Run 42725, EVENT 11016 9-APR-1998 01:30 Source: Run Data Pol: L Trigger: Energy CDC Hadron Beam Crossing 1016282084

b/c-tagging

Lecture 3

Advanced Tagging Concepts

Beginning of lifetime b tag

- 1984: Long B lifetime discovered by MAC/MK2@PEP
- 1986: First attempt of lifetime b-tag at TASSO@PETRA with vertex drift chamber
- 2-prong vertex combo weights with *event* tag efficiencies

ε _b	~18%
ε _c	1.7%
8 _{uds}	0.5%

- Tested b vs light jet properties,
- $\alpha_s(b)/\alpha_s(q)=1.17\pm0.50\pm0.28$

TASSO@PETRA e⁺e⁻ 35-44 GeV e⁺e⁻ $\rightarrow \gamma^* \rightarrow had$ b:c:uds=1:4:6

Tagging Signatures

B decay vertex zoo

Vertex Topologies

- b->c cascade vertex can often cause a vertex has only 1 track
- Tertiary vertex track can naturally have -ve impact parameter signs, especially in 2D
- SLD ZVTOP based tagging framework and ATLAS JetFitter are fully conscious of the cascade vertex structure

Vertexing Utilities

- Most common vertexing tools work on track combinatorial compatibilities.
- SLD ZVTOP topological vertexing searches for track overlap density peaks

D. J. Jackson, NIM A388 (1997), 247

There is an ATLAS implementation of ZVTOP

Single Track Vertices

- 'Ghost Track' algorithm was a variant of ZVTOP deployed in the SLD B_s mixing dipole analysis:
 - <u>https://arxiv.org/abs/hep-ex/0012043v1</u>
- A major feature of the JetFitter b-tag in ATLAS
 - Giacinto Piacquadio's thesis
 - Use b jet direction or existing secondary vertex as virtual b hadron "track" to intersect with additional candidate secondary tracks consistent with the cascade

Track i Primary Vertex B flight axis (X_{PV}, y_F flight axis

Attach Additional Secondary tracks

- Once a seed secondary vertex is found, the picture is sharpened.
- Second pass to look for additional tracks consistent with cascade decay along the vertex axis.
- 3D DOCA to vertex axis T<1mm to remove background
- L/D > 0.3 to pickup compatible tracks

Refined NN for Track Attachment

• <u>SLD Collab.: PRD</u> 71.112004,2005

<u>Tom Wright Ph.D</u>
<u>thesis: SLAC-R-602</u>
(2002)

What's a b jet?

- $g \rightarrow c\overline{c}$, $g \rightarrow b\overline{b}$ production measured at $e^+e^- \rightarrow Z$ experiments were x2 higher than MC
- Verified at hadron colliders later
- Issue still unresolved in current generators

Z->had	g →c <i>c</i> (%)	g → <i>bb</i> (%)
LEP/SLD	2.96 <u>+</u> 0.38	0.254 <u>+</u> 0.051
JETSET	1.36	0.142

Significant fraction of light jet "mis tag" at SLD

Nomenclature

- b-tag or B-tag ?
- Features generically aiming at b-quark should use "b".
- "B" is reserved for weakly decaying B mesons only.
- One way nomenclature:
 - b tag
 - b hadron (includes b baryon)
 - b fragmentation
 - B mixing
- Both ways possible depending on context:
 - B or b mass
 - B or b lifetime
 - B or b decay

Vertex Mass and Charm Tag

P_T Corrected Mass

- Vertex mass is the most important distinction between b and c
- $M_{corr} = \sqrt{m_{chrg}^2 + P_t^2} + |P_t|$
- Crucial to account vertex resolution
- Limit correction $\delta M < M_{raw}$

P_{T} corrected mass

SLD VXD2

ATLAS simulation

Multivariant

Multivariant tag

Charm tagging

 $Z^0 \rightarrow c\bar{c}$ branching ratio

R_c Measurements (Summer-2001)

b/c separation with vertex mass tag b contamination in c-tag also calibrated SLD R_b,R_c PRD 71 112004 (2005)

Precision from double tag ϵ^2 LEP:4x4MZ vs SLD 0.5MZ