Efficient Event Generation with Normalizing Flows — IML Machine Learning Working Group Meeting —

Claudius Krause

Fermi National Accelerator Laboratory

September 8, 2020

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

In collaboration with: Christina Gao, Stefan Höche, Joshua Isaacson, Holger Schulz arXiv: 2001.05486, ML:ST and arXiv: 2001.10028, PRD gitlab.com/i-flow/i-flow

Efficient Event Generation with Normalizing Flows

Part I: Monte Carlo Integration with Importance Sampling

Part II: i-flow and its Applications

I: Importance Sampling is an efficient tool to estimate an integral.

$$\begin{array}{cccc} & \int_{0}^{1} f(\vec{x}) \ d\vec{x} & \xrightarrow{\mathrm{MC}} & \frac{1}{N} \sum_{i} f(\vec{x}_{i}) & \vec{x}_{i} \dots \text{uniform} \\ \\ & = \int_{0}^{1} \frac{f(\vec{x})}{q(\vec{x})} \ q(\vec{x}) d\vec{x} & \xrightarrow{\mathrm{MC}} & \frac{1}{N} \sum_{i} \frac{f(\vec{x}_{i})}{q(\vec{x}_{i})} & \vec{x}_{i} \dots q(\vec{x}) \end{array}$$

We therefore have to find a $q(\vec{x})$ that approximates the shape of $f(\vec{x})$ and is "easy" enough such that we can sample from its inverse cdf.

 \Rightarrow This $q(\vec{x})$ is also important for event generation!

I: The unweighting efficiency measures the quality of the approximation $q(\vec{x})$.

- If $q(\vec{x}) = \text{const.}$, each event \vec{x}_i would require a weight of $f(\vec{x}_i)$ to reproduce the distribution of $f(\vec{x})$. \Rightarrow "Weighted Events"
- If $q(\vec{x}) \propto f(\vec{x})$, all events would have the same weight as the distribution reproduces $f(\vec{x})$ directly. \Rightarrow "Unweighted Events"
- To unweight, we need to accept/reject each event with probability $\frac{f(\vec{x}_i)}{\max f(\vec{x})}$. The resulting set of kept events is unweighted and reproduces the shape of $f(\vec{x})$.
- The unweighting efficiency η gives the fraction of events that "survives" this procedure.

$$\eta = \frac{\# \text{ accepted events}}{\# \text{ all events}} = \frac{\text{mean } w}{\max w}$$
, with $w_i = \frac{f(\vec{x}_i)}{q(\vec{x}_i)}$.

I: The usual definition of unweighting efficiency is unstable if many events are generated.

Problems of the old definition:

- The maximum grows with the number of events drawn.
- If more points are drawn than used in training, the chance for outliers increases a lot.
- Generating smaller subsets doesn't work, because we want a globally unweighted set of events.

Our new definition:

- Assuming we used N_{opt} events during optimization, draw nN_{opt} events.
- Now, select m replicas of N_{opt} events each and find their maximum weight.
- Compute the total maximum as the median of the individual maxima.
- We expect a few overweight events that can either be discarded or included with their weights set to w_{max} (Requiring further control plots!).

I: The usual definition of unweighting efficiency is unstable if many events are generated.

Our new definition:

- Assuming we used N_{opt} events during optimization, draw nN_{opt} events.
- Now, select m replicas of N_{opt} events each and find their maximum weight.
- Compute the total maximum as the median of the individual maxima.
- We expect a few overweight events that can either be discarded or included with their weights set to w_{max} (Requiring further control plots!).

I: The VEGAS algorithm is very efficient.

- It does have problems if the features are not aligned with the coordinate axes.
- The current python implementation also uses stratified sampling.

I: The Foam algorithm resolves correlations.

The Foam algorithm S. Jadach [physics/0203033]

- In the exploration phase, the integration domain is consecutively split into cells.
- In the generation phase, a cell is chosen at random and a point is drawn uniformly from within that cell.

- It captures correlations, but within each cell $q(\vec{x}) = \text{const.}$
- In addition, the exploration phase requires many functional calls.

We could use the NN as nonlinear coordinate transform:

- We use a deep NN with n_{dim} nodes in the first and last layer to map a uniformly distributed \vec{x} to a target $q(\vec{x})$.
- The distribution induced by the map $\vec{y}(\vec{x})$ (=NN) is given by the Jacobian of the map:

$$q(\vec{y}) = q(\vec{y}(\vec{x})) = \left| \frac{\partial \vec{y}}{\partial \vec{x}} \right|^{-1}$$

Klimek/Perelstein [arXiv:1810.11509]

 \Rightarrow The Jacobian is needed to evaluate the loss and to sample. However, it scales as $\mathcal{O}(n^3)$ and is too costly for high-dimensional integrands!

Claudius Krause (Fermilab)

I: Normalizing Flows are numerically cheaper.

A Normalizing Flow:

- is a bijective, smooth mapping between two statistical distributions.
- is composed of a series of easy transformations, the "Coupling Layers".
- is still flexible enough to learn complicated distributions.

 \Rightarrow The NN does not learn the transformation, but the parameters of a series of easy transformations.

- The idea was introduced as "Nonlinear Independent Component Estimation" (NICE) in Dinh et al. [arXiv:1410.8516].
- In Rezende/Mohamed [arXiv:1505.05770], Normalizing Flows were first discussed with planar and radial flows.
- We follow the ideas of Müller et al. [arXiv:1808.03856], but with the modifications of Durkan et al. [arXiv:1906.04032].

I: The Coupling Layer is the fundamental Building Block.

forward:

$$y_A = x_A$$

$$y_{B,i} = C(x_{B,i}; m(x_A))$$

The *C* are numerically cheap, invertible, and separable in $x_{B,i}$.

inverse:

$$x_A = y_A$$

$$x_{B,i} = C^{-1}(y_{B,i}; m(x_A))$$

Jacobian:

$$\frac{\partial \vec{y}}{\partial \vec{x}} = \begin{vmatrix} 1 & \frac{\partial C}{\partial x_B} \\ 0 & \frac{\partial C}{\partial x_B} \end{vmatrix} = \prod_i \frac{\partial C(x_{B,i}; m(x_A))}{\partial x_{B,i}}$$
$$\Rightarrow \mathcal{O}(n)$$

Efficient Event Generation with Normalizing Flows

Part I: Monte Carlo Integration with Importance Sampling

Part II: i-flow and its Applications

II: i-flow, a flexible Normalizing Flow Implementation.

- i-flow C. Gao, J. Isaacson, CK [arXiv:2001.05486, ML:ST]
 - implements Normalizing Flows in python using TensorFlow 2.0.
 - is available at gitlab.com/i-flow/i-flow.
- The user can choose different
 - Transformations in the Coupling Layer,
 - Loss functions,
 - Neural Network architectures,
 - Settings for hyperparameters.

II: The Coupling Function is a piecewise approximation to the cdf.

II: The Loss function quantifies our goal.

We have different choices:

• Kullback-Leibler (KL) divergence:

$$\mathcal{D}_{KL} = \int p(x) \log \frac{p(x)}{q(x)} dx \qquad \approx \qquad \frac{1}{N} \sum \frac{p(x_i)}{q(x_i)} \log \frac{p(x_i)}{q(x_i)}, \qquad x_i \dots q(x)$$

• Pearson
$$\chi^2$$
 divergence:
 $D_{\chi^2} = \int \frac{(p(x) - q(x))^2}{q(x)} dx \qquad \approx \qquad \frac{1}{N} \sum \frac{p(x_i)^2}{q(x_i)^2} - 1, \qquad x_i \dots q(x)$

• Exponential divergence: $D_{exp} = \int p(x) \left(\log \frac{p(x)}{q(x)} \right)^2 dx \approx \frac{1}{N} \sum \frac{p(x_i)}{q(x_i)} \left(\log \frac{p(x_i)}{q(x_i)} \right)^2, \quad x_i \dots q(x)$

We use the ADAM optimizer for stochastic gradient descent:

- The learning rate for each parameter is adapted separately, but based on previous iterations.
- This is effective for sparse and noisy functions. Kingma/Ba [arXiv:1412.6980]

II: There are many hyperparameters to adjust.

There are additional hyperparameters that can be adjusted:

- learning schedule: schedule function (const., exponential, ...), initial learning rate, decay rate and step size, ...
- training: which loss function, # epochs, # samples per epoch
- normalizing flow specific: # (input/output) bins, how to split dims inside CL, # CLs, which function in the CLs

II: We need $\mathcal{O}(\log n)$ Coupling Layers.

How many Coupling Layers do we need?

- Enough to learn all correlations between the variables.
- As few as possible to have a fast code.
- This depends on the applied permutations and the $x_A x_B$ -splitting: (pppttt) \leftrightarrow (tttppp) vs. (pppptt) \leftrightarrow (ttppp)) \leftrightarrow (ttpppp)
- More pass-through dimensions (p) means more points required for accurate loss.
- Fewer pass-through dimensions means more CLs needed.

• For $\#p \approx \#t$, we argue that $|4 \le \#CLs \le 2\lceil \log_2 n_{dim} \rceil|$ is sufficient

II: i-flow is best at high dimensions.

	Dim	VEGAS	Foam	i-flow
Gaussian	2	164, 436	6,259,812	2, 310, 000
	4	631, 874	24,094,679	2,285,000
	8	1, 299, 718	> 50,000,000 †	3,095,000
	16	2, 772, 216	$>$ 50, 000, 000 \dagger	7,230,000
Camel	2	421, 475	5,619,646	2,225,000
	4	24, 139, 889	21,821,075	8, 220, 000
	8	$>$ 50, 000, 000 \dagger	> 50,000,000	19, 460, 000
	16	993, 294 †	$>$ 50, 000, 000 \dagger	32, 145, 000 †
Entangled circles	2	43, 367, 192 17 , 499 , 823		23, 105, 000
Annulus w. cuts	2	4,981,080 †	11, 219, 498	17, 435, 000
Scalar-top-loop	3 152,957		5, 290, 142	685,000
Polynomial $\sum_{i} -x_{i}^{2} + x_{i}$	18	42,756,678	> 50,000,000	585,000
	54	> 50,000,000	> 21, 505, 000 *	685,000
	96	$>$ 50,000,000 \dagger	> 10, 235, 000 *	1, 145, 000

Table: Number of functional calls to reach a total relative uncertainty of 10^{-4} (for the first 11 cases) or 10^{-5} (for the last 3 cases). The integrator with the fewest functional calls is highlighted in boldface. A \dagger indicates that the algorithm did not converge to the true integral value within 5 standard deviations, a * indicates cases where the algorithm ran out of memory before the cut-off was reached.

II: i-flow has a high accuracy.

	Dim	VEGAS	(pull)	Foam	(pull)	i-flow	(pull)
Gaussian	2	0.99925(10)	0.7	0.99925(10)	0.6	0.99919(10)	0.1
	4	0.99861(10)	2.4	0.99835(10)	-0.2	0.99841(10)	0.4
	8	0.99694(10)	1.9	0.99439(37) †	-6.4	0.99684(10)	0.9
	16	0.99357(10)	0.6	0.54986(235) †	-188	0.99354(10)	0.4
Camel	2	0.98175(10)	0.9	0.98163(10)	-0.3	0.98165(10)	-0.1
	4	0.96345(10)	-2.2	0.96361(10)	-0.5	0.96365(10)	-0.02
	8	0.92495(28) †	-13	0.92798(19) †	-3.5	0.92843(9)	-2.2
	16	0.43137(9)	-5001	0.76921(129) †	-72	0.85940(9)	-34
Ent. circles	2	0.0136798(14)	-3.6	0.0136838(14)	-0.7	0.0136829(14)	-1.4
Annulus	2	0.509813(51)	-14	0.510559(51)	1.0	0.510511(51)	0.1
Top-loop ·10 ¹⁰	3	1.93711(19)	0.7	1.93708(19)	0.6	1.93677(19)	-1.0
Polynomial	18	2.99989(3)	-3.6	2.99986(12) †	-1.1	2.99997(3)	-1.1
	54	8.99972(19) †	-1.5	9.00013(32) *	0.4	9.00001(9)	0.2
$\sum_{i} -x_{i}^{2} + x_{i}$	96	0.15547(52) †	-30683	16.0004(3) *	1.7	15.9998(2)	-1.2

Table: Integral estimate and uncertainty together with their relative deviations ("pull"). A \dagger indicates that the algorithm reached a cut-off of $5 \cdot 10^7$ function calls before the target uncertainty was reached, a * indicates cases where the algorithm ran out of memory before the cut-off was reached.

II: i-flow adapts well to the integrand.

	Dim	VEGAS	Foam	i-flow
	2	$7 \cdot 10^{-4}$	$3 \cdot 10^{-3}$	$2 \cdot 10^{-3} *$
Gaussian	4	$1.5 \cdot 10^{-3}$	$3 \cdot 10^{-3}$	$1.5 \cdot 10^{-3} *$
Guussiun	8	$2.5 \cdot 10^{-3}$	$3 \cdot 10^{-2}$	$1.5 \cdot 10^{-3} *$
	16	$3.5 \cdot 10^{-3}$	$2 \cdot 10^{-2}$	$2.5 \cdot 10^{-3} *$
	2	$2 \cdot 10^{-3}$	$2 \cdot 10^{-3}$	$2 \cdot 10^{-3} *$
Camel	4	$8 \cdot 10^{-3}$	$1 \cdot 10^{-2}$	$4 \cdot 10^{-3}$
Callici	8	$4 \cdot 10^{-2}$	$1.6 \cdot 10^{-2}$	$5 \cdot 10^{-3}$
	16	†	$1.5\cdot10^{-1}$	$5 \cdot 10^{-3}$
Entangled circles	2	$1 \cdot 10^{-2}$	$4 \cdot 10^{-3}$	$5 \cdot 10^{-3} *$
Annulus w. cuts	2	$3 \cdot 10^{-3}$	$4 \cdot 10^{-3} *$	$5 \cdot 10^{-3}$
Scalar-top-loop	3	$7 \cdot 10^{-4}$	$5 \cdot 10^{-4}$	$5 \cdot 10^{-4} *$
Polynomial	18	$1.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3} *$	$8 \cdot 10^{-5} *$
$\sum v^2 + v$	54	$3 \cdot 10^{-3}$	$9 \cdot 10^{-4} *$	$8 \cdot 10^{-5} *$
$\sum_{i} -x_i + x_i$	96	†	$8 \cdot 10^{-4} *$	$1 \cdot 10^{-4} *$

Table: Relative uncertainty on the integral estimate of the last iteration, based on a sample of 5000 points. A * indicates when the value was still decreasing and had not yet converged, a \dagger is in place where the algorithm did not converge to the true integrand.

II: i-flow adapts better, but needs more iterations.

• Integral: 0.510508 Estimated integral: 0.51040 \pm 0.00018

• Integral: 0.510508 Estimated integral: 0.51040 \pm 0.00018

Claudius Krause (Fermilab)

-flow: Event Generation with Normalizing Flows

• Integral: 0.510508 Estimated integral: 0.51040 \pm 0.00018

 \bullet Integral: 0.510508 \qquad Estimated integral: 0.51040 \pm 0.00018

i-flow: Event Generation with Normalizing Flows

II: Sherpa needs a high-dimensional integrator.

Sherpa is a Monte Carlo event generator for the Simulation of High-Energy Reactions of ${\bf PA}$ rticles. We use Sherpa to

- compute the matrix element of the process.
- map the unit-hypercube of our integration domain to momenta and angles. To improve efficiency, Sherpa uses a recursive multichannel algorithm.

$$\Rightarrow n_{dim} = \underbrace{3n_{final} - 4}_{kinematics} + \underbrace{n_{final} - 1}_{multichannel}$$

• However, the COMIX++ ME-generator uses color-sampling, so we should also integrate over final state color configurations. While this improves the efficiency, it is not possible to handle group processes like W + nj with a single flow.

$$\Rightarrow n_{dim} = 4n_{final} - 4 + 2n_{color}$$

https://sherpa.hepforge.org/

II: An easy example: $e^+e^- \rightarrow 3j$.

Claudius Krause (Fermilab)

II: An easy example: $e^+e^- \rightarrow 3j$.

II: An easy example: $e^+e^- ightarrow 3j$.

Claudius Krause (Fermilab)

-flow: Event Generation with Normalizing Flows

II: An easy example: $e^+e^- \rightarrow 3j$.

II: Comparing $e^+e^- \rightarrow 3j$ with and without learning color.

II: High Multiplicities are still difficult to learn.

unweighting efficiency		LO QCD					
$\langle w \rangle / w_{ m max}$		<i>n</i> =0	n = 1	<i>n</i> =2	n =3		
$W^+ + n$ jets	Sherpa	$2.8\cdot 10^{-1}$	$3.8\cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$		
	i-flow	$6.1\cdot10^{-1}$	$1.2\cdot10^{-1}$	$1.0\cdot10^{-2}$	$1.8 \cdot 10^{-3}$		
	Gain	2.2	3.3	1.4	1.2		
$W^- + n$ jets	Sherpa	$2.9\cdot 10^{-1}$	$4.0\cdot10^{-2}$	$7.7\cdot10^{-3}$	$2.0\cdot10^{-3}$		
	i-flow	$7.0\cdot10^{-1}$	$1.5 \cdot 10^{-1}$	$1.1\cdot10^{-2}$	$2.2\cdot10^{-3}$		
	Gain	2.4	3.3	1.4	1.1		
Z + n jets	Sherpa	$3.1\cdot10^{-1}$	$3.6\cdot 10^{-2}$	$1.5\cdot 10^{-2}$	$4.7 \cdot 10^{-3}$		
	i-flow	$3.8\cdot10^{-1}$	$1.0\cdot10^{-1}$	$1.4\cdot10^{-2}$	$2.4 \cdot 10^{-3}$		
	Gain	1.2	2.9	0.91	0.51		
C. Gao, S. Höche, J. Isaacson, CK, H. Schulz [arXiv:2001.10028, PRD]							

II: There are numerous ways to improve i-flow in the near future.

- adjust hyperparameters
- use a CNN in the CL
- introduce Conditional Normalizing Flows or Discrete Flows to improve the multichannel or color sampling

Winkler et al. [1912.00042]; Tran et al. [1905.10347]

- "learn" the permutations: using 1×1 convolutions $_{\rm Kingma/Dhariwal~[1807.03039]}$
- improve memory consumption with checkpointing

```
Chen et al. [1604.06174]
```

• . . .

Efficient Event Generation with Normalizing Flows — i-flow —

- I introduced numerical integration with Monte Carlo techniques and importance sampling.
- I discussed "traditional" algorithms like VEGAS or Foam, and the Machine Learning approach using Normalizing Flows.

- I presented i-flow, our python implementation of Normalizing Flows and showed its performance in test functions. ⇒ [2001.05486, ML:ST]
- I showed results for $pp \rightarrow W + nj$ with Sherpa. \Rightarrow [2001.10028, *PRD*]

