Report on EFT activities from the LHC EW WG

Raquel Gomez Ambrosio, Kristin Lohwasser (on behalf of the LHC EW contacts)

• 19.10.2020

Overview

- General overview over LHC EW WG
- Activities of sub-groups
- **♦** Focus on MB group
 - > Achievements
 - Plans (survey)
- Summary

The LHC electroweak working group

Started in 2012

LHC Electroweak WG https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCEW

WG 1: Drell-Yan physics and EW precision measurements

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/EWWG1

- pT W, Z, and W/Z resummation benchmarking
- QED/EW corrections for precision EW measurements (Z DY and s2weff observables)
- PDF benchmarking exercise
- Pseudodata for combination of sin2θeff measurements
- Pseudodata for combination of pTZ and DY measurements
- Work towards M_w combination
- Photon-induced process in DY measurements and s2weff observables

WG 2: Jets and EW bosons subgroup

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/EWWG2

- Z/W+jets Benchmark comparisons
- · LHC tune / Intrinsic kT
- Jet substructure measurements
- Uncertainty treatment and analysis/data preservation (HEPdata et all)

Some general topics taken on mainly by one group (e.g. HEPdata) but relevant to all

WG 3: EW multi-boson production

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/EWWG2

- >10 final states
- Measurements of Multibosons: current results and outlook
- Combinations/Common phase spaces
- Predictions for multiboson production:
 Phenomenological studies
 EW corrections, NNLO
- Fiducial cross-section and BSM / EFT
- Effective field theory approaches

The LHC electroweak working group

Started in 2012

LHC Electroweak WG https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCEW

WG 1: Drell-Yan physics and EW precision measurements

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/EWWG1

• pT W, Z, and W/Z resummation

Electroweak precision observables

- → precision could become ~comparable to LEP
- → natural input into EFT fits
- → not explored in that context

Possibility for some new projects?

observables

WG 2: Jets and EW bosons subgroup

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/EWWG2

- Z/W+jets Benchmark comparisons
- LHC tune / Intrinsic kT
- Jet substructure measurements
- Uncertainty treatment and analysis/data preservation (HEPdata et all)

WG 3: EW multi-boson production

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/EWWG2

- >10 final states
- Measurements of

Multiboson production

- (→ Most related to EFT
 - ightarrow with some ongoing /

already finished projects

discussed in more detail in the

F following

• |

approaches

on of ots ation n DY

ents

ables)

WG1: Drell-Yan and EWPD

- pT W/Z and W/Z resummation
- QCD-EW corrections for EW precision measurements
- PDF benchmarking
- sin2eff measurements
- combination of pTZ and DY measurements
- **...**
 - No EFT applications explored so far

WG2: Jets and EW bosons subgroup

- Z/W plus Jets benchmarking
- ❖ LHC tune/intrinsic kT
- Uncertainty treatment
- Analysis/Data preservation (HEPdata)
- ***** ...
 - No EFT applications explored so far (mainly in Z/W+2jets(VBF))
 - ➤ HEP data and correlations information recommendations are mainly worked on in this group → very important base for combinations and consistent data treatment

WG3: EW multi-boson production

- ♦ >10 final states
- Measurements of Multibosons: current results and outlook
- Combinations/Common phase spaces
- Predictions for multiboson production: Phenomenological studies
- EW corrections, NNLO
- ❖ Fiducial cross-section and BSM / EFT
- Effective field theory approaches

WG3: EW multi-boson production

- Common ATLAS/CMS combination of ZZ (7 TeV)
- https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-036/
- Timeline: >1 year (setup and cross-checks of codes)
- aTGC interpretation in effective
 Vertex parametrization
 (published around the start of Run-2)
- Run-1 and start of Run-2: usage of custom TGC codes

(with aposteriori conversion to SMEFT operators)

For Run-2: Comparisons of EFT results

First channel to go "EFT"
 was WW

$$\begin{split} \frac{c_W}{\Lambda^2} &= \frac{2}{M_Z^2} \Delta g_1^Z = \frac{2}{M_Z^2} (\tan^2 \theta_W \Delta \kappa_\gamma + \Delta \kappa_Z) \\ \frac{c_B}{\Lambda^2} &= \frac{2}{M_W^2} \Delta \kappa_\gamma - \frac{2}{M_Z^2} \Delta g_1^Z \\ &= \frac{2}{\tan^2 \theta_W M_Z^2} \Delta g_1^Z - \frac{2}{\sin^2 \theta_W M_Z^2} \Delta \kappa_Z = \frac{2}{M_Z^2} (\Delta \kappa_\gamma - \Delta \kappa_Z) \\ \frac{c_{WWW}}{\Lambda^2} &= \frac{2}{3g^2 m_W^2} \lambda_\gamma = \frac{2}{3g^2 m_W^2} \lambda_Z \\ \frac{c_{\tilde{W}}}{\Lambda^2} &= \frac{2}{m_W^2} \tilde{\kappa}_\gamma = -\frac{2}{\tan^2 \theta_W m_W^2} \tilde{\kappa}_Z \\ \frac{c_{\tilde{W}WW}}{\Lambda^2} &= \frac{2}{3g^2 m_W^2} \tilde{\lambda}_\gamma = \frac{2}{3g^2 m_W^2} \tilde{\lambda}_Z \end{split}$$

WG3: EW multi-boson production

- Following the combination, at lot of discussions went into:
 - Unitarity and validity
 - ➤ More consistent framework for Run-2 (EFT approach → this as was bit before the development of SMEFT/MG5 frameworks)
 - Establishing common approach between experiments (resulted in internal recommendations within experiments)
- https://indico.cern.ch/category/3290/
- Discussions around measurements: what EFT/aTGC parameters to measure / common phase spaces / MC treatment / ...

Ultimate goal: EFT interpretation of the EW sector

- Follow the steps of the work done in the Higgs and top working groups
- The EW sector is historically interesting (unitarity, EWPD, TGCs, QGCs, Mz, Mw....)
- It is necessary to have good description of any possible BSM effects
 - > In EWDP
 - ➤ In all EW processes (thinking towards a global fit)

EWPD

Traditionally: Use LEP data to constrain EFT operators affecting EWPD

- Would be good to have an LHC interpretation of EWPD
- LHC runs on a different energy regime, different initial state particles, different assumptions regarding ISR and FSR
- Seems sensible to make sure we have a good understanding of how EFT effects on EWPD might change from LEP to LHC

Single Boson, Diboson and VBS

Loads of works studying these processes in EFT, however very difficult to find agreement in conventions (choice of basis, etc)

Generally:

- Dimension 6 EFT studied in diboson production
- ➤ Dimension 8 EFT studied in VBS (→ vbscanaction.web.cern.ch/)
- Not many works use the Warsaw basis

Single Boson, Diboson and VBS: Difficulties

- Using different basis for TGC and QGC makes the comparison difficult
 - > if dim-X affects TGC, it also affects QCC and vice versa.
- Using a basis other than the Warsaw/SILH/Higgs makes the comparison with Higgs physics and top physics results very difficult

WG3: EW multi-boson production: planned YR

1. Measurements of Multibosons: current results and outlook

- ♦ Chap 4: EFT survey → more details to follow
- ❖ aTGC/EFT summaries (comparing standalone exp. measurements):
 - https://twiki.cern.ch/twiki/bin/view/CMS%20Public/Physics%20Results%20SMPaTGC

EFT survey: Dibosons (YR)

- Systematic review of multiboson processes:
- ❖ → which (Warsaw basis) operators do they constrain?
- ♦ → how sensitive are they (relatively speaking, w/r to other processes)

Class A:	Di	iboson production									
	A1: $WW(\to \ell^+\ell^-\nu\bar{\nu})$	A2: $WZ(\to \ell^+\ell^-\ell\nu)$	A3: $ZZ(\rightarrow \ell^+\ell^-\ell^+\ell^-)$								
	A4: $W\gamma(\to \ell\nu)$	A5: $Z\gamma(\to \ell\ell\gamma)\gamma$	A6: $Z\gamma(\to \nu\nu\gamma)\gamma$								
Class B:	vector-boson fusion (VBF)										
	B1: $Zjj(\to \ell^+\ell^-$	B2: $Wjj(\rightarrow \ell\nu$									
Class C:	vector-boson scattering (VBS)										
	C1: $W^{\pm}W^{\pm} jj(\rightarrow \ell^{\pm}\ell^{\pm}\nu\bar{\nu})jj$	C2: $WZ jj$	C3: $WZ jj$ (QCD)								
	C4: $ZZ jj$	C5: $ZZ jj$ (QCD)	C6: $Z\gamma jj$								
	C7: $W^{\pm}W^{\mp}$ jj	C8: $W^{\pm}W^{\mp} jj$ (QCD)	3007949000000								

EFT survey: Dibosons (YR)

- "General" BSM regions with high sensitivity (based on experimental measurements)
 - Projections / general cuts

	Diboson Production							
Final	Object	Selection requirements						
state	700-27							
WW	leptons	$p_{\rm T} > 25 {\rm ~GeV}, \ \eta < 2.5$						
	neutrinos	$(\sum \overrightarrow{p}_{\nu}) > 30 \text{ GeV}$						
	jets	0 or 1 jet with $p_{\rm T} > 30 {\rm ~GeV}$						
		and within $ \eta < 5.0$						
	final BSM region	BSM1: 0 jet, $m_{\ell\ell} > 600 \text{ GeV}$						
		BSM2: 1 jet, $m_{\ell\ell} > 600 \text{ GeV}$						
		BSM3: 0 jet, $p_{T,\ell_{\text{lead}}} > 400 \text{ GeV}$						
,		BSM4: 1 jet, $p_{T,\ell_{\text{lead}}} > 400 \text{ GeV}$						
WZ	leptons	$p_{\rm T,lead} > 25 {\rm ~GeV}, p_{\rm T} > 15 {\rm ~GeV}, \eta < 2.5$						
	neutrinos	$(\sum \overrightarrow{p}_{\nu}) > 30 \text{ GeV}$						
	jets	no b-jets with $p_{\rm T} > 30 {\rm ~GeV}$						
		and within $ \eta < 5.0$						
	bosons	$m_{T,W} > 30 \text{ GeV (see Eq. 21)},$						
		$\Delta(m_Z, m_{\ell\ell}) < 15 \text{ GeV}$						
	final BSM region	BSM1: $m_{T,WZ}$: >600 GeV (see Eq. 22)						
		BSM2: $m_{3\ell} > 1250 \text{ GeV}$						
ZZ	leptons	$p_{\rm T} > 25 / 15 / 10 {\rm GeV}$ (leading leptons), $ \eta <$						
		2.5						
	bosons	$\Delta(m_Z, m_{\ell\ell}) < 25 \text{ GeV}$						
	final BSM region	BSM1: $m_{ZZ} > 1.0 \text{ TeV}$						

EFT survey: Dibosons (YR)

Coefficient	A: Diboson production					В: `	VBF	C: Vectorboson scattering								
Class 1	A1: WW	A2: WZ	A3: ZZ	$W\gamma$	A5: $Z\gamma$ $(\ell\ell\gamma)$	A6: $Z\gamma$ $(\nu\bar{\nu}\gamma)$	B1: Zjj	Wjj	$W^{\pm}W^{\pm}$	C2: WZ jj	C3: WZ jj (QCE)	C4: ZZ jj	C5: ZZ jj (QCD	Z_{γ} jj	$W^{\pm}W^{\mp}$ jj	$W^{\pm}W^{\mp}$ jj (QCD)
c_G										5 -	✓		1			1
$c_{\widetilde{G}}$											✓		✓			✓
c_W	✓	✓		✓			✓	✓	✓	✓	✓	V	✓	V	√	1
$c_{\widetilde{W}}$	✓	✓		√			✓	✓	✓	V	1	✓	✓	✓	✓	✓
Class 2																
c_H													1			1

General "affectedness" (above)

Specific % sensitivity w/r to the SM (still working on better presentation)

Comparison with current MB limits:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

Thank you!

- EFT mainly features in LHC EW MB discussions
 - Common agreement on usage of SMEFT (though not - yet - documented)
 - Work on survey of diboson EFT sensitivity
- EWPO at the LHC unexplored
 - Concentration on ingredients to precision measurements
 - Question during EW meeting on planned used of pseudodata in LHC EFT group
- Person power interested to contribution could be crucial