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Z & W Bosons

Our tools:

The Higgs Boson

The Top and Bottom Quark

Discoveries of new particles ? 
these boxes have clickable links  

to papers etc
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What we’d like to know about: 
• What is Dark Matter made out of? 
• What drives inflation? 
• Why is the universe made out of matter?  
• What is the mechanism behind electroweak 

symmetry breaking? 
• What stabilises the Higgs mass? 
• …

https://ilchome.web.cern.ch/sites/ilchome.web.cern.ch/files/ILC_Global_Project_Final.pdf


The International Linear Collider in a nutshell

• beam polarisation  
• P(e-) ≥ 80% 
• P(e+) = 30%,  

at 500 GeV 
upgradable to 60% 

• total length (250 GeV): 
20.5 km
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• e+e- centre-of-mass energy 
• first stage: 250 GeV 
• tunable 
• upgrades: 500 GeV,  

1 TeV, 91 /161 GeV 
• luminosity at 250 GeV: 

• 1.35 x 1034 /cm2 /s 
• upgrade 2.7 x 1034 /cm2 /s

https://ilchome.web.cern.ch/sites/ilchome.web.cern.ch/files/ILC_Global_Project_Final.pdf


Physics benefits of polarised beams

background suppression: 

• e+e–→WW / 𝝂𝝂  
strongly P-dependent  
since t-channel only  
for e–

Le+
R

4

redundancy & control of systematics: 
• “wrong” polarisation yields “signal-free” control 

sample 
• flipping positron polarisation controls nuisance 

effects on observables relying on electron 
polarisation 

• essential: fast helicity reversal for both beams!

signal enhancement: 
• Higgs production  

in WW fusion 
• many BSM processes  

have strong polarisation dependence => higher S/B 

chiral analysis: 
• SM: Z and 𝛾 differ in  

couplings to left- and  
right-handed fermions 

• BSM:  
chiral structure unknown, needs to be determined!

f

f

g𝛾L, g𝛾R, gZL, gZR 

General references on polarised e+e– physics: 
• arXiv:1801.02840  
• Phys. Rept. 460 (2008) 131-243

https://arxiv.org/abs/1801.02840
https://www.sciencedirect.com/science/article/abs/pii/S0370157308000136?via=ihub
https://arxiv.org/abs/1801.02840
https://www.sciencedirect.com/science/article/abs/pii/S0370157308000136?via=ihub


New insights from old friends…

Z & W Bosons
The Top and Bottom Quark



ILC 250 GeV: The Bottom Quark

• bR compositeness could explain e.g. long-standing tension 
between two most precise determinations of sin2𝝑eff- one of 
them from AbFB(MZ) 

• can we remeasure couplings of bR and AbFB(250GeV)  and 
improve on LEP1?
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https://arxiv.org/abs/1709.04289
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allows to probe NP 
scales up to ~60 TeV

expect at least similar improvement 
also for charm quarks  

 => profit from > 30 years of  
advances in detector 

technology!

The Bottom Quark

Yes, we can!

arXiv:1709.04289

https://arxiv.org/abs/1709.04289


… and at higher energies

• e+e- -> tt: possible above ~360 GeV 
• near threshold: no boost  

=> little sensitivity to axial coupling 
• beam polarisation disentangles Z and 

𝝲 exchange 
• few 10-3 for all couplings requires  
≥ 500 GeV and polarisation 

• probes BSM into the multi-ten TeV 
regime
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arxiv:1503.01325
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FZ1A

CP conserving
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ILD-PHYS-PUB-2019-007, arXiv:1908.11299, Eur.Phys.J. C78 (2018) no.2, 155]

The Top Quark

https://confluence.desy.de/display/ILD/ILD+notes?preview=/42357928/165987677/ILD-PHYS-PUB-2019-007.pdf
https://arxiv.org/abs/1908.11299
https://link.springer.com/article/10.1140/epjc/s10052-018-5625-3
https://confluence.desy.de/display/ILD/ILD+notes?preview=/42357928/165987677/ILD-PHYS-PUB-2019-007.pdf
https://arxiv.org/abs/1908.11299
https://link.springer.com/article/10.1140/epjc/s10052-018-5625-3
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full SM-EFT:   

• 500 GeV improves various 
coefficients by 2 orders of 
magnitude 

• 4-fermion operators profit 
quadratically from higher energies
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Polarisation & Electroweak Physics at the Z pole

8

new detailed studies by ILD:

• at least factor 10, often ~50 improvement 

over LEP/SLC

• note in particular: 

• Ac nearly 100 x better thanks to excellent 
charm / anti-charm tagging: 
• excellent vertex detector 
• tiny ILC beam spot

• Kaon-ID via dE/dx in ILD’s TPC


typically only factor 2-3 less precise  
than FCCee’s unpolarised TeraZ  
=> polarisation buys  
               a factor of ~100 in luminosity  LRA
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Z Boson

https://inspirehep.net/literature/1751733
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Triple Gauge Couplings

ILD full sim at 500 GeV & 1 TeV:  
• semi-leptonic channel only 
•  using 3 angles 
•  simultaneous fit of 3 couplings 

9

real results at ~200 GeV LEP2: 
• semi-leptonic & fully hadronic channels 
• all 5 angles 
• individual and simultaneous fits of 3 couplings 

TGC Limits @ 68% CL
0.05− 0 0.05

γλΔ

γκΔ

1
Z

gΔ

LEP2 ILC 250

simultaneous fit of 
all three couplings

Z & W Bosons

TGC Limits @ 68% CL
0.05− 0 0.05 0.1

γλΔ

γκΔ

1
Z

gΔ

LEP2 ATLAS CMS HL-LHC ILC 250

fitting individual 
parameters

7 TeV
arXiv:1710:07621

https://arxiv.org/abs/1710.07621
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250 GeV:  
full study still missing! 

=> ILD just started a brand-new 250 GeV MC 
production 

=> NOW is THE time to get started! 

for now: extrapolations from 500 GeV (ILD)  and 
~200 GeV (LEP2)

https://arxiv.org/abs/1710.07621


New insights from our new friend…

The Higgs Boson



                      How big can BSM effects be?

• low scale new physics  
=> modification of Higgs properties! 

• different patterns of deviations from SM prediction for different NP models 
• size of deviations depends on NP scale 

typically few percent on tree-level: 

• MSSM, eg:   

• Littlest Higgs, eg mT=1TeV:  

• Composite Higgs, eg: 
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At least percent-level  
precision required!

The Higgs Boson couplings
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The Higgs Boson

Precision Higgs Physics @ 250 GeV

•  production dominated by Zh 
• 2 ab-1 => ~600 000 Zh events 
• fantastic sample for measuring: 

• (recoil) mass  
• total Zh cross section: 

the key to  model-independent   
determination of absolute couplings! 

• h-> invisible (Dark Matter!): 
expected limited < 0.3% @ 95% 

• all kinds of branching ratios  
• CP properties of h-fermion coupling 
• CP properties of Zh coupling 
• ….
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 for detailed listings of individual precisions  
c.f. arXiv:1708.08912

http://arxiv.org/abs/arXiv:1708.08912
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c.f. arXiv:1708.08912

Phys.Rev. D94 (2016)no.11, 113002 

http://arxiv.org/abs/arXiv:1708.08912
http://dx.doi.org/10.1103/PhysRevD.94.113002


Polarisation & Higgs Couplings
• THE key process at a Higgs factory:  

Higgsstrahlung e+e–→Zh 

• ALR of Higgsstrahlung: very important to 
disentangle different SMEFT operators!

13

constrained  
by EWPOs (*)

only diagram  
allowed in SM

~cWW

spin reversal e–
R↔e–

L: 
• 1st diagram flips sign  
• 2nd diagram keeps sign  
⇒ ALR lifts degeneracy  

between operators!

arXiv:1903.01629

The Higgs Boson Z & W Bosons

https://inspirehep.net/literature/1723778
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★ 2 ab–1 polarised ≈ 5 ab–1 unpolarised 
★ adding 500 GeV improves up to a factor of ~2

constrained  
by EWPOs (*)

only diagram  
allowed in SM

~cWW

spin reversal e–
R↔e–

L: 
• 1st diagram flips sign  
• 2nd diagram keeps sign  
⇒ ALR lifts degeneracy  

between operators!

arXiv:1903.01629

The Higgs Boson Z & W Bosons

https://inspirehep.net/literature/1723778


Higgs self-coupling

14

• HL-LHC:   
• ~5σ observation of HH 
• ~50% on λ in single-parameter fit 

• e+e-: 
• 500 GeV: 8σ observation of HH 
• 27% on λ in full coupling analysis  
• full, testbeam-gauged simulation 

(note: first ILC fast sim. was ~3 times better!)

• 1 TeV & 3 TeV: ~10%  

• FCC-hh: 
• 5% statistical uncertainty on λ   
• from fast simulation, single-par. fit 
• assuming LHC detector performance despite 

e.g.100x higher neutron fluence 

• plus systematics, theory, pdf, …

most detailed ILC ref: PhD Thesis C.Dürig 
Uni Hamburg, DESY-THESIS-2016-027 

UPDATE NEEDED!

The Higgs Boson
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…and the universe
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Top Yukawa coupling

• absolute size of |yt|: 
• HL-LHC:   

• 𝛅𝜿t = 3.2% with |𝜿V| ≤ 1 or 3.4% in SMEFTND 

• ILC: 
• current full simulation achieved 6.3% at 500 GeV 
• strong dependence on exact choice of ECM,  

e.g. 2% at 600 GeV 
• not included:  

• experimental improvement with higher energy (boost!) 
• other channels than H->bb

15

σttH  
|Δyt/yt | 

6.3%

2%

+ 1 TeV:  1.4%

 [Phys.Rev. D84 (2011) 014033 & arXiv:1506.07830]

to-do: real, full sim study @ 600 GeV? 

The Higgs and the Top

http://arxiv.org/abs/arXiv:1506.07830
http://arxiv.org/abs/arXiv:1506.07830
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• full coupling structure of tth vertex, incl. CP: 
• e+e- at ECM  ≥ ~600 GeV  

=> few percent sensitivity to CP-odd admixture  

• beam polarisation essential! 
                                                                   [Eur.Phys.J. C71 (2011) 1681]
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Looking for more new friends

Discoveries of new particles ? 



Opportunities for direct discoveries ?
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Closer look at ILC250 vs LEP2: 
• ~1000x more integrated luminosity 
• polarised beams  

can suppress SM backgrounds  
by 1-2 orders of magnitude 

• tremendous advances in detector 
technology, 
e.g. momentum resolution  
1-2 orders of magnitude better, vertexing, 
highly granular calorimeter for tau ID, ….
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Examples: 
• searches for additional light (Higgs) bosons 

with reduced couplings to the Z 
• MSSM: most general limit (any mixing, any 

mass difference to LSP) on staus is as low as 
26.3 GeV 

• sterile neutrinos with m>45 GeV from WW 
cross section: expect 1-2 orders of 
magnitude improvement on mixing parameter 

•  … and WIMPs!
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with reduced couplings to the Z 
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mass difference to LSP) on staus is as low as 
26.3 GeV 

• sterile neutrinos with m>45 GeV from WW 
cross section: expect 1-2 orders of 
magnitude improvement on mixing parameter 

•  … and WIMPs!

Discoveries of new particles ? 

=> any search channel limited by rate at LEP2 
will explore new territory at ILC250 !

250 GeV only marginally more  
than 209 GeV  - nothing to expect?



Example: Extra Higgs Bosons

• must “share” coupling to the Z with the 125-GeV guy: 
• gHZZ2 + ghZZ2 ≤ 1 
• after ILC 250 GeV ghZZ2 < 2.5% gSM2 excluded at 

95% CL 
• probe smaller couplings by recoil of h against Z  
=> decay mode independent! 

18

Discoveries of new particles ? 
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• fully complementary to  
measurement of ZH cross 
section

• other possibility: ee -> bbh (via 
Yukawa coupling)

https://arxiv.org/abs/2005.06265
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Loop-hole free searches for BSM particles  
    up to ECM/2  or up to ECM - (MZ / MH / MLSP / …)

• lowish ΔM is THE region preferred by data 
• charginos, neutralinos, selectrons, smuons, staus  

=> no general limit above LEP 
• long and diverse decay chains (small BRs) 
• heavy Higgses  
• Dark Matter, WIMPs 
• the UNexpected: LCs operate trigger-less!

19
Eur.Phys.J. C78 (2018) no.3, 256

https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0
https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0


Loop-hole free searches for BSM particles  
    up to ECM/2  or up to ECM - (MZ / MH / MLSP / …)

• lowish ΔM is THE region preferred by data 
• charginos, neutralinos, selectrons, smuons, staus  

=> no general limit above LEP 
• long and diverse decay chains (small BRs) 
• heavy Higgses  
• Dark Matter, WIMPs 
• the UNexpected: LCs operate trigger-less!

19

trigger, low momentum, 
clean conditions

high ECM, 
hadron colliders

Eur.Phys.J. C78 (2018) no.3, 256

https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0
https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0


Loop-hole free searches for BSM particles  
    up to ECM/2  or up to ECM - (MZ / MH / MLSP / …)

• lowish ΔM is THE region preferred by data 
• charginos, neutralinos, selectrons, smuons, staus  

=> no general limit above LEP 
• long and diverse decay chains (small BRs) 
• heavy Higgses  
• Dark Matter, WIMPs 
• the UNexpected: LCs operate trigger-less!

19

trigger, low momentum, 
clean conditions

high ECM, 
hadron colliders

Eur.Phys.J. C78 (2018) no.3, 256

ATLAS limit assumes 

ee  
250 GeV ee  

500 GeV

https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0
https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0


Loop-hole free searches for BSM particles  
    up to ECM/2  or up to ECM - (MZ / MH / MLSP / …)

• lowish ΔM is THE region preferred by data 
• charginos, neutralinos, selectrons, smuons, staus  

=> no general limit above LEP 
• long and diverse decay chains (small BRs) 
• heavy Higgses  
• Dark Matter, WIMPs 
• the UNexpected: LCs operate trigger-less!

19

trigger, low momentum, 
clean conditions

high ECM, 
hadron colliders

Eur.Phys.J. C78 (2018) no.3, 256

ATLAS limit assumes 

ee  
250 GeV ee  

500 GeV

100 150 200 250

 (GeV)
+

1
χ∼M 

1−10

1

10

M
 (

G
e
V

)
∆

Higgsino - MSSM

ILC500

ADLO (pre.)

ATLAS-model dependent

(CONF-2019-014)

ATLAS-model dependent

(PHYS-PUB-2017-019)

arXiv:2002.01239 

https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0
https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0
https://arxiv.org/abs/2002.01239
https://arxiv.org/abs/2002.01239


Loop-hole free searches for BSM particles  
    up to ECM/2  or up to ECM - (MZ / MH / MLSP / …)

• lowish ΔM is THE region preferred by data 
• charginos, neutralinos, selectrons, smuons, staus  

=> no general limit above LEP 
• long and diverse decay chains (small BRs) 
• heavy Higgses  
• Dark Matter, WIMPs 
• the UNexpected: LCs operate trigger-less!

19

trigger, low momentum, 
clean conditions

high ECM, 
hadron colliders

Eur.Phys.J. C78 (2018) no.3, 256running scenario

 [G
eV

]
95

Λ

310

410 )=1GeVχVector, M(
modified photon spectra
extrapolation
full sim

ILC
250GeV

-12ab
pol. mix.

CEPC /
FCC-ee
250GeV

-110ab
unpol.

FCC-ee
350GeV

-110ab
unpol.

CLIC
380GeV

-10.5ab
=+80%_Pe

ILC
500GeV

-14ab
pol. mix.

ILC
1TeV

-13.2ab
=+80%_Pe
= -30%+Pe

CLIC
1.5TeV

-10.5ab
=+80%_Pe

CLIC
3TeV

-11ab
=+80%_Pe

 10 TeV !

Mono-photon searches

2 TeV

Phys.Rev.D 101 (2020) 7, 075053

ATLAS limit assumes 

ee  
250 GeV ee  

500 GeV

100 150 200 250

 (GeV)
+

1
χ∼M 

1−10

1

10

M
 (

G
e
V

)
∆

Higgsino - MSSM

ILC500

ADLO (pre.)

ATLAS-model dependent

(CONF-2019-014)

ATLAS-model dependent

(PHYS-PUB-2017-019)

arXiv:2002.01239 

https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0
https://link.springer.com/article/10.1140/epjc/s10052-018-5697-0
https://arxiv.org/abs/2002.01239
https://arxiv.org/abs/2002.01239


Conclusions

• There is a clear and significant physics case for e+e- collisions  
at ECM = 250 GeV — and at ≥ 500 GeV — complementary to pp collisions! 

• Therefore the next e+e- collider must be energy upgradable. 

• CLIC and ILC both fulfill this criterion. 

• The exact physical and/or operational energy stages beyond the initial “Higgs factory” mode  
still can be defined, taking into account 

• physics needs  
• technological innovations 

• There is still a lot to do for the physics case, eg: 
• TGCs @ 250 GeV 
• Higgs self-coupling & ttH @ 500…600 GeV 
• full exploitation of detector capabilities in reconstruction  
• re-visit detector concepts: timing capabilities, vertex detector layout, … 
• want to get involved? ILD Study Questions:   arXiv:2007.03650
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Backup



Future e+e– Colliders and (longitudinally) Polarised Beams

• Longitudinally polarised beams are a special feature of Linear e+e– Colliders: 

• SLC: P(e–) = ± 80%, P(e+) = 0% 

• ILC:  P(e–) = ± 80%, P(e+) = ± 30% (upgrade 60%) 

• CLIC: P(e–) = ± 80%, P(e+) = 0% 

• Electroweak interactions highly sensitive to chirality of fermions: SU(2)L x U(1)  

• every cross section depends on beam polarisations 

• with both its beams polarised, ILC is “four colliders in one”:

22

General references on polarised e+e– physics: 
• arXiv:1801.02840  

• Phys. Rept. 460 (2008) 131-243

https://arxiv.org/abs/1801.02840
https://www.sciencedirect.com/science/article/abs/pii/S0370157308000136?via=ihub
https://arxiv.org/abs/1801.02840
https://www.sciencedirect.com/science/article/abs/pii/S0370157308000136?via=ihub


Polarisation & Electroweak Physics

• similarly, disentangle Z / 𝛾 exchange in e+e–→ff

23

f

f

g𝛾L, g𝛾R, gZL, gZR 
gLf, gRf : helicity-dependent couplings of Z to fermions

=>                                 

specifically for the electron: 

at an unpolarised collider:


                                                       => no direct access to Ae,  
                                                            only via tau polarisation 
While at a polarised collider:


                                                                   and                                               
                                                                                        

described in the third bullet of Sec. 3.1.

For a given quark or lepton flavor f , let gLf , gRf be the helicity-dependent Zff
couplings. Then the quantities, for quarks q,

Rq =
�(Z ! qq)

�(Z ! hadrons)
, (5)

and, for leptons ` = e, µ, ⌧ ,

1/R` =
�(Z ! `

+
`
�)

�(Z ! hadrons)
, (6)

are given, at the tree level, by

Rq , 1/R` / (g2Lf + g
2
Rf ) , (7)

and the Z decay polarisation asymmetries are given by

Af =
g
2
Lf � g

2
Rf

g
2
Lf + g

2
Rf

. (8)

It is useful to define the value of sin2
✓w governing the Z couplings from the electron

asymmetry as “sin2
✓eff” given by the formula

Ae =
(12 � sin2

✓eff )2 � (sin2
✓eff )2

(12 � sin2
✓eff )2 + (sin2

✓eff )2
⇡ 8(

1

4
� sin2

✓eff ) . (9)

It is this value of sin2
✓w that enters the Zh and WW pair production cross sections

that are most important in determining the Higgs boson couplings.

Loop corrections to the SM predictions for Z observables given in terms of sin2
✓eff

are at the parts per mille level. Thus, it is accurate to quote projections for the
precision of future experiments from tree-level formulae involving sin2

✓eff . Of course,
actually extracting Z couplings from cross section measurements at the 10�4 level of
precision requires that the SM contributions to these cross sections be known to
comparable accuracy. The nontrivial requirements for theory are reviewed in [45].

Often, the leptonic asymmetries Ae, Aµ, and A⌧ are combined to give a composite
leptonic asymmetry. Here, we will distinguish these three quantities and discuss tests
of models that allow small di↵erences in the Z couplings to e, µ, and ⌧ .

At a polarised e
+
e
� collider, Ae is given by the left-right asymmetry in the total

rate for Z production,

Ae = ALR ⌘ �L � �R

(�L + �R)
, (10)
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where �L and �R are the cross section for 100% polarised e
�
Le

+
R and e

�
Re

+
L initial states.

For beams not perfectly polarised, the e↵ective left-handed polarisation of the initial
state is given by

Peff = (Pe� � Pe+)/(1� Pe�Pe+) , (11)

and the measured asymmetry is proportional to Peff . The determination of the quan-
tity Ae then requires only an excellent knowledge of the polarisation and knowledge
that the acceptance in the decay modes studied does not change when the polarisa-
tion is flipped. Essentially, the entire statistics of Z production can contribute to the
measurement. We find that the dominant systematic error is that on the value of the
polarisation. We have discussed how this systematic is controlled in Sec. 3.1.

For other asymmetries, beam polarisation can also play a role. These quantities
are measured from the left-right forward-backward asymmetry

A
f
FB,LR ⌘ (�F � �B)L � (�F � �B)R

(�F + �B)L + (�F + �B)R
, (12)

where, again, L and R refer to states of 100% polarisation. At the tree level,

A
f
FB,LR =

3

4
Af . (13)

At an unpolarised collider, the values of the Af are obtained from quantities such as
the unpolarised forward-backward asymmetries,

A
f
FB ⌘ (�F � �B)

(�F + �B)
. (14)

At the tree level,

A
f
FB =

3

4
AeAf , (15)

so there is some sacrifice of statistics to achieve the same level of precision. (The
determination of A⌧ is a special case, to be discussed below.) For some purposes, for
example, to test lepton universality, we wish to know the ratio of Af to the precisely
determined value of Ae. In such ratios of polarisation asymmetries measured in the
same run, the systematic uncertainty on the polarisation cancels out.

The uncertainties from acceptance and particle identification largely cancel out of
the Af measurements, but in the measurements of Rf they are the major source of
systematic error. In the LEP experiments, the measurements of the rates of Z decay
to bb and cc were mainly done with single-tag methods that required a “dilution
factor” correction with a large QCD uncertainty. At the ILC, the e�ciencies for b

and c identification and also the statistics to determine these e�ciences precisely, will
be much higher. The absolute tagging e�ciences can be measured from e

+
e
� ! ff

events, using a probe and tag method. We assume an uncertainty of 0.1% in the
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described in the third bullet of Sec. 3.1.

For a given quark or lepton flavor f , let gLf , gRf be the helicity-dependent Zff
couplings. Then the quantities, for quarks q,

Rq =
�(Z ! qq)

�(Z ! hadrons)
, (5)

and, for leptons ` = e, µ, ⌧ ,

1/R` =
�(Z ! `

+
`
�)

�(Z ! hadrons)
, (6)

are given, at the tree level, by

Rq , 1/R` / (g2Lf + g
2
Rf ) , (7)

and the Z decay polarisation asymmetries are given by

Af =
g
2
Lf � g

2
Rf

g
2
Lf + g

2
Rf

. (8)

It is useful to define the value of sin2
✓w governing the Z couplings from the electron

asymmetry as “sin2
✓eff” given by the formula

Ae =
(12 � sin2

✓eff )2 � (sin2
✓eff )2

(12 � sin2
✓eff )2 + (sin2

✓eff )2
⇡ 8(

1

4
� sin2

✓eff ) . (9)

It is this value of sin2
✓w that enters the Zh and WW pair production cross sections

that are most important in determining the Higgs boson couplings.

Loop corrections to the SM predictions for Z observables given in terms of sin2
✓eff

are at the parts per mille level. Thus, it is accurate to quote projections for the
precision of future experiments from tree-level formulae involving sin2

✓eff . Of course,
actually extracting Z couplings from cross section measurements at the 10�4 level of
precision requires that the SM contributions to these cross sections be known to
comparable accuracy. The nontrivial requirements for theory are reviewed in [45].

Often, the leptonic asymmetries Ae, Aµ, and A⌧ are combined to give a composite
leptonic asymmetry. Here, we will distinguish these three quantities and discuss tests
of models that allow small di↵erences in the Z couplings to e, µ, and ⌧ .

At a polarised e
+
e
� collider, Ae is given by the left-right asymmetry in the total

rate for Z production,

Ae = ALR ⌘ �L � �R

(�L + �R)
, (10)
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where �L and �R are the cross section for 100% polarised e
�
Le

+
R and e

�
Re

+
L initial states.

For beams not perfectly polarised, the e↵ective left-handed polarisation of the initial
state is given by

Peff = (Pe� � Pe+)/(1� Pe�Pe+) , (11)

and the measured asymmetry is proportional to Peff . The determination of the quan-
tity Ae then requires only an excellent knowledge of the polarisation and knowledge
that the acceptance in the decay modes studied does not change when the polarisa-
tion is flipped. Essentially, the entire statistics of Z production can contribute to the
measurement. We find that the dominant systematic error is that on the value of the
polarisation. We have discussed how this systematic is controlled in Sec. 3.1.

For other asymmetries, beam polarisation can also play a role. These quantities
are measured from the left-right forward-backward asymmetry

A
f
FB,LR ⌘ (�F � �B)L � (�F � �B)R

(�F + �B)L + (�F + �B)R
, (12)

where, again, L and R refer to states of 100% polarisation. At the tree level,

A
f
FB,LR =

3

4
Af . (13)

At an unpolarised collider, the values of the Af are obtained from quantities such as
the unpolarised forward-backward asymmetries,

A
f
FB ⌘ (�F � �B)

(�F + �B)
. (14)

At the tree level,

A
f
FB =

3

4
AeAf , (15)

so there is some sacrifice of statistics to achieve the same level of precision. (The
determination of A⌧ is a special case, to be discussed below.) For some purposes, for
example, to test lepton universality, we wish to know the ratio of Af to the precisely
determined value of Ae. In such ratios of polarisation asymmetries measured in the
same run, the systematic uncertainty on the polarisation cancels out.

The uncertainties from acceptance and particle identification largely cancel out of
the Af measurements, but in the measurements of Rf they are the major source of
systematic error. In the LEP experiments, the measurements of the rates of Z decay
to bb and cc were mainly done with single-tag methods that required a “dilution
factor” correction with a large QCD uncertainty. At the ILC, the e�ciencies for b

and c identification and also the statistics to determine these e�ciences precisely, will
be much higher. The absolute tagging e�ciences can be measured from e

+
e
� ! ff

events, using a probe and tag method. We assume an uncertainty of 0.1% in the
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For a given quark or lepton flavor f , let gLf , gRf be the helicity-dependent Zff
couplings. Then the quantities, for quarks q,

Rq =
�(Z ! qq)

�(Z ! hadrons)
, (5)

and, for leptons ` = e, µ, ⌧ ,

1/R` =
�(Z ! `

+
`
�)

�(Z ! hadrons)
, (6)

are given, at the tree level, by

Rq , 1/R` / (g2Lf + g
2
Rf ) , (7)

and the Z decay polarisation asymmetries are given by

Af =
g
2
Lf � g

2
Rf

g
2
Lf + g

2
Rf

. (8)

It is useful to define the value of sin2
✓w governing the Z couplings from the electron

asymmetry as “sin2
✓eff” given by the formula

Ae =
(12 � sin2

✓eff )2 � (sin2
✓eff )2

(12 � sin2
✓eff )2 + (sin2

✓eff )2
⇡ 8(

1

4
� sin2

✓eff ) . (9)

It is this value of sin2
✓w that enters the Zh and WW pair production cross sections

that are most important in determining the Higgs boson couplings.

Loop corrections to the SM predictions for Z observables given in terms of sin2
✓eff

are at the parts per mille level. Thus, it is accurate to quote projections for the
precision of future experiments from tree-level formulae involving sin2

✓eff . Of course,
actually extracting Z couplings from cross section measurements at the 10�4 level of
precision requires that the SM contributions to these cross sections be known to
comparable accuracy. The nontrivial requirements for theory are reviewed in [45].

Often, the leptonic asymmetries Ae, Aµ, and A⌧ are combined to give a composite
leptonic asymmetry. Here, we will distinguish these three quantities and discuss tests
of models that allow small di↵erences in the Z couplings to e, µ, and ⌧ .

At a polarised e
+
e
� collider, Ae is given by the left-right asymmetry in the total

rate for Z production,

Ae = ALR ⌘ �L � �R

(�L + �R)
, (10)

18trading theory uncertainy:  
     the polarised                  receives 7 x smaller radiative corrections than the unpolarised           ! 



… and at higher energies

• ex1:  top quark pair production - disentangle Z / 𝛾:

• unpolarised case: from final-state analysis only

• polarised case: direct access  

- final state analysis can be done in addition  
=> redundancy, control of systematics


• ex2: oblique parameters for 4-fermion operators

• beam polarisation essential to disentangle Y vs W

• ILC 250 outperforms HL-LHC

• ILC 500 outperforms unpolarised e+e– machines

24

top quark couplings, CP conserving 
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https://confluence.desy.de/display/ILD/ILD+notes?preview=/42357928/165987677/ILD-PHYS-PUB-2019-007.pdf
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A new way to determine the Higgs couplings

• until recently: so-called 𝜅-framework 

• simple scaling of couplings which exist in the SM, e.g.  
• no new operators considered 
• called “model-independent” because no assumptions on any size of coupling or total width 

• NEW: EFT-based framework 
• consistent set of SU(2)xU(1) allowed dim-6 operators   

even more “model-independent” since new momentum-dependent operators included, e.g.:  
 

• general EFT fineprint: no light new particles…  
 => treat H->invisible as additional degree of freedom 

• also includes: 

• EWPO: current state assumed apart from 𝛤W 

• triple gauge couplings 
• still included in ILC fits as before: systematics (b-tag, L, P, Theo)

25
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the following based on 
10-parameter fit in  
arXiv:1708.08912 

other approaches use 
up to 17 parameters

http://arxiv.org/abs/arXiv:1708.08912


 arXiv:1708.08912

New Physics Interpretation of Higgs & EW 

• not included here:  
triple Higgs coupling   
=> 𝛿𝜆/𝜆SM = 27% @ 500GeV 
             ( -> 10% @ 1 TeV) 

• important to probe EW baryogenesis
26

Test various example BSM points -   
all chosen such that  

no hint for new physics at HL-LHC Discoveries of new particles ? 

http://arxiv.org/abs/arXiv:1708.08912
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illustrates the ILC’s  
discovery and identification potential  

- complementary to (HL-)LHC!
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..and CPV in  
Zh coupling:

=>        to ±0.005

The Higgs Boson
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Top EW Couplings at 500 GeV

28

[Poeschl,Richard]

• ILC precision allows model discrimination 
• sensitivity in gZL, gZR plane complementary to LHC 
• Can probe new physics scales of ~20 TeV in typical scenarios  

(… and up to 80 TeV for extreme scenarios)

, SUSY

Sensitivity to huge 
variety of models 

with  
compositeness 
and/or extra-
dimensions 

complementary 
to resonance 

searches

The Top Quark

Discoveries of new particles ? 
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(… and up to 80 TeV for extreme scenarios)

, SUSY

Sensitivity to huge 
variety of models 

with  
compositeness 
and/or extra-
dimensions 

complementary 
to resonance 

searches

~500 GeV is a sweet spot  
for top couplings

√s dependency

The Top Quark

Discoveries of new particles ? 



More CP violation?

29

e+e- -> tt at √s ≥ 380 GeV: 
Probe for CP violation in coupling of the 
top quark to Z boson and photon  
H2DM, SUSY: form factors up to 0.01

The Top Quark

Discoveries of new particles ? 
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Phys.Rev.D73 (2006) 034016, Phys.Rev.D71 (2005) 054013

-1 = 14 TeV, L = 3000 fbsHL-LHC, 

-1 = 500 GeV, L = 500 fbsILC initial, 
-1 = 500 GeV, L = 4000 fbsILC nominal, 

-1 = 380 GeV, L = 500 fbsCLIC initial, 
-1 = 3 TeV, L = 3000 fbsCLIC, 

Eur.Phys.J. C78 (2018) no.2, 155

https://doi.org/10.1140/epjc/s10052-018-5625-3


New Physics Reach of full ILC500 Program
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….for typical BSM scenarios with composite Higgs/Top and/or extra dimensions 
based on phenomenology described in Pomerol et al. arXiv:0806.3247 

Can probe scales of ~20 TeV in typical scenarios  
(… and up to 80 TeV for extreme scenarios)

30



Direct Determination of the Top Yukawa Coupling

• (HL-)LHC 14 TeV:  
• SM 𝜎(ttH) = 0.6 pb 

• “theory” studies indicate 𝛿yt ~15% (~10%)  
with 300fb-1 (3ab-1) might be possible  

• e+e-:  
• threshold at √s = 475 GeV 
• SM 𝜎(ttH) = 0.45fb @ 500 GeV 

=> ILC full running scenario:  
𝛿yt = 6.3% 

• could be 2.5% if √s = 550 GeV 
• 1 TeV, 4ab-1: 𝛿yt = 2%       

• CLIC 1.4 TeV, 1.5 ab-1: 𝛿yt = 4.2%  
- no improvement at 3 TeV (𝜎 drops)

31

Eur.Phys.J. C77 (2017) no.7, 475

arXiv:1310.8361

The Higgs and the Top

http://dx.doi.org/10.1140/epjc/s10052-017-4968-5
http://arxiv.org/abs/arXiv:1310.8361


The Higgs self-coupling

32

[arxiv:1506.07830]

1st order, required  
for EW baryogenesis

2nd order, SM with 
MH = 125 GeV

The Higgs Boson …

…and the universe

• determines shape and evolution  
of Higgs potential => cosmology! 

• many BSM models influence 𝜆, 
deviations from SM value can be  
large! E.g.: 
• up to O(100%) in general 2HDMs,  

even if other couplings are SM-like  
[c.f. e.g. Phys.Lett. B558 (2003) 157-164] 

• electroweak baryogenesis: 𝝺 > 1.2 𝝺SM 



• the experimental key: Higgs pair production! 

1. establish Higgs pair production at >5𝜎 level 

2. extract 𝝺 from cross section  

• challenging at any collider! 
• always deal with  

interfering diagrams 
with and without 𝝺
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1st order, required  
for EW baryogenesis

2nd order, SM with 
MH = 125 GeV

The Higgs Boson …

…and the universe

𝞴

• determines shape and evolution  
of Higgs potential => cosmology! 

• many BSM models influence 𝜆, 
deviations from SM value can be  
large! E.g.: 
• up to O(100%) in general 2HDMs,  

even if other couplings are SM-like  
[c.f. e.g. Phys.Lett. B558 (2003) 157-164] 

• electroweak baryogenesis: 𝝺 > 1.2 𝝺SM 



Measurement Prospects

• HL-LHC, generator-level + smearing:  

1. Observation of HH < 5𝜎 :( 

2. exclude extreme values of 𝜆/𝜆SM ≲-0.4 and ≳ 7.3 
 assuming that all other couplings = SM
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The Higgs Boson …

recent update: ATL-PHYS-PUB-2018-053

• e+e- at 500 GeV, ZHH, full 
simulation: 

1. Observation of HH with ~8𝜎 ✔
2. extract 𝜆|SM with 27% uncertainty 

3. recent demonstration that 
parametric uncertainties from 
other couplings well under control 
with full ILC Higgs program D
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• e+e- at > 500 GeV, vvHH, full 
simulation: 

• 1 TeV, 4ab-1: δ𝜆/𝜆 |SM = 10%  

• 1.4 TeV, 1.5ab-1: δ𝜆/𝜆 |SM = 40%  

• + 3 TeV, 3ab-1: δ𝜆/𝜆 |SM = 16% 

• exploit differential distributions at 
3 TeV:    ~ 10%
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…and the universe

https://cds.cern.ch/record/2652727
http://inspirehep.net/record/1493742/files/phd_thesis_duerig.pdf
http://arxiv.org/abs/arXiv:1708.09079
http://dx.doi.org/10.1140/epjc/s10052-017-4968-5


Measurement Prospects

• HL-LHC, generator-level + smearing:  

1. Observation of HH < 5𝜎 :( 

2. exclude extreme values of 𝜆/𝜆SM ≲-0.4 and ≳ 7.3 
 assuming that all other couplings = SM

33

The Higgs Boson …

recent update: ATL-PHYS-PUB-2018-053

• e+e- at 500 GeV, ZHH, full 
simulation: 

1. Observation of HH with ~8𝜎 ✔
2. extract 𝜆|SM with 27% uncertainty 

3. recent demonstration that 
parametric uncertainties from 
other couplings well under control 
with full ILC Higgs program D

is
se

rt
at

io
n 

C
.D

ür
ig

, U
ni

 H
am

bu
rg

, 2
01

6

• e+e- at > 500 GeV, vvHH, full 
simulation: 

• 1 TeV, 4ab-1: δ𝜆/𝜆 |SM = 10%  

• 1.4 TeV, 1.5ab-1: δ𝜆/𝜆 |SM = 40%  

• + 3 TeV, 3ab-1: δ𝜆/𝜆 |SM = 16% 

• exploit differential distributions at 
3 TeV:    ~ 10%

 arXiv:1708.09079 Eu
r.P

hy
s.

J.
 C

77
 (2

01
7)

 n
o.

7,
 4

75

…and the universe

https://cds.cern.ch/record/2652727
http://inspirehep.net/record/1493742/files/phd_thesis_duerig.pdf
http://arxiv.org/abs/arXiv:1708.09079
http://dx.doi.org/10.1140/epjc/s10052-017-4968-5


Measurement Prospects

• HL-LHC, generator-level + smearing:  

1. Observation of HH < 5𝜎 :( 

2. exclude extreme values of 𝜆/𝜆SM ≲-0.4 and ≳ 7.3 
 assuming that all other couplings = SM

33

The Higgs Boson …

recent update: ATL-PHYS-PUB-2018-053

• e+e- at 500 GeV, ZHH, full 
simulation: 

1. Observation of HH with ~8𝜎 ✔
2. extract 𝜆|SM with 27% uncertainty 

3. recent demonstration that 
parametric uncertainties from 
other couplings well under control 
with full ILC Higgs program D

is
se

rt
at

io
n 

C
.D

ür
ig

, U
ni

 H
am

bu
rg

, 2
01

6

• e+e- at > 500 GeV, vvHH, full 
simulation: 

• 1 TeV, 4ab-1: δ𝜆/𝜆 |SM = 10%  

• 1.4 TeV, 1.5ab-1: δ𝜆/𝜆 |SM = 40%  

• + 3 TeV, 3ab-1: δ𝜆/𝜆 |SM = 16% 

• exploit differential distributions at 
3 TeV:    ~ 10%

 arXiv:1708.09079 Eu
r.P

hy
s.

J.
 C

77
 (2

01
7)

 n
o.

7,
 4

75

In any case: e+e- offers significant added 
value w.r.t. HL-LHC 

Important: achievable precision depends 
strongly on actual value of  𝜆! 

=> BSM can change the picture 

=> need combination of ZHH and vvHH  

=> running near 500 GeV required!

…and the universe
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Polarisation & Beyond the SM: Dark Matter

mono-photon search  e+e–→𝝌𝝌𝜸 

• main SM background: e+e–→𝝂𝝂𝜸 
 
 
 
reduced ~10x with polarisation 

• shape of observable distributions  
changes with polarisation sign  
=> combination of samples with  
sign(P) = (–,+), (+,–), (+,+), (–,–)  
beats down the effect of systematic 
uncertainties  

• 200 fb–1 polarised ≈ 10 ab–1 unpolarised

34
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Energy  
does help!

Lumi w/o polarisation  
does not help!

https://inspirehep.net/literature/1774758


Conclusions

• The next generation of collider must address the big open questions of particle physics and expand our understanding of the 
universe 

• An e+e- Linear Collider at 250 GeV with polarised beams offers a formidable and physics program, reaching 
beyond the capabilities of HL-LHC: 

★ via precision measurements of fermions, gauge bosons and  the Higgs boson 

★ via direct searches complementary to hadron collider reach 

• There is currently a unique window of opportunity for the Japanese government to express their interest to host 
the ILC250 

=> The world-wide particle physics community should make it a priority to fund and construct it as quickly as 
possible 

• … and 250 GeV cannot be the end: 

★ three additional important thresholds up to ~500 GeV known today 

★ Linear Colliders are intrinsically energy upgradable!
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A closer look at SUSY: pMSSM scan

36

• scan over 250 000 pMSSM points 

• check against direct searches 

• even after HL-LHC projections for 
direct searches, many models with 
sizeable coupling deviations remain! 

• EFT fit ILC 250 GeV: 
δg(hbb) = 1.7% 

• EFT fit ILC H20: 
δg(hbb) = 0.95%

Phys. Rev. D 90, 095017 (2014)

https://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1103%2FPhysRevD%252E90%252E095017&v=b4c886cd
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again clear added value and 
complementarity w.r.t. HL-

LHC
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… or scanning the pMSSM with  hγγ, hττ, hbb:

37

HL-LHC 3000 fb-1 

Heavy Higgs mass�

ta
nβ
�

ILC (1150 fb-1@250 GeV & 1600 fb-1@500 GeV) 

Heavy Higgs mass�

ta
nβ
�

exact numbers  
outdated

precisions achievable with e+e- machine provide powerful probe  
for heavy Higgs bosons up to ~2 TeV - for any tan(𝛽)

Phys. Rev. D 90, 095017 (2014)
Discoveries of new particles ? 

• colour scale: fraction of scan points excluded via coupling precisions 
• white lines: LHC / HL-LHC direct search reach for heavy Higgses

https://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1103%2FPhysRevD%252E90%252E095017&v=b4c886cd


More on WIMPs
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Precision Measurement of Mh

How well do we need to know the Higgs mass? 

• for many applications, δmh ≃ 0.25 GeV (or 0.2%) is ok 

• notable exception: h->V V* partial widths very sensitive 
to mh due to phase space! 
=> relative errors for effective couplings ~√𝛤V and mass, 
assuming NWA for Higgs, relate as:

40

• δmh  = 0.2%   =>   δW = 1.4%  -  not adequate for precision goal! 

• leptonic recoil mass at ILC 250 GeV: δmh ≃ 14 MeV => δW = 0.1%   
• watch impact of new beam parameters: => preliminary estimate: 20 MeV   - still ok

The Higgs Boson

for in depth discussion of parametric uncertainties 
c.f. Phys. Rev. D 89, 033006 (2014)

Phys.Rev. D94 (2016) no.11, 113002

http://dx.doi.org/10.1103/PhysRevD.89.033006
http://dx.doi.org/10.1103/PhysRevD.94.113002
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Higgs coupling precisions (in %)

41

• 250 GeV does a great job 

• + 500 GeV improves up to a factor of ~2 ✔



Double Higgs Production
• always multiple diagrams contributing -  

with and without Higgs self-coupling 𝜆 

• interference induces  non-trivial relations  
between cross sections and 𝜆 

• VHH has opposite behaviour to VBF /ggF=> important independent information! 

• largest sensitivity to 𝜆 near threshold => restriction to high energy / high mass does not help 

• unique for e+e- @ 500 GeV: access to VHH

42

𝞴

[arxiv:1401.7340]

e+e- -> XHH

pp -> XHH

J.Tian

SM

[3 TeV similar]


