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• Gravity. Full numerical relativity simulations 
available in the last ~20 years.


• Dense matter. Finite temperature and out 
of beta-equilibrium EOS in simulations in 
the last ~10 years.


• Neutrino transport. GR simulations with 
approximate neutrinos: ~5 years ago.


• Magnetic fields. GRMHD merger 
simulations ~10 years ago.

Neutron Star Merger Simulations

No simulation includes everything!



WhiskyTHC
http://personal.psu.edu/~dur566/whiskythc.html

THC: Templated Hydrodynamics Code

● Full-GR, dynamical spacetime*


● Nuclear EOS


● M0 neutrino treatment


● High-order hydrodynamics


● Open source!

* using the Einstein Toolkit metric solvers
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Prompt BH formation: q ≃ 1

From Hotokezaka+ 2011

of the code). Our study considers 12 microphysical, fully
temperature-dependent EoSs with maximum masses in
the range of 1.95 to 2:79M!, which is compatible with
the observation of a 1:97M! " 0:04M! pulsar [36] (see
Table I). With the exception of the IUF EoS, these EoSs
are also consistent with the detection of a NSwith a mass of
2:01M! " 0:04M! [49]. The radii Rmax of the maximum-
mass configurations vary between 10.32 and 13.43 km (see
also Ref. [23] for the mass-radius relations of most EoSs
considered here). The EoSs are chosen without any selec-
tion procedure and cover approximately the full range of
high-density models regarding their stellar properties. As
initial conditions, we set up cold NSs in neutrinoless beta
equilibrium on a quasiequilibrium orbit a few revolutions
before merging. We assume irrotational stars since tidal
locking is unlikely [50,51], and the orbital period is short
compared to possible stellar rotation. Unless stated other-
wise, we use a resolution of about 340 000 SPH particles.

For each EoS, we determine Mthres by performing simu-
lations of binaries with different values of Mtot, which is
defined as the binary’s total gravitational mass at infinitely
large binary separation. We focus on equal-mass binaries
here and increaseMtot in increments of 0:1M!. We identify
Mstab with the mass of the most massive binary in our
sample with a dynamically stable remnant, i.e., the most
massive system that results in a delayed collapse. We
similarly identifyMunstab with the mass of the least massive
binary whose merger triggers prompt collapse. We then
estimate Mthres ¼ ðMstab þMunstabÞ=2M! " 0:05M!.

Since thermal pressure has an important effect on the
collapse behavior (see, e.g., Refs. [31,35,52]), we have

only considered fully temperature-dependent EoSs in
this study. Many other simulations instead supplement a
barotropic, zero-temperature EoS with a thermal ideal-gas
component in order to approximate finite-temperature
effects [12–14,19,20,23,26,35]. We have found that in
such a ‘‘hybrid’’ treatment the threshold mass Mthres

depends strongly on the ideal-gas index !th. Since !th is
neither unambiguously defined nor constant [35], fully
temperature-dependent EoSs will provide more reliable
values for Mthres than a hybrid treatment.
In order to calibrate the error introduced by the confor-

mal flatness approximation, we reproduced the fully rela-
tivistic simulations of Ref. [20] and found the same
collapse behavior in all but one case, for which we
obtained a small shift in Mthres [53]. We conclude that
the effects of the conformal flatness approximation on
our results are small. We verified that our resolution with
SPH particles is sufficient by reproducing our findings for
the DD2 EoS with both 731 000 and 1 202 000 SPH parti-
cles. Finally, we reran our simulations for the DD2 EoS
starting with different initial binary separations (leading to
2.5, 3.5, and 4.5 orbits before merging) to confirm that this
separation does not affect our results.
Results.—The EoS dependence of Mthres and k can be

expressed by the stellar parameters of nonrotating NSs,
which are uniquely determined by the EoS and thus char-
acterize a given EoS. Our survey reveals that k scales very
well with the compactness Cmax ¼ ðGMmaxÞ=ðc2RmaxÞ of
the maximum-mass configuration of nonrotating NSs
(Fig. 1). We find a similarly tight relation when k is
expressed as a function of C'

1:6 ¼ ðGMmaxÞ=ðc2R1:6Þ, where
R1:6 is the radius of a 1:6M! NS (see Fig. 1). SinceR1:6 may
be more easily determined than Rmax, both by future obser-
vations [23,29,55,56] and theoretical considerations [57],
C'
1:6 might be a more useful quantity than Cmax.
As can be seen in Fig. 1, k is a nearly linear function

of C'
1:6 in the regime of interest. The maximum residual

from the linear fit k ¼ jC'
1:6 þ a with j ¼ (3:606 and

TABLE I. Sample of temperature-dependent, nuclear EoSs
used in this study. Here Mmax, Rmax, Cmax, and !c are the
gravitational mass, areal radius, compactness, and central energy
density of the maximum-mass TOV configurations. We list !c in
units of the nuclear saturation density !0 ¼ 2:7) 1014 g=cm3.
R1:6 is the areal radius of 1:6M! NSs. Mthres denotes the total
binary mass that separates prompt from delayed collapse (see the
text). fstabpeak is the dominant GW frequency in the postmerger

phase of the binary with Mtot ¼ Mstab, the most massive binary
configuration of our sample that does not collapse promptly.

EoS
Mmax

(M!)
Rmax

(km) Cmax

R1:6

(km)
Mthres

(M!) !c=!0

fstabpeak

(kHz)

NL3 [37,38] 2.79 13.43 0.307 14.81 3.85 5.6 2.78
GS1 [39] 2.75 13.27 0.306 14.79 3.85 5.7 2.81
LS375 [40] 2.71 12.34 0.325 13.71 3.65 6.5 3.05
DD2 [38,41] 2.42 11.90 0.300 13.26 3.35 7.2 3.06
Shen [42] 2.22 13.12 0.250 14.46 3.45 6.7 2.85
TM1 [43,44] 2.21 12.57 0.260 14.36 3.45 6.7 2.91
SFHX [45] 2.13 10.76 0.292 11.98 3.05 8.9 3.52
GS2 [46] 2.09 11.78 0.262 13.31 3.25 7.6 3.19
SFHO [45] 2.06 10.32 0.294 11.76 2.95 9.8 3.67
LS220 [40] 2.04 10.62 0.284 12.43 3.05 9.4 3.52
TMA [44,47] 2.02 12.09 0.247 13.73 3.25 7.2 2.96
IUF [38,48] 1.95 11.31 0.255 12.57 3.05 8.1 3.31
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FIG. 1. Coefficient k [Eq. (1)] as a function of Cmax ¼
GMmax=ðc2RmaxÞ (crosses) and C'

1:6 ¼ GMmax=ðc2R1:6Þ (circles).
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Mthr = kthrMmax



Dynamical mass ejection

DR, Galeazzi+ MRAS 460:3255 (2016)

See also Bausswein+ 2013, Hotokezaka+ 2013, Wanajo+ 
2014,  Sekiguchi+ 2015, 2016, Foucart+ 2016, Lehner+ 2016, 
Dietrich+ 2016, DR+ 2018, …



Disk formation I

Mchirp = 1.188 M�

Bernuzzi, …,  DR+, MNRAS 497:1488 (2020)



Disk formation II

Bernuzzi, …,  DR+, MNRAS 497:1488 (2020)

Prompt-BH with large disk!



Disk masses
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DR, Perego+ ApJL 852:L29 (2018);
DR & Dai, Eur. Phys. J. A 55: 50 (2019) See also Krüger+ 2020; Salafia+ 2020; …



Equation of state constraints

0 200 400 600 800 1000
§̃

P
D

F

GW Only

GW + EM

Prior

DR, Perego+ ApJL 852:L29 (2018);
DR & Dai, Eur. Phys. J. A 55: 50 (2019) 
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• Potential to constrain the EOS and or q: the basic 

physics is understood and included in the simulations
• Modeling uncertainties appear to be under control
• Need to explore the parameter space: EOS, mass 

ratios, etc.

DR, Perego+ ApJL 852:L29 (2018);
DR & Dai, Eur. Phys. J. A 55: 50 (2019) 







Postmerger GW signal

• Post-merger signal has a characteristic peak frequency

• fpeak correlates with the NS radius and tidal deformability

• Small statistical uncertainty, systematics not understood yet
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FIG. 3. Mf2 dimensionless frequency as a function of the tidal coupling constant T
2 . Each panel shows the same dataset; the

color code in each panel indicates the di↵erent values of binary mass (top left), EOS (top right), mass-ratio (bottom left), and
�th (bottom right). The black solid line is our fit (see Eq. (2) and Table II); the grey area marks the 95% confidence interval.
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assuming q = MA/MB � 1. The leading-order term of
the tidal potential is simply A

T (r) = �
T
2
r
�6.

A consequence of the latter expression for A
T (r) is

that the merger dynamics is essentially determined by
the value of 

T
2

[16]. All the dynamical quantities develop
a nontrivial dependence on 

T
2

as the binary interaction
becomes tidally dominated. The characterization of the
merger dynamics via 

T
2

is “universal” in the sense that
it does not require any other parameter such as EOS, M ,
and q. (There is, however, a dependency on the stars
spins.) For example, at the reference point tmrg, the cor-
responding binary reduced binding energy E

mrg

b , the re-
duced angular momentum j

mrg, and the GW frequency

M!
mrg

22
can be fitted to simple rational polynomials [16]

Q(T
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1 + n1
T
2

+ n2(T
2
)2

1 + d1
T
2

, (2)

with fit coe�cients (ni, di) given in Table II.
In view of these results, it appears natural to investi-

gate the depedency of the postmerger spectrum on 
T
2
.

Our main result is summarized in Fig. 3, which shows
the postmerger main peak dimensionless frequency Mf2

as a function of 
T
2

for a very large sample of bina-
ries. Together with our data we include those tabu-
lated in [19, 24]. The complete dataset spans the ranges
M 2 [2.45M�, 2.9M�], q 2 [1.0, 1.5], and a large varia-
tion of EOSs. The peak location is typically determined
within an accuracy of �f ⇠ ±0.2 kHz, see also [18]. Each
of the four panels of Fig. 3 shows the same data; the color
code in each panel indicates di↵erent values of M (top
left), EOS (top right), q (bottom left), and �th (bottom
right). The data correlate rather well with 

T
2
. As indi-

cated by the colors and di↵erent panels, the scattering of
the data does not correlate with variations of M , EOS, q,
�th. The black solid line is our best fit to Eq. (2), where
we set n2 = 0 and fit also for Q0, see Table II. The fit
95% confidence interval is shown as a gray shaded area
in Fig. 3.

for the postmerger phase, which could enhance the detec-
tion prospects compared to unmodeled searches [40,41] for
the Advanced LIGO and Advanced Virgo detectors and
their discussed upgrades [42–44]. For the planned Einstein
Telescope [45], direct detections of secondary peaks are a
viable prospect [36,37,40,41].

II. NATURE OF SECONDARY GW PEAKS

We investigate mergers of equal-mass, intrinsically non-
spinning NSs with a 3D relativistic smoothed particle
hydrodynamics (SPH) code, which imposes the conformal
flatness condition on the spatial metric [46,47] to solve
Einstein’s field equations and incorporates energy and
angular momentum losses by a GW backreaction scheme
[18,48] (see Refs. [12,18,28,29,49] for details on the code,
the setup, resolution tests and model uncertainties).
Comparisons to other numerical setups and also models
with an approximate consideration of neutrino effects
show an agreement in determining the postmerger spectrum
within a few percent in the peak frequencies [27–29,33,
36–38]. Magnetic field effects are negligible for not-too-
high initial field strengths [24]. We explore a representative
sample of ten microphysical, fully temperature-dependent
equations of state (EOSs) (see Table I in Ref. [39] and
Fig. 5 in this work for the mass-radius relations of non-
rotating NSs of these EOSs) and consider total binary
massesMtot between 2.4 M⊙ and 3.0 M⊙. In this work we
consider only NSs with an initially irrotational velocity
profile, because known spin periods in observed NS
binaries are slow compared to their orbital motion (see
e.g. Ref. [50]), and simulations with initial intrinsic NS spin
suggest an impact on the postmerger features of the GW
signal only for very fast spins [19,35,38].
First, we focus on a reference model for the moderately

stiff DD2 EOS [51,52] with an intermediate binary mass of
Mtot ¼ 2.7 M⊙. Figure 1 shows the x-polarization of the
effective amplitude heff;x ¼ ~hxðfÞ · f (with ~hx being the
Fourier transform of the waveform hx) vs frequency f
(reference model in black). Besides the dominant fpeak
frequency [53], there are two secondary peaks at lower
frequencies (f2−0 and fspiral) with comparable signal-to-
noise ratio. Both are generated in the postmerger phase,
which can be seen by choosing a time window covering
only the postmerger phase for computing the GW
spectrum.
The secondary peak shown as f2−0 is a nonlinear

combination frequency between the dominant quadrupolar
fpeak oscillation and the quasiradial oscillation of the
remnant, as described in Ref. [25]. We confirm this by
performing additional simulations, after adding a quasir-
adial density perturbation to the remnant at late times. The
frequency f0 of the strongly excited quasiradial oscillation
is determined by a Fourier analysis of the time evolution of
the density or central lapse function and coincides with the

frequency difference fpeak − f2−0. As in Ref. [25], the
extracted eigenfunction at f0 confirms the quasiradial
nature.
The secondary fspiral peak is produced by a strong

deformation initiated at the time of merging, the pattern
of which then rotates (in the inertial frame) slower than the
inner remnant and lasts for a few rotational periods, while
diminishing in amplitude. Figure 2 shows the density
evolution in the equatorial plane, in which one can clearly
identify the two antipodal bulges of the spiral pattern,
which rotate slower than the central parts of the remnant. In
this early phase the inner remnant is still composed of two
dense cores rotating around each other (this is the nonlinear
generalization of an m ¼ 2 quadrupole oscillation produc-
ing the dominant fpeak). Extracting the rotational motion of
the antipodal bulges in our simulations, we indeed find that
their frequency equals fspiral=2 producing gravitational
waves at fspiral (compare the times in the right panels in
Fig. 2; recall the factor 2 in the frequency of the GW signal
compared to the orbital frequency of orbiting point par-
ticles). In Fig. 2 the antipodal bulges are illustrated by
selected fluid elements (tracers), which are shown as black
and white dots, while the positions of the individual centers
of the double cores are marked by a cross and a circle. (We
define the centers of mass of the double cores by computing
the centers of mass of the innermost 1000 SPH particles of
the respective initial NSs and then following their time
evolution.) While in the right panels the antipodal bulges
completed approximately one orbit within one millisecond
(≈ 2

fspiral
), the double cores moved further ahead, i.e. with a

significantly higher orbital frequency. Examining the GW
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FIG. 1 (color online). GW spectra of 1.35–1.35 M⊙ mergers
with the DD2 [51,52] (black), NL3 [51,54] (blue) and LS220 [55]
(red) EOSs (cross polarization along the polar axis at a reference
distance of 20 Mpc). Dashed lines show the anticipated unity
SNR sensitivity curves of Advanced LIGO [1] (red) and of the
Einstein Telescope [45] (black).

A. BAUSWEIN AND N. STERGIOULAS PHYSICAL REVIEW D 91, 124056 (2015)
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See also Takami+ 2014; Rezzolla & Takami 2016; Dietrich+ 2016; Bose+ 2017; …
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FIG. 3. Mf2 dimensionless frequency as a function of the tidal coupling constant T
2 . Each panel shows the same dataset; the

color code in each panel indicates the di↵erent values of binary mass (top left), EOS (top right), mass-ratio (bottom left), and
�th (bottom right). The black solid line is our fit (see Eq. (2) and Table II); the grey area marks the 95% confidence interval.
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assuming q = MA/MB � 1. The leading-order term of
the tidal potential is simply A

T (r) = �
T
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r
�6.

A consequence of the latter expression for A
T (r) is

that the merger dynamics is essentially determined by
the value of 

T
2

[16]. All the dynamical quantities develop
a nontrivial dependence on 

T
2

as the binary interaction
becomes tidally dominated. The characterization of the
merger dynamics via 
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is “universal” in the sense that
it does not require any other parameter such as EOS, M ,
and q. (There is, however, a dependency on the stars
spins.) For example, at the reference point tmrg, the cor-
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with fit coe�cients (ni, di) given in Table II.
In view of these results, it appears natural to investi-

gate the depedency of the postmerger spectrum on 
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2
.

Our main result is summarized in Fig. 3, which shows
the postmerger main peak dimensionless frequency Mf2

as a function of 
T
2

for a very large sample of bina-
ries. Together with our data we include those tabu-
lated in [19, 24]. The complete dataset spans the ranges
M 2 [2.45M�, 2.9M�], q 2 [1.0, 1.5], and a large varia-
tion of EOSs. The peak location is typically determined
within an accuracy of �f ⇠ ±0.2 kHz, see also [18]. Each
of the four panels of Fig. 3 shows the same data; the color
code in each panel indicates di↵erent values of M (top
left), EOS (top right), q (bottom left), and �th (bottom
right). The data correlate rather well with 

T
2
. As indi-

cated by the colors and di↵erent panels, the scattering of
the data does not correlate with variations of M , EOS, q,
�th. The black solid line is our best fit to Eq. (2), where
we set n2 = 0 and fit also for Q0, see Table II. The fit
95% confidence interval is shown as a gray shaded area
in Fig. 3.
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the postmerger main peak dimensionless frequency Mf2

as a function of 
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for a very large sample of bina-
ries. Together with our data we include those tabu-
lated in [19, 24]. The complete dataset spans the ranges
M 2 [2.45M�, 2.9M�], q 2 [1.0, 1.5], and a large varia-
tion of EOSs. The peak location is typically determined
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cated by the colors and di↵erent panels, the scattering of
the data does not correlate with variations of M , EOS, q,
�th. The black solid line is our best fit to Eq. (2), where
we set n2 = 0 and fit also for Q0, see Table II. The fit
95% confidence interval is shown as a gray shaded area
in Fig. 3.
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See also Bauswein+ 2011, 2013; 2015, Read+ 2013; 
Hotokezaka+ 2013, Takami+ 2014, Bernuzzi+ 2015; 
Clark+ 2014, 2016; Bose+ 2017; Chatziioannou 2017; 
Most+ 2019; Bausswein+ 2019…
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Long-term evolution



Neutrino physics

From Sekiguchi+ 2011

2

FIG. 2: Top: Electron fraction of gravitationally unbound ma-
terial at 5 GK vs. latitude, |90 � ✓bl|. Boxes represent cuts
through the data. Red is neutron-rich, blue is neutron-poor.
Black dashed lines represent approximate bounds on viewing
angle for gw170817, as given by [58]. (Although angle matters,
an observation integrates over many lines of sight.) Bottom:
Distribution per solid angle of electron fraction in material in
boxed regions.

port, neutrino-matter coupling, or magnetohydrodynam-
ics (MHD). In this work, we present, for the first
time, fully three-dimensional general-relativistic radia-
tion magnetohydrodynamics (GRRMHD) simulations of
a post-merger disk system with full neutrino transport
using a Monte Carlo method.

We model a black hole accretion disk system which
may have formed from the GW170817 merger [55]. Mag-
netohydrodynamic turbulence [56] drives a wind [57] o↵
the disk. We find the electron fraction of this outflow
ranges from Ye⇠0.2 to Ye⇠0.4. Moreover, we find that
the composition of the outflow varies significantly with
angle o↵ of the midplane, suggesting that the observed
character of the outflow depends heavily on viewing an-
gle. Thus, a blue, wind-produced kilonova will be visible
if the remnant is viewed close to the polar axis.

FIG. 3: Left: Total mass in the outflow as a function of
time. Right: Average electron fraction Ye of gravitationally
unbound material at an extraction radius of r ⇠ 103 km as a
function of latitude and time.

II. METHODS

We perform a GRRMHD simulation in full three di-
mensions with our code, ⌫bhlight[59]. We assume a Kerr
background metric, consistent with the relatively small
disk mass compared to black hole mass. The radiation
transport is treated via explicit Monte Carlo and the
MHD is treated via finite volumes with constrained trans-
port. The two methods are coupled via operator splitting.
We use the SFHo equation of state [60] as tabulated in

[61, 62] and the neutrino-matter interactions described
in [59] and tabulated in [63]. For initial data, we use
parameters consistent with a remnant from GW170817
[1, 55, 64]: an equilibrium torus [65] of mass Md = 0.12
M� and constant electron fraction Ye = 0.1 around a
black hole of mass MBH = 2.58 M� and dimensionless
spin a = 0.69. We thread our torus with a single poloidal
magnetic field loop such that the minimum ratio of gas
to magnetic pressure is 100.

III. OUTFLOW PROPERTIES

Our disk drives a wind consistent with other GRMHD
simulations of post-merger disks [43–46, 49, 52–54], which
expands outward from the disk in polar lobes as shown in
figure 1. We record material crossing a sphere of radius
r ⇠ 103 km. Figure 2 bins outflow material in both elec-
tron fraction Ye and in angle o↵ the equator, |90��✓bl| for
Boyer-Lindquist angle ✓bl, integrated in time. The 90%
confidence interval for the viewing angle for GW170817
[58] is bounded by the dashed lines.
We choose two regions, one close to the midplane, and

one far from it, highlighted in the red and blue rectan-
gles. We bin the electron fraction in these regions in the
red and blue histograms. Regardless of electron fraction,
ejected material has an average entropy, s, of about 20
kb/baryon and an average radial velocity (as measured
at a radius of 1000 km) of about 0.1c.
The electron fraction depends on angle o↵ of the mid-

From Miller+ 2019

See also: Dessart+ 2008, Perego+ 2014, Just+ 
2015, Metzger+ 2014, Foucart+ 2016, Siegel & 
Metzger 2018, Foucart+ 2020, …



MHD turbulence

Mösta, DR+ 2020

Kiuchi+ 2014

Siegel & Metzger 2018

See also

Price & Rosswog 2006; 

Andreson+ 2008;

Etienne+ 2011;

Endrizzi+ 2014;

Giacomazzo+ 2015;

Ruiz+ 2016;

Palenzuela+ 2016;

Fernandez+ 2018;

Ciolfi+ 2019; …



Merger outcome
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FIG. 3. partially copied from David’s paper Estimated outcome of the viscous evolution of a several binaries with BLh EOS (Top
panel) and DD2 EOS (bottom panel). The gray shaded area shows the set of all rigidly rotating equilibrium configurations.
The green dashed line is a conservative estimate of the mass ejection and a possible trajectory for the viscous evolution. The
blue shaded region denotes the range of all possible outcomes of the viscous evolution. The first (disk ejecta) regime corresponds
fo the ejection of matter due to the nuclear recombination of the accretion disk. The second regime (remnant ejecta) is due to
viscous instabilities in the merger remnant. The solid black line is the evolution of overall Jtot and Mb from 3D data. The line
marked with crosses is the projected evolution based on the Jrmtot and Mb losses, which are in turn due to spiral-wave wind,
linearly extrapolated. The colored markers are placed at J where the gravitational wave losses subsides and the evolution starts
to be driven by the wind.

[SB: between the two plots this one with BLh 1.364+1.364 seems the only one sufficiently long and relevant.
we should avoid extrapolations on too long timescales but this one is actually interesting. I am not sure
about the meaning of the diamond, but I interpret the solid black line associated as the J evolution via

the matter integral of BLh 1.364+1.3.64; the text I edited refers to this understanding. TODO: lets make a
plot specific for this model, pehraphs a sequence of marked on real data is better. we should show both
the J from the GW and from the matter integral] [DR: I would only include the q = 1 run.] [DR: I would
recommend to remove the shaded regions and leave only two lines: the green line and the bottom of the

remnant region, which we can give as best analytical guess and upper bound on the ejecta (citing
Radice+2018 and without going into the details). The shaded region is meaningful only for remnants with
masses below the maximum mass for a RNS, because HMNS remnants can collapse to BHs without having to get
rid of any additional angular momentum (since a < 1).] [VN: Thank you for your comments. I tried to take
your suggestions into account on the right plot.] [VN: The gold diamond is the (JADM � JGW,Mb,0), computed in

the same was as it is done in [69]. The black line stands for the evolution of the integrated baryonic
mass and total angular momentum over with time. It starts with merger and ends at the end of the 3D data.]

[VN: I limited extrapolation and removed shaded regions.]

From Nedora, Bernuzzi, DR+, arXiv:2008.04333 



• Inspiral and early postmerger are better understood, but there is 
still a vast parameter space volume to explore.


• We can already do multimessenger astrophysics!


• The physics becomes increasingly complex on longer timescales 
in the postmerger. Higher resolution, longer, and more 
sophisticated simulations are needed.

Conclusions


