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Efficient Event Generation with Normalizing Flows

Part I:  Monte Carlo Integration with
Importance Sampling

Part Il:  i-flow and its Applications
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. || I: Importance Sampling is an efficient tool to
\ || estimate an integral.

1
1
/0 f(X) dx M, N z’: f(X) X; ... uniform

1 > =
(%) o MC 1 f(xi) . 2

= = d = = Fooc
/O q(X) q(X) X importance sampling N Z q( ,') g q(X)

We therefore have to find a g(x) that approximates the shape of f(X)
and is “easy” enough such that we can sample from its inverse cdf.

= This q(X) is also important for event generation!
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of the approximation q(x).

I: The unweighting efficiency measures the quality

@ If g(X) = const., each event X; would require a weight of f(X;) to

reproduce the distribution of £(X).

= “Weighted Events”

o If g(X) ox f(X), all events would have the same weight as the

distribution reproduces f(X) directly.

= “Unweighted Events"

o To unweight, we need to accept/reject each event with
probability mLX,gX) The resulting set of kept

events is unweighted and reproduces the shape of 7(X)

@ The unweighting efficiency 7 gives the fraction of events
that “survives” this procedure.

mean w
maxw '

__ # accepted events __

(%)
= # all events X;
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|: The usual definition of unweighting efficiency is
unstable if many events are generated.

Problems of the old definition:
@ The maximum grows with the number of
events drawn.

@ If more points are drawn than used in
training, the chance for outliers increases a
lot.

o Generating smaller subsets doesn't work,
because we want a globally unweighted set
of events.

Our new definition:
@ Assuming we used N events during optimization, draw n/N, events.
@ Now, select m replicas of Nyp: events each and find their maximum weight.
@ Compute the total maximum as the median of the individual maxima.

@ We expect a few overweight events that can either be discarded or included
with their weights set to wmax (Requiring further control plots!).
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|: The VEGAS algorithm is very efficient.

The VEGAS algorithm Peter Lepage 1980

@ assumes the integrand factorizes and bins the 1-dim projection.
@ then adapts the bin edges such that area of each bin is the same.

stratified sampling.

@ It does have problems if the features are { ;
not aligned with the coordinate axes.

@ The current python implementation also uses ( )
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I: The Foam algorithm resolves correlations.

S. Jadach [physics/0203033]

The Foam algorithm
@ In the exploration phase, the integration domain is consecutively split

into cells.
@ In the generation phase, a cell is chosen at random and a point is

drawn uniformly from within that cell.

il Sl
R

illustrations from ICHEP 2002 slides, S. Jadach

@ It captures correlations, but within each cell g(X) = const.

@ In addition, the exploration phase requires many functional calls.
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I: Neural Networks can find better g(X)

—

We could use the NN as nonlinear coordinate transform:

@ We use a deep NN with ngj,, nodes in the first and last layer to map a

uniformly distributed X to a target g(X).

@ The distribution induced by the map y(X) (=NN) is given by the

Jacobian of the map:

2\ — () — |97
q(y) = a(v(x)) = |5z Klimek /Perelstein [arXiv:1810.11509]
Jacobian
y =x° oyt 1
Ix T 2x

= The Jacobian is needed to evaluate the loss and to sample. However, it
scales as O(n®) and is too costly for high-dimensional integrands!
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I: Normalizing Flows are numerically cheaper.

A Normalizing Flow:

@ is a bijective, smooth mapping between two statistical distributions.

@ is composed of a series of easy transformations, the “Coupling Layers”.

@ is still flexible enough to learn complicated distributions.

= The NN does not learn the transformation, but the parameters of a se-
ries of easy transformations.

@ The idea was introduced as “Nonlinear Independent Component
Estimation” (NICE) in Dinh et al. [arXiv:1410.8516].

@ In Rezende/Mohamed [arxiv:1505.05770], Normalizing Flows were first
discussed with planar and radial flows.

@ We follow the ideas of Miiller et al. [arXiv:1808.03856],
but with the modifications of Durkan et al. [arXiv:1906.04032].
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|: The Coupling Layer is the fundamental Building
Block.

XA

X @@ Y permutation '—)

xg —C(xg; m(xa))

forward: The C are numerically cheap, invertible, and
YA = XA separable in xg ;.
yg,i = C(x,i; m(xa)) _
Jacobian:
inverse: ay| |1 gTC . ﬂ-aC(XB’i; m(xa))
ez 97| |0 2817 oxg,
xg,i = C(ys,ii m(xa
(Vi m{xa)) o)
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Efficient Event Generation with Normalizing Flows

Part I:  Monte Carlo Integration with
Importance Sampling

Part Il:  i-flow and its Applications
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[I: i-flow, a flexible Normalizing Flow
Implementation.

i-flow C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
o implements Normalizing Flows in python using TensorFlow 2.0.

@ is available at gitlab.com/i-flow/i-flow.
The user can choose different

@ Transformations in the Coupling Layer,
@ Loss functions,
@ Neural Network architectures,

@ Settings for hyperparameters.

How it works:

S (Xi)
— x - _— — —
i-flow I H

R LS —

T—{ apply gradient descent '—‘

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020

12 / 30



II: The Coupling Function is a piecewise
approximation to the cdf.

piecewise linear coupling function: Miller et al. [arXiv:1808.03856]

b—1
pdf odf C= Z Qi + aQp
k=1
@ = x—(bw—l)w
oC Qs
el

The NN predicts the pdf bin heights Q;.

rational quadratic spline coupling function: Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal of Numerical Analysis, '82]

cdf

3 202 + ara + ag o still rather easy

" bha? + bia+ by @ more flexible

The NN predicts the cdf bin widths, heights, and derivatives that go in a;&b;.
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lI: The Loss function quantifies our goal.

We have different choices:
o Kullback-Leibler (KL) divergence:
Dki = [ p(x Iog X) jdx ~ =3 5(—;) log Zg;;, Xi ... q(x)

N2

@ Pearson x? divergence:

X)—q(x 2
szzf(p( )q(;/)( )" s

Q

@ Exponential divergence:
2
Dexp = | p(x) (Iog 8) dx =~ %ZZE (Iogﬁ&?) , Xi---q(x)

We use the ADAM optimizer for stochastic gradient descent:
@ The learning rate for each parameter is adapted separately, but based
on previous iterations.
@ This is effective for sparse and noisy functions.  Kingma/Ba [arXiv:1412.6080]
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Il: There are many hyperparameters to adjust.

Available Architectures: Miiller et al. [arXiv:1808.03856]
“Fully Connected” Neural Net (NN):  “U-shaped” Neural Net (Unet):

Tnput Layer

Output Layer

There are additional hyperparameters that can be adjusted:
@ learning schedule:  schedule function (const., exponential, .. .), initial
learning rate, decay rate and step size, ...

@ training: which loss function, # epochs, # samples per epoch

@ normalizing flow specific: ~ # (input/output) bins, how to split dims
inside CL, # CLs, which function in the CLs
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Il: We need O(log n) Coupling Layers.

How many Coupling Layers do we need?

@ Enough to learn all correlations between the variables.
@ As few as possible to have a fast code.

@ This depends on the applied permutations and the xa4 — xg-splitting:
(pppttt)<>(tttppp)  vs.  (pppptt)<>(ppttpp)<«>(ttpppp)

@ More pass-through dimensions (p) means more points required for
accurate loss.

@ Fewer pass-through dimensions means more CLs needed.

o For #p =~ #t, we argue that ‘ 4 < #CLs < 2[logy Ngim | ‘ is sufficient
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[I: i-flow is

best at high dimensions.

=
Dim VEGAS Foam i-flow
2 164,436 6, 259, 812 2,310, 000
Cavssian 4 631, 874 24,004, 679 2,285, 000
8 1,299,718 > 50, 000, 000 3,095, 000
16 2,772,216 > 50, 000, 000 7,230, 000
2 421,475 5,610, 646 2,225,000
Camel 4 24,139, 889 21,821,075 8, 220, 000
8 > 50, 000, 000 f > 50, 000, 000 19, 460, 000
16 903, 204 1 > 50, 000, 000 32,145, 000 1
Entangled circles 2 43,367,192 17,499, 823 23,105, 000
Annulus w. cuts 2 4,981,080 { 11, 219, 498 17, 435, 000
Scalar-top-loop 3 152, 957 5,290, 142 685, 000
. 18 42,756,678 > 50, 000, 000 585, 000
Polynomial 54 > 50, 000, 000 > 21,505, 000 * 685, 000
X=X A xi 96 > 50, 000, 000 { > 10, 235, 000 x* 1,145,000

Table: Number of functional calls to reach a total relative uncertainty of 10~*
(for the first 11 cases) or 10~° (for the last 3 cases). The integrator with the
fewest functional calls is highlighted in boldface. A { indicates that the algorithm
did not converge to the true integral value within 5 standard deviations, a *

indicates cases where the algorithm ran out of memory before the cut-off was

reached.
= J
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Il: i-flow has a high accuracy.

Dim VEGAS (pull) Foam (pull) i-flow (pull)

2 0.99925(10) 0.7 0.99925(10) 0.6 0.99919(10) 0.1

Cometien 4 0.99861(10) 2.4 0.99835(10) —0.2 0.99841(10) 0.4
8 0.99694(10) 1.9 | 0.99439(37) T —6.4 0.99684(10) 0.9

16 0.99357(10) 0.6 | 0.54986(235) 1  —188 0.99354(10) 0.4

2 0.98175(10) 0.9 0.98163(10) —03 0.98165(10) —0.1

ol 4 0.96345(10) —2.2 0.96361(10) —0.5 0.96365(10) —0.02
8 0.92495(28) 1 —13 | 0.92798(19) T —3.5 0.92843(9) —2.2

16 0.43137(9) —5001 | 0.76921(129) 1 —72 0.85940(9) —34

Ent. circles 2 0.0136798(14) —3.6 | 0.0136838(14) 0.7 | 0.0136829(14) —1.4
Annulus 2 0.509813(51) —14 0.510559(51) 1.0 | 0.510511(51) 0.1
Top-loop -10™° 3 1.93711(19) 0.7 1.93708(19) 0.6 1.93677(19) —1.0
Teymenie 18 2.99989(3) —3.6 | 2.99986(12) T —1.1 2.999907(3) —11
2 54 8.99972(19) 1 —1.5 | 9.00013(32) * 0.4 9.00001(9) 0.2
X=X X 96 0.15547(52) 1 —30683 16.0004(3) * 1.7 15.9998(2) —1.2

Table: Integral estimate and uncertainty together with their relative deviations
("pull”). A { indicates that the algorithm reached a cut-off of 5- 107 function
calls before the target uncertainty was reached, a * indicates cases where the
algorithm ran out of memory before the cut-off was reached.
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lI: i-flow adapts well to the integrand.

Dim VEGAS Foam i-flow
2 7-107° 3.10° 2-107 % %
-3 -3 -3
Canesin 4 1.5 10_3 3- 10_2 1.5- 10_3 *
8 2.5-10 3.10 1.5-1073
16 3.5.1073 2.1072 2.5-1073 %
2 2.10°° 2.10°° 2-1077
-3 -2 -3
Camel 4 8-102 1-10 , 4-103
8 4.10~ 1.6 - 10~ 5.10"
16 t 1.5-107! 5.1073
Entangled circles 2 1.107° 4.103 5.107°
Annulus w. cuts 2 3.10° 4.10° 3% « 5.10 °
Scalar-top-loop 3 7-10°% 5.10~° 5.107% «
=3 =3 —5
R — 18 1.5-10 , 1.5-10 hE 8-10 °s
S 4 54 3-10° 9-10~ « 8-107° «
i e 96 t 8-107* « 1-107%
Table: Relative uncertainty on the integral estimate of the last iteration, based on
a sample of 5000 points. A x indicates when the value was still decreasing and
had not yet converged, a t is in place where the algorithm did not converge to
the true integrand.
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[I: i-flow
Iterations.

Total relative integral uncertainty

Total relative integral uncertainty

adapts better, but needs more

100 - - 100
— iflow 4-dimensional
—— VEGAS

1o1] — FoAM Gaussian 101

1072
1073
4

H
<

H
2

Total relative integral uncertainty

4-dimensional

Camel

105 10¢
Evaluations in training

Scalar Top Loop

10~ 1074
104 10° 10° 104
Evaluations in training
100 10° =
— Hflow 54-dimensional — flow
—— VEGAS > —— VEGAS
10-14 — FOAM . £ —— FOAM
Polynomial 810!
I
g
1072 >
T
§ 1072
- £
10- s
2
8 193
1074 £
T
g
2
105 1074
10° 10° 104

Evaluations in training
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[I: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.

Target Distribution:

Before training:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
Estimated integral: 0.51040 + 0.00018

@ Integral: 0.510508
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[I: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.
Target Distribution: After 10 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
@ Integral: 0.510508 Estimated integral: 0.51040 + 0.00018
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[I: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.
Target Distribution: After 50 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
@ Integral: 0.510508 Estimated integral: 0.51040 + 0.00018

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 21 /30



[I: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.
Target Distribution: After 100 epochs:

o Final cut efficiency: 89 % Untrained efficiency: 51 %
@ Integral: 0.510508 Estimated integral: 0.51040 + 0.00018
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[I: i-flow also learns hard, non-trivial cuts.

Our test function: a 2d annulus function.
Target Distribution: Final Distribution (500 epochs):

o Final cut efficiency: 89 % Untrained efficiency: 51 %
o Integral: 0.510508 Estimated integral: 0.51040 £ 0.00018
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lI: Sherpa needs a high-dimensional integrator.

(Sherpa is a Monte Carlo event generator for the Simulation of High-Energy )
Reactions of PArticles. We use Sherpa to
@ compute the matrix element of the process.

@ map the unit-hypercube of our integration domain to momenta and
angles. To improve efficiency, Sherpa uses a recursive multichannel
algorithm.

= Ndim = 3Nfina) — 4+ Ngina — 1
—_——  —

kinematics multichannel

@ However, the COMIX++ ME-generator uses color-sampling, so we should
also integrate over final state color configurations. While this improves
the efficiency, it is not possible to handle group processes like W + nj
with a single flow.

= Ndim = 4Nfinal — 4 + 2Ncofor

https://sherpa. hepforge.org/)
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II: An easy example: ete™ — 3j.

o ‘ <+ g color
. ‘ Target distribution ‘
;ﬁ < ¢ color
‘E-- ‘ “8 color spectator ‘Wlth learning color‘

“<— cos ¥ of decaying fermion with beam

=N
'@W n

- E ( ‘ < cos v of decay
bl =
E!@EESE '« propagator of decaying fermion

NI

— N of decaying fermion with beam
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II: An easy example: ete™ — 3j.

[~ ‘ + g color

g ‘ Learned distribution ‘
u < ¢ color

;{_- ‘ g color spectator ‘With learning color‘

<— cos19 of decaying fermion with beam

IR cp of decaying fermion with beam

‘ + ¢ of decay

w”mw‘ < propagator of decaying fermion
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II: An easy example: ete™ — 3j.

< cos ¥ of decaying fermion with beam

;‘H:;
|

( W — <p of decaying fermion with beam ‘Target distribution ‘

—

¢ cos ¥ of decay ‘Without learning coIor‘

<

©
=
[}
©
<%
Q
[%]
t
[}
=
o
=
(e}
(0]
el
%)
=.
>
(5]
o
=
3,
o
=]

—c |

< multichannel
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lI: An easy example: ete™ — 3j.

e cos ) of decaying fermion with beam

<+ propagator of decaying fermion

=
.]@fﬁ <_ multichannel
w iR
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II: Comparing ee~ — 3/ with and without
learning color.

with learning color without learning color

10° 10° 10°

10° 10

o = 4879.8 £ 5.3pb

Tnew = 45%

Cut efficiency: 92 %

20 overweight events in 100k

o = 4883.5 £ 8.5pb

Nhew = 25%

Cut efficiency: 92 %

20 overweight events in 100k
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lI: High Multiplicities are still difficult to learn.

unweighting efficiency LO QCD

(W) /Wmax n =0 n=1 n =2 n=3

W+ 4+ njets Sherpa 2.8-107¢ 3.8-1072 75-1073 1.5-1073
i-flow 6.1-107! 1.2-1071 1.0-1072 1.8-1073
Gain 22 33 1.4 1.2

W™ + njets Sherpa 2.9.-1071 4.0-1072 7.7-1073 2.0-1073
i-flow 7.0-107¢ 1.5-1071 1.1-1072 2.2.1073
Gain 2.4 33 1.4 1.1

Z + n jets Sherpa 3.1-107¢ 3.6- 1072 1.5-1072 47.1073
i-flow 3.8-107¢ 1.0-1071 1.4-1072 2.4.1073
Gain 1.2 2.9 0.91 0.51

C. Gao, S. Hoche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]

Claudius Krause (Fermilab) i-flow: Event Generation with Normalizing Flows September 8, 2020 28 / 30



[I: There are numerous ways to improve i-flow
in the near future.

@ adjust hyperparameters
@ use a CNN in the CL
@ introduce Conditional Normalizing Flows or Discrete Flows to improve

the multichannel or color sampling
Winkler et al. [1912.00042]; Tran et al. [1905.10347]

@ “learn” the permutations: using 1 X 1 convolutions
Kingma/Dhariwal [1807.03039]

@ improve memory consumption with checkpointing
Chen et al. [1604.06174]
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Efficient Event Generation with Normalizing Flows
— i-flow —

@ | introduced numerical integration with Monte Carlo
techniques and importance sampling.

o | discussed “traditional” algorithms like VEGAS or Foam,
and the Machine Learning approach using Normalizing
Flows.

@ | presented i-flow, our python implementation of
Normalizing Flows and showed its performance in test
functions. = [2001.05486, ML:ST]

@ | showed results for pp — W + nj with Sherpa.
= [2001.10028, PRD]
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