Compute the total maximum as the median of the individual maxima.

We expect a few overweight events that can either be discarded or included
with their weights set to wmax (Requiring further control plots!).

for example:
Nopt = 20000
nNopt = 106

m = 1000

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 5 / 30

I: The VEGAS algorithm is very efficient.

The VEGAS algorithm
assumes the integrand factorizes and bins the 1-dim projection.

then adapts the bin edges such that area of each bin is the same.

Peter Lepage 1980

=⇒

It does have problems if the features are
not aligned with the coordinate axes.

The current python implementation also uses
stratified sampling.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 6 / 30

I: The Foam algorithm resolves correlations.

The Foam algorithm
In the exploration phase, the integration domain is consecutively split
into cells.

In the generation phase, a cell is chosen at random and a point is
drawn uniformly from within that cell.

S. Jadach [physics/0203033]

illustrations from ICHEP 2002 slides, S. Jadach

=⇒ =⇒

It captures correlations, but within each cell q(~x) = const.

In addition, the exploration phase requires many functional calls.

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 7 / 30

I: Neural Networks can find better q(~x).

We could use the NN as nonlinear coordinate transform:

We use a deep NN with ndim nodes in the first and last layer to map a
uniformly distributed ~x to a target q(~x).

The distribution induced by the map ~y(~x) (=NN) is given by the
Jacobian of the map:

q(~y) = q(~y(~x)) =
∣∣∣∂~y∂~x ∣∣∣−1

Jacobian−−−−→

Klimek/Perelstein [arXiv:1810.11509]

y = x2 ∣∣∣∂y
∂x

∣∣∣−1

= 1
2x

⇒ The Jacobian is needed to evaluate the loss and to sample. However, it
scales as O(n3) and is too costly for high-dimensional integrands!

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 8 / 30

I: Normalizing Flows are numerically cheaper.

A Normalizing Flow:

is a bijective, smooth mapping between two statistical distributions.

is composed of a series of easy transformations, the “Coupling Layers”.

is still flexible enough to learn complicated distributions.

⇒ The NN does not learn the transformation, but the parameters of a se-
ries of easy transformations.

The idea was introduced as “Nonlinear Independent Component
Estimation” (NICE) in Dinh et al. [arXiv:1410.8516].

In Rezende/Mohamed [arXiv:1505.05770], Normalizing Flows were first
discussed with planar and radial flows.

We follow the ideas of Müller et al. [arXiv:1808.03856],
but with the modifications of Durkan et al. [arXiv:1906.04032].

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 9 / 30

I: The Coupling Layer is the fundamental Building
Block.

NN permutation

xA

xB

yx

C (xB ;m(xA))

forward:
yA = xA

yB,i = C (xB,i ;m(xA))

inverse:
xA = yA

xB,i = C−1(yB,i ;m(xA))

The C are numerically cheap, invertible, and
separable in xB,i .

Jacobian:∣∣∣∣∂~y∂~x
∣∣∣∣ =

∣∣∣∣1 ∂C
∂xA

0 ∂C
∂xB

∣∣∣∣ = Πi
∂C (xB,i ;m(xA))

∂xB,i

⇒ O(n)

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 10 / 30

Efficient Event Generation with Normalizing Flows

Part I: Monte Carlo Integration with
Importance Sampling

Part II: i-flow and its Applications

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 11 / 30

II: i-flow, a flexible Normalizing Flow
Implementation.

i-flow C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
implements Normalizing Flows in python using TensorFlow 2.0.

is available at gitlab.com/i-flow/i-flow.
The user can choose different

Transformations in the Coupling Layer,

Loss functions,

Neural Network architectures,

Settings for hyperparameters.

How it works:

i-flow
xi

f(xi)
Ĩ

apply gradient descent

sam
pling

f
loss

g(xi)q(xi)

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 12 / 30

II: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function:

The NN predicts the pdf bin heights Qi .

pdf cdf

Müller et al. [arXiv:1808.03856]

C =
b−1∑
k=1

Qk + αQb

α = x−(b−1)w
w∣∣∣∣ ∂C∂xB

∣∣∣∣ = Πi
Qbi

w

rational quadratic spline coupling function:

The NN predicts the cdf bin widths, heights, and derivatives that go in ai &bi .

cdf

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, ’82]

C =
a2α

2 + a1α + a0

b2α2 + b1α + b0

still rather easy

more flexible

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 13 / 30

II: The Loss function quantifies our goal.

We have different choices:
Kullback-Leibler (KL) divergence:

DKL =
∫
p(x) log p(x)

q(x)dx ≈ 1
N

∑ p(xi)
q(xi)

log p(xi)
q(xi)

, xi . . . q(x)

Pearson χ2 divergence:

Dχ2 =
∫ (p(x)−q(x))2

q(x) dx ≈ 1
N

∑ p(xi)
2

q(xi)2 − 1, xi . . . q(x)

Exponential divergence:

Dexp =
∫
p(x)

(
log p(x)

q(x)

)2

dx ≈ 1
N

∑ p(xi)
q(xi)

(
log p(xi)

q(xi)

)2

, xi . . . q(x)

We use the ADAM optimizer for stochastic gradient descent:

The learning rate for each parameter is adapted separately, but based
on previous iterations.

This is effective for sparse and noisy functions. Kingma/Ba [arXiv:1412.6980]

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 14 / 30

II: There are many hyperparameters to adjust.

Available Architectures:
“Fully Connected” Neural Net (NN):

Input Layer

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Dense Layer with 64 nodes

Output Layer

“U-shaped” Neural Net (Unet):

Input Layer

Dense Layer with 128 nodes

Dense Layer with 64 nodes

DL w/ 32 nodes

DL w/ 32 nodes

Dense Layer with 64 nodes

Dense Layer with 128 nodes

Output Layer

Müller et al. [arXiv:1808.03856]

There are additional hyperparameters that can be adjusted:
learning schedule: schedule function (const., exponential, . . .), initial
learning rate, decay rate and step size, . . .

training: which loss function, # epochs, # samples per epoch

normalizing flow specific: # (input/output) bins, how to split dims
inside CL, # CLs, which function in the CLs

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 15 / 30

II: We need O(log n) Coupling Layers.

How many Coupling Layers do we need?

Enough to learn all correlations between the variables.

As few as possible to have a fast code.

This depends on the applied permutations and the xA − xB -splitting:
(pppttt)↔(tttppp) vs. (pppptt)↔(ppttpp)↔(ttpppp)

More pass-through dimensions (p) means more points required for
accurate loss.

Fewer pass-through dimensions means more CLs needed.

For #p ≈ #t, we argue that 4 ≤ #CLs ≤ 2dlog2 ndime is sufficient

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 16 / 30

II: i-flow is best at high dimensions.

Dim VEGAS Foam i-flow

Gaussian

2 164, 436 6, 259, 812 2, 310, 000
4 631, 874 24, 094, 679 2, 285, 000
8 1, 299, 718 > 50, 000, 000 † 3, 095, 000

16 2, 772, 216 > 50, 000, 000 † 7, 230, 000

Camel

2 421, 475 5, 619, 646 2, 225, 000
4 24, 139, 889 21, 821, 075 8, 220, 000
8 > 50, 000, 000 † > 50, 000, 000 19, 460, 000

16 993, 294 † > 50, 000, 000 † 32, 145, 000 †
Entangled circles 2 43, 367, 192 17, 499, 823 23, 105, 000
Annulus w. cuts 2 4, 981, 080 † 11, 219, 498 17, 435, 000
Scalar-top-loop 3 152, 957 5, 290, 142 685, 000

Polynomial∑
i −x2

i + xi

18 42, 756, 678 > 50, 000, 000 585, 000
54 > 50, 000, 000 > 21, 505, 000 ∗ 685, 000
96 > 50, 000, 000 † > 10, 235, 000 ∗ 1, 145, 000

Table: Number of functional calls to reach a total relative uncertainty of 10−4

(for the first 11 cases) or 10−5 (for the last 3 cases). The integrator with the
fewest functional calls is highlighted in boldface. A † indicates that the algorithm
did not converge to the true integral value within 5 standard deviations, a ∗
indicates cases where the algorithm ran out of memory before the cut-off was
reached.

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 17 / 30

II: i-flow has a high accuracy.

Dim VEGAS (pull) Foam (pull) i-flow (pull)

Gaussian

2 0.99925(10) 0.7 0.99925(10) 0.6 0.99919(10) 0.1
4 0.99861(10) 2.4 0.99835(10) −0.2 0.99841(10) 0.4
8 0.99694(10) 1.9 0.99439(37) † −6.4 0.99684(10) 0.9

16 0.99357(10) 0.6 0.54986(235) † −188 0.99354(10) 0.4

Camel

2 0.98175(10) 0.9 0.98163(10) −0.3 0.98165(10) −0.1
4 0.96345(10) −2.2 0.96361(10) −0.5 0.96365(10) −0.02
8 0.92495(28) † −13 0.92798(19) † −3.5 0.92843(9) −2.2

16 0.43137(9) −5001 0.76921(129) † −72 0.85940(9) −34
Ent. circles 2 0.0136798(14) −3.6 0.0136838(14) −0.7 0.0136829(14) −1.4
Annulus 2 0.509813(51) −14 0.510559(51) 1.0 0.510511(51) 0.1

Top-loop ·1010 3 1.93711(19) 0.7 1.93708(19) 0.6 1.93677(19) −1.0

Polynomial∑
i −x2

i + xi

18 2.99989(3) −3.6 2.99986(12) † −1.1 2.99997(3) −1.1
54 8.99972(19) † −1.5 9.00013(32) ∗ 0.4 9.00001(9) 0.2
96 0.15547(52) † −30683 16.0004(3) ∗ 1.7 15.9998(2) −1.2

Table: Integral estimate and uncertainty together with their relative deviations
(“pull”). A † indicates that the algorithm reached a cut-off of 5 · 107 function
calls before the target uncertainty was reached, a ∗ indicates cases where the
algorithm ran out of memory before the cut-off was reached.

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 18 / 30

II: i-flow adapts well to the integrand.

Dim VEGAS Foam i-flow

Gaussian

2 7 · 10−4 3 · 10−3 2 · 10−3 ∗
4 1.5 · 10−3 3 · 10−3 1.5 · 10−3 ∗
8 2.5 · 10−3 3 · 10−2 1.5 · 10−3 ∗

16 3.5 · 10−3 2 · 10−2 2.5 · 10−3 ∗

Camel

2 2 · 10−3 2 · 10−3 2 · 10−3 ∗
4 8 · 10−3 1 · 10−2 4 · 10−3

8 4 · 10−2 1.6 · 10−2 5 · 10−3

16 † 1.5 · 10−1 5 · 10−3

Entangled circles 2 1 · 10−2 4 · 10−3 5 · 10−3 ∗
Annulus w. cuts 2 3 · 10−3 4 · 10−3 ∗ 5 · 10−3

Scalar-top-loop 3 7 · 10−4 5 · 10−4 5 · 10−4 ∗

Polynomial∑
i −x2

i + xi

18 1.5 · 10−3 1.5 · 10−3 ∗ 8 · 10−5 ∗
54 3 · 10−3 9 · 10−4 ∗ 8 · 10−5 ∗
96 † 8 · 10−4 ∗ 1 · 10−4 ∗

Table: Relative uncertainty on the integral estimate of the last iteration, based on
a sample of 5000 points. A ∗ indicates when the value was still decreasing and
had not yet converged, a † is in place where the algorithm did not converge to
the true integrand.

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 19 / 30

II: i-flow adapts better, but needs more
iterations.

4-dimensional

Gaussian

4-dimensional

Camel

54-dimensional

Polynomial

Scalar Top Loop

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 20 / 30

II: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution: Before training:

Final cut efficiency: 89 % Untrained efficiency: 51 %

Integral: 0.510508 Estimated integral: 0.51040 ± 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 / 30

II: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution: After 10 epochs:

Final cut efficiency: 89 % Untrained efficiency: 51 %

Integral: 0.510508 Estimated integral: 0.51040 ± 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 / 30

II: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution: After 20 epochs:

Final cut efficiency: 89 % Untrained efficiency: 51 %

Integral: 0.510508 Estimated integral: 0.51040 ± 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 / 30

II: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution: After 50 epochs:

Final cut efficiency: 89 % Untrained efficiency: 51 %

Integral: 0.510508 Estimated integral: 0.51040 ± 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 / 30

II: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution: After 100 epochs:

Final cut efficiency: 89 % Untrained efficiency: 51 %

Integral: 0.510508 Estimated integral: 0.51040 ± 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 / 30

II: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution: After 200 epochs:

Final cut efficiency: 89 % Untrained efficiency: 51 %

Integral: 0.510508 Estimated integral: 0.51040 ± 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 / 30

II: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution: Final Distribution (500 epochs):

Final cut efficiency: 89 % Untrained efficiency: 51 %

Integral: 0.510508 Estimated integral: 0.51040 ± 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 / 30

II: Sherpa needs a high-dimensional integrator.

Sherpa is a Monte Carlo event generator for the Simulation of High-Energy
Reactions of PArticles. We use Sherpa to

compute the matrix element of the process.

map the unit-hypercube of our integration domain to momenta and
angles. To improve efficiency, Sherpa uses a recursive multichannel
algorithm.

⇒ ndim = 3nfinal − 4︸ ︷︷ ︸
kinematics

+ nfinal − 1︸ ︷︷ ︸
multichannel

However, the COMIX++ ME-generator uses color-sampling, so we should
also integrate over final state color configurations. While this improves
the efficiency, it is not possible to handle group processes like W + nj
with a single flow.

⇒ ndim = 4nfinal − 4 + 2ncolor https://sherpa.hepforge.org/

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 22 / 30

II: An easy example: e+e− → 3j .

← g color

← q color

← g color spectator

← cosϑ of decaying fermion with beam

← ϕ of decaying fermion with beam

← cosϑ of decay

← ϕ of decay

← propagator of decaying fermion

← multichannel

Target distribution

with learning color

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 23 / 30

II: An easy example: e+e− → 3j .

← g color

← q color

← g color spectator

← cosϑ of decaying fermion with beam

← ϕ of decaying fermion with beam

← cosϑ of decay

← ϕ of decay

← propagator of decaying fermion

← multichannel

Learned distribution

with learning color

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 24 / 30

II: An easy example: e+e− → 3j .

← cosϑ of decaying fermion with beam

← ϕ of decaying fermion with beam

← cosϑ of decay

← ϕ of decay

← propagator of decaying fermion

← multichannel

Target distribution

without learning color

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 25 / 30

II: An easy example: e+e− → 3j .

← cosϑ of decaying fermion with beam

← ϕ of decaying fermion with beam

← cosϑ of decay

← ϕ of decay

← propagator of decaying fermion

← multichannel

Learned distribution

without learning color

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 26 / 30

II: Comparing e+e− → 3j with and without
learning color.

with learning color

σ = 4879.8± 5.3pb

ηnew = 45%

Cut efficiency: 92 %

20 overweight events in 100k

without learning color

σ = 4883.5± 8.5pb

ηnew = 25%

Cut efficiency: 92 %

20 overweight events in 100k

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 27 / 30

II: High Multiplicities are still difficult to learn.

unweighting efficiency LO QCD

〈w〉/wmax n =0 n =1 n =2 n =3

W + + n jets Sherpa 2.8 · 10−1 3.8 · 10−2 7.5 · 10−3 1.5 · 10−3

i-flow 6.1 · 10−1 1.2 · 10−1 1.0 · 10−2 1.8 · 10−3

Gain 2.2 3.3 1.4 1.2

W − + n jets Sherpa 2.9 · 10−1 4.0 · 10−2 7.7 · 10−3 2.0 · 10−3

i-flow 7.0 · 10−1 1.5 · 10−1 1.1 · 10−2 2.2 · 10−3

Gain 2.4 3.3 1.4 1.1

Z + n jets Sherpa 3.1 · 10−1 3.6 · 10−2 1.5 · 10−2 4.7 · 10−3

i-flow 3.8 · 10−1 1.0 · 10−1 1.4 · 10−2 2.4 · 10−3

Gain 1.2 2.9 0.91 0.51

C. Gao, S. Höche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 28 / 30

II: There are numerous ways to improve i-flow
in the near future.

adjust hyperparameters

use a CNN in the CL

introduce Conditional Normalizing Flows or Discrete Flows to improve
the multichannel or color sampling
Winkler et al. [1912.00042]; Tran et al. [1905.10347]

“learn” the permutations: using 1× 1 convolutions
Kingma/Dhariwal [1807.03039]

improve memory consumption with checkpointing
Chen et al. [1604.06174]

. . .

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 29 / 30

Efficient Event Generation with Normalizing Flows
— i-flow —

I introduced numerical integration with Monte Carlo
techniques and importance sampling.

I discussed “traditional” algorithms like VEGAS or Foam,
and the Machine Learning approach using Normalizing
Flows.

I presented i-flow, our python implementation of
Normalizing Flows and showed its performance in test
functions. ⇒ [2001.05486, ML:ST]

I showed results for pp →W + nj with Sherpa.
⇒ [2001.10028,PRD]

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 30 / 30

	Part I: Monte Carlo Integration with Importance Sampling
	Part II: i-flow and its Applications

