MoEDAL-MAPP Weekly Meets

July 31 2020

Michael Staelens

staelens@ualberta.ca

Overview

MAPP Detector Construction

Polishing and wrapping scintillator bars for MAPP-mCP (inner core of MAPP)

Update this week from Alejandro

MAPP - Fiducial Efficiency Calculations

Large # of simulations needed suggests using an alternative approach. (for LLPs)

Can use a mixture of simulations and numerical integration.. but we are still working this out.

The Physics Case of the MAPP Detector

Updates on LLP Models:

Dark Photons

ALPs

mCP EPJ Paper Draft Shared

Emergent Monopoles

Modeling Emergent Monopole Excitations in spin ice.

Calculation Part 1: Second Quantized Hamiltonian

MAPP - Fiducial Efficiency Calculations

Fiducial Efficiency Calculations

The geometric acceptance of the CODEX-b box is \sim 1% (normalized to 4π). The LLP reach is attenuated further by the distribution of the LLP production and interplay between the LLP lifetime τ and the box depth. The number of LLP decay vertices expected in the box

$$N_{\text{box}} = \mathcal{L}_{\text{LHCb}} \times \sigma_{pp \to \varphi X} \times \int_{\text{vol}} \frac{d\varepsilon(r, \eta)}{dV} dV$$
, (1)

where the location of the box is specified by an azimuthal angle, the distance from the IP, r, and the pseudorapidity, η . In these coordinates, the differential fiducial efficiency is

$$\frac{d\varepsilon(r,\eta)}{dV} = \frac{1}{2\pi r^2 c\tau} \int \!\! d\beta \; w(\beta,\eta) \times \frac{e^{-r/(c\tau\beta\gamma)}}{\beta\gamma}. \tag{2}$$

Codex-b Method for Integrating over Box

c.f. Arxiv:1708.09395

Calculation of (3)

Jacobian for change to eta-phi space

Physics Performance of the MoEDAL-MAPP Detector

MAPP-LLP Physics Performance Cases

Light Scalar Portal (Dark Higgs)

We are working on solutions to the large # of events required to generate MAPP-2, 3 ab-1, limit curves.

c.f. Arxiv:1708.09395

Vector Portal (Dark Photon)

Limit Plots are being updated (we can now show the full limits curves from 10-300 MeV or so)

Axion-Like Particle (ALPs)

Branching Ratio Formula Doesn't Match Plot

Calculated it w/ Mathematica to clarify.

c.f. Arxiv:1806.02348 (Published version still has same issue)

LLPs @ MAPP via Rare Meson Decays: A Summary

B, π and η decays are being studied.

Dark Higgs

$$N_{\phi,events} = \mathcal{L}_{LHCb} \times \sigma_{pp \to \phi X} \times BR(B \to X_s \phi)$$
 (1)

$$N_{\phi,Codex-b} = \mathcal{L}_{LHCb} \times \sigma_{b\bar{b}} \times BR(B \rightarrow X_s \phi) \times \epsilon_{fid,Codex-b}$$
 (2)

$$N_{\phi,MAPP} = \mathcal{L}_{LHCb} \times \sigma_{b\bar{b}} \times BR(B \rightarrow X_s \phi) \times \epsilon_{fid,MAPP}$$
 (3)

where $\sigma_{b\bar{b}} \sim 500~\mu b$ for $\sqrt{s} = 14~\text{TeV}$, and $\mathcal{L}_{LHCb} = 300~\text{fb}^{-1}$. Here ϵ_{fid} should take into account $BR(\phi \to \mu^+\mu^-)$. (Any cuts as well.. e.g. tracking requirements.) In any case, ϵ_{fid} is obtained by simulations (Pythia8).

Light Scalar Portal (Dark Higgs)

Limit plots enforce 2 requirements:

- 1. 4 Decays phi--> μ+μ- inside MAPP-LLP-1
- 2. Both μ hit at least 2 planes of the detector (~80% eff.?)

Dark Photons

$$N_{\gamma',events} = \mathcal{L}_{LHCb} \times \sigma_{pp,inel} \times N_{M/pp} \times BR(M \rightarrow \gamma'\gamma)$$
 (4)

$$N_{\gamma',MAPP} = N_{M,tot} \times BR(M \rightarrow \gamma'\gamma) \times \times \epsilon_{fid,MAPP}$$
 (5)

where $N_{M,tot}$ is the total number of expected mesons M given $\mathcal{L}_{LHCb}{=}300$ fb⁻¹ and $\sigma_{pp,inel} \sim 75mb$ at $\sqrt{s} = 13$ TeV. Here ϵ_{fid} should take into account $BR(\gamma' \to l^+l^-)$ for $(l = e, \mu)$.

More precisely $\sigma_{pp,inel} = 75.4 \pm 3.0 \pm 4.5$ mb. (Taken from https://arxiv.org/pdf/1803.10974.pdf)

N.B. I calculated $N_{\pi^0,tot} \sim 4.7*10^{17}$ (which matches the multiplicity of pions found by both Pythia simulations and the paper from ACTA PHYSICA POLONICA Vol. B4 1973). Eta multiplicities are in alignment as well. $N_{\eta,tot} \sim 5.1*10^{16}$.

Vector Portal (Dark Photon)

Limit plots here require only 3 decays of γ' --> l+l- (l=e, μ -) inside MAPP-LLP-1. No cuts.

Axion-like Particles

$$N_{a,events} = \mathcal{L}_{LHCb} \times \sigma_{pp,inel} \times N_{M/pp} \times BR(M \rightarrow a\gamma\gamma)$$

$$N_{a,MAPP} = N_{M,tot} \times BR(M \rightarrow a\gamma\gamma) \times \epsilon_{fid,MAPP}$$
 (7)

Axion-like Particle (ALPs)

First limit plots here will be for MAPP-mCP-1 and MAPP-LLP-1 (Phase 1 section), requiring 3 fiducial decays of a --> γγ.

Slide will be updated to include LLP decay length/width formulae as well.

MAPP-1.. Results So Far

Progress with ALPs @ MAPP-1 (via rare meson decays)

The differential decay width is, then,

$$\frac{d\Gamma(\pi^0 \to a\gamma\gamma)}{dE_1 dE_2} = \frac{1}{2} \frac{1}{(4\pi)^3 M} \sum_{\text{pols}} |M|^2 = \frac{(g_{\pi^0 \gamma \gamma} g_{a\gamma\gamma})^2}{2(4\pi)^3 M} f(E_1, E_2), \tag{B4}$$

where

$$f(E_1, E_2) = \frac{E_1^2 E_2^2 [M^2 (1 + \cos^2 \theta_{12}) + 2E_1 (E_1 - M)(1 - \cos \theta_{12})^2]}{(M - 2E_1)^2}$$

$$+ 2 \frac{E_1^2 E_2^2 [M^2 (1 + \cos^2 \theta_{12}) + [2E_1 E_2 - M(E_1 + E_2)](1 - \cos \theta_{12})^2]}{(M - 2E_1)(M - 2E_2)}$$

$$+ \frac{E_1^2 E_2^2 [M^2 (1 + \cos^2 \theta_{12}) + 2E_2 (E_2 - M)(1 - \cos \theta_{12})^2]}{(M - 2E_2)^2}.$$
(B5)

Integrating over phase space results in the total decay width

$$\Gamma(\pi^0 \to a\gamma\gamma) = \int_0^{\frac{M^2 - m^2}{2M}} dE_1 \int_{\frac{M^2 - m^2}{2M} - E_1}^{\frac{M}{2} + \frac{m^2}{2M} - 2M} dE_2 \frac{d\Gamma(\pi^0 \to a\gamma\gamma)}{dE_1 dE_2} = \frac{(g_{\pi^0 \gamma \gamma} g_{\sigma \gamma \gamma})^2}{768(4\pi)^3 M^3} F(M, m), \tag{B6}$$

where

$$\begin{split} F(M,m) &= 24 \log \left(\frac{m}{M} \right) \left[6 m^2 M^2 (M^4 + m^4) + 15 m^4 M^4 + 2 m^4 M^4 \log \left(\frac{m M}{m^2 + M^2} \right) \right] \\ &+ 7 (M^8 - m^8) + 148 M^2 m^2 (M^4 - m^4) + 24 m^4 M^4 \left[\text{Li}_2 \left(\frac{m^2}{m^2 + M^2} \right) - \text{Li}_2 \left(\frac{M^2}{m^2 + M^2} \right) \right]. \end{split} \tag{B7}$$

- B6 is plotted & calculated in PhysRevD.98.055021
- In-house script to plot B6 as validation of the calculation does not work (unless one switches the order of the Li2 terms)
- Plots on the next slide show this..
- B6 & B7 will be calculated to check this.

FASER Decay width plot vs. mine

FASER

Me

(Eta process)

Calculation of B6 & B7 in Mathematica

The differential decay width is, then,

$$\frac{d\Gamma(\pi^0 \to a\gamma\gamma)}{dE_1 dE_2} = \frac{1}{2} \frac{1}{(4\pi)^3 M} \sum_{\alpha \in \mathbb{N}} |M|^2 = \frac{(g_{d^2\gamma\gamma} g_{\alpha\gamma\gamma})^2}{2(4\pi)^3 M} f(E_1, E_2),$$
(B4)

where

$$f(E_1, E_2) = \frac{E_1^2 E_2^2 [M^2 (1 + \cos^2 \theta_{12}) + 2E_1 (E_1 - M)(1 - \cos \theta_{12})^2]}{(M - 2E_1)^2}$$

$$+ 2\frac{E_1^2 E_2^2 [M^2 (1 + \cos^2 \theta_{12}) + [2E_1 E_2 - M(E_1 + E_2)](1 - \cos \theta_{12})^2]}{(M - 2E_1)(M - 2E_2)}$$

$$+ \frac{E_1^2 E_2^2 [M^2 (1 + \cos^2 \theta_{12}) + 2E_2 (E_2 - M)(1 - \cos \theta_{12})^2]}{(M - 2E_2)^2}.$$
(B5)

Integrating over phase space results in the total decay width

$$\Gamma(\pi^0 \to a\gamma\gamma) = \int_0^{\frac{2^2-\alpha^2}{2\sigma^2}} dE_1 \int_{\frac{2^2-\alpha^2}{2\sigma^2}}^{\frac{\alpha^2-\alpha^2}{2\sigma^2}} dE_2 \frac{d\Gamma(\pi^0 \to a\gamma\gamma)}{dE_1 dE_2} = \frac{(g_{e^0\gamma\gamma}g_{a\gamma\gamma})^2}{768(4\pi)^3 M^3} F(M, m),$$
 (B6)

where

$$\begin{split} F(M,m) &= 24 \log \left(\frac{m}{M}\right) \left[6m^2 M^2 (M^4 + m^4) + 15m^4 M^4 + 2m^4 M^4 \log \left(\frac{mM}{m^2 + M^2}\right) \right] \\ &+ 7(M^8 - m^8) + 148 M^2 m^2 (M^4 - m^4) + 24m^4 M^4 \left[\text{Li}_2 \left(\frac{m^2}{m^2 + M^2}\right) - \text{Li}_2 \left(\frac{M^2}{m^2 + M^2}\right) \right]. \end{split} \tag{B7}$$

(* Try term by term...*) (* Row 1 - Term 1 *)

Integrate
$$\left[\frac{1}{(M-2 \star E1)^2} E1^2 E2^2 \star \left(M^2 \star \left(1 + \left(\frac{1}{2 \star E1 \star E2} \star \left(M^2 - m^2 - 2 \star M \star (E1 \star E2) + 2 \star E1 \star E2\right)\right)^2\right)\right), \left\{E2, \frac{M^2 - m^2}{2 \star M} - E1, \frac{M}{2} + \frac{m^2}{4 \star E1 - m^2}\right\}$$

$$= \frac{E1^3 \left(m^2 + (2 E1 - M) M\right)^3 \left(2 E1^2 - 2 E1 M \star M^2\right)}{3 (2 E1 - M)^5 M}$$
(* Row 1 - Term 2 *)

Integrate $\left[\frac{1}{(M-2 \star E1)^2} E1^2 E2^2 \star \left(2 \star E1 \star (E1 - M) \star \left(1 - \frac{1}{2 \star E1 \star E2} \star \left(M^2 - m^2 - 2 \star M \star (E1 + E2) + 2 \star E1 \star E2\right)\right)^2\right), \left\{E2, \frac{M^2 - m^2}{2 \star M} - E1, \frac{M^2 - m^2}{2 \star M} - E1\right\}$

$$= \frac{2 E1^4 \left(E1 - M\right) \left(m^2 + (2 E1 - M) M\right)^3}{3 M \left(-2 E1 + M\right)^5}$$

$$Full Simplify \Big[\frac{\text{E1}^3 \, \left(\text{m}^2 + (2 \, \text{E1} - \text{M}) \, \text{M}\right)^3 \, \left(2 \, \text{E1}^2 - 2 \, \text{E1} \, \text{M} + \text{M}^2\right)}{3 \, \left(2 \, \text{E1} - \text{M}\right)^5 \, \text{M}} - \frac{2 \, \text{E1}^4 \, \left(\text{E1} - \text{M}\right) \, \left(\text{m}^2 + (2 \, \text{E1} - \text{M}) \, \, \text{M}\right)^3}{3 \, \text{M} \, \left(-2 \, \text{E1} + \text{M}\right)^5} \Big]$$

$$\frac{\text{E1}^{3} \left(\text{m}^{2} + (2 \text{ E1} - \text{M}) \text{ M}\right)^{3}}{3 (2 \text{ E1} - \text{M})^{3} \text{ M}}$$

Then integrating over E1....

- Feeding the integral to Mathematica
- Need to go term by term..
- ~12 integrals to do.. will take a bit more time.
- Also, still need the Full Decay width for pi0..

Is Phys. Rev. Lett. 33, 1400 reliable? (8.02±0.42 eV???)

```
(* If you scale it by the constants out front... (first line of eq. B5 only) *) \frac{g_{\pi^6 \ \gamma^2}}{384 \ (4 \ \pi)^3 \ M^3} \ \star \left[ -m^8 - 28 \ m^6 \ M^2 + 28 \ m^2 \ M^6 + M^8 + 12 \ m^2 \ M^2 \ \left( m^4 + 3 \ m^2 \ M^2 + M^4 \right) \left( Log \left[ -\frac{m^2}{M} \right] - Log [-M] \right) \right]
```

Plan Ahead

- 1. Continuing to investigate the integration formula for the fiducial efficiency with Ameir.
- 2. Run ALP simulations on office PC to get 95% CL for MAPP-mCP-1 & MAPP-LLP-1
- 3. Run Dark Photon simulations on laptop, to complete 95% C.L. for MAPP-LLP-1
- 4. Will also give an update next week on CM omonpoles.
- 5. Some words on the mIP paper for EPJ...

GEANT4 Simulations to come soon, we chat w/ Matti this morning.

Questions?

Modeling Emergent Monopoles

Using the Method of Coherent Structures (MCS)

Second Quantized Hamiltonian next week.

Future work.. ALPs - Production via Primakoff Process

For the Primakoff Process; resonant production of neutral pseudoscalar mesons by high-energy photons interacting with an atomic nucleus. (γ N --> a N)

Ratio between the Primakoff and pair-production cross section (in iron)

The relevant pair-production cross section in iron for the photon energies of interest is of the order of σ conv = 5 barn [Faser ALP paper]

MAPP-mCP Physics Performance Cases

Case 1: Minicharged (mCP) Particles in Dark QED

Kinetic mixing leads to fractionally charged particles

Mass range of 0.1-100 GeV Charges could be as low as ~e/500

Case 2: "Heavy Neutrinos" With a Large EDM

EDM of a new heavy neutral Dirac fermion could be as large as ~10^-15 e*cm (predicted by 5-D EFT).

Mass range of ~45.6-200 GeV EDMs as low as 10^-16

Case 3: (Dark) Mini-Dyons via "Magnetic Mixing"

WIP.. Still in the model building & computational implementation phase.

