A shortcut to new physics: using the archive of LHC measurements to constrain new physics

L. Corpe (UCL) for the CONTUR team

MCNet Meeting, Sept 2020
Introduction

• Our recent paper used CONTUR [arxiv] re-interpretation software to test a whole class of new physics models which involve “vector-like quarks” (VLQs)

• More generally, I will motivate re-interpretation, and the CONTUR method

• I’ll then use the VLQ results to illustrate the power of the method and its complementarity to the LHC search programme
A change of paradigm

- For the last ~50 years, we’ve known what to look for at each step: Z boson, W boson, top quark, Higgs boson…

- Many expected SUSY particles to follow shortly after the Higgs, but now increasingly disfavoured…

- Today, we **no longer have a single guiding theory to motivate discoveries**, but we do have largest HEP dataset every collected

- Need a paradigm shift from **top-down/ theory-driven** approach to **bottom-up/ data-driven** approach
• Key idea: the SM Lagrangian is very finely balanced. You can’t easily add BSM particles without the effect showing up in SM distributions.
Key idea: the SM Lagrangian is very finely balanced. You can’t easily add BSM particles without the effect showing up in SM distributions.
Overview of the CONTUR method

- CONTUR uses bank of LHC results preserved in Rivet to rapidly check if new models are already ruled out.

- Input: Universal Feynrules Object (new physics Lagrangian coded up in python by theorist).

- Herwig: generate events for all 2->2 processes involving new particles, for a given set of parameter values.

- Pass through ~150 Rivet routines from particle-level LHC results.
 - This is quick since everything is at particle-level!
 - Routines categorised into ‘pools’ grouped by \sqrt{s} and final state to ensure orthogonality.

- Compare size of any deviation to reference data from HEPData (including correlations!) to check if signal would already have been seen or whether it is OK within errors -> CLs value.

- CONTUR does book-keeping to repeat over arbitrary array of parameter values.

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
• CONTUR provides the book-keeping and steering machinery to repeat this process over a grid of parameter values

• Run grid for 7, 8, 13 TeV separately, then combine by taking most sensitive measurement from orthogonal analysis pools

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
• Introduces quark partners:
 \[B(-1/3) \quad T(2/3) \quad X(5/3) \quad Y(-4/3) \]
• Couple to SM via usual quark EM/strong couplings, but modified W/Z/H couplings:
 • B,T: interact with W, Z or H via modified weak coupling
 • X, Y: interact only with W via modified weak coupling
 So X \rightarrow Wt, Y \rightarrow Wb due to charge conservation
• Three params:
 • \(\kappa \): absolute coupling of VLQs to SM quarks
 • \(\zeta_i \): relative coupling of VLQs to \(i \)th generation
 • \(\xi_v \): relative coupling of B,T to V in \{W, H, Z\}

New sensitivity of current LHC measurements to vector-like quarks

A. Buckley1, J. M. Butterworth2, L. Corpe3, D. Huang2, P. Sun1

1 School of Physics & Astronomy, University of Glasgow, University Place, G12 8QQ, Glasgow, UK
2 Department of Physics & Astronomy, University College London, Gower St., WC1E 6BT, London, UK

June 15, 2020

Abstract

Quark partners with non-chiral couplings appear in several extensions of the Standard Model. They may have non-trivial generational structure to their couplings, and may be produced either in pairs via the strong and EM interactions, or singly via the new couplings of the model. Their decays often produce heavy quarks and gauge bosons, which will contribute to a variety of already-measured “Standard Model” cross-sections at the LHC. We present a study of the sensitivity of such published LHC measurements to vector-like quarks, first comparing to limits already obtained from dedicated searches, and then broadening to some so-far unstudied parameter regions.

• Introduces quark partners:
 \[B_{-1/3}, T_{2/3}, X_{5/3}, Y_{-4/3} \]

• Couple to SM via usual quark EM/strong couplings, but modified W/Z/H couplings:
 • B,T: interact with W, Z or H via modified weak coupling
 • X, Y: interact only with W via modified weak coupling
 So X -> Wt, Y->Wb due to charge conservation

• Three params:
 • \(\kappa \): absolute coupling of VLQs to SM quarks
 • \(\zeta_i \): relative coupling of VLQs to \(i \)th generation
 • \(\xi_V \): relative coupling of B,T to V in \{W, H, Z\}

LHC programme has mostly focused here since reduced \(\kappa \)-dependence,

But single-production has rich phenomenology which we can probe with CONTUR!

LHC searches mostly focused on 3rd-gen, but 1st-gen has richer phenomenology due to valence-quark-induced production

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
CONTUR vs Direct searches

Assuming 3rd gen couplings only
Assuming X/Y are decoupled (v. High mass)

Figure 5: Sensitivity of LHC measurements to (a) B-production for $M_B = 1200$ GeV and (b) T-production for $M_T = 1350$ GeV. The CONTUR exclusion is shown in the bins in which it is evaluated, graduated from yellow through green to black on a linear scale, with the 95% CL (solid white) and 68% CL (dashed white) exclusion contours superimposed. The mauve region is excluded at 95% CL by the ATLAS combination [16].

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
CONTUR vs Direct searches

Assuming 3rd gen couplings only
Assuming X/Y are decoupled (v. High mass)

- VLQ decays may enter phase space of a many measured LHC cross-sections: b-jets, Z/W+jets, dibosons, multipletons...

- Additional CONTUR sensitivity can be explained partly by the fact that we consider other production modes than pair-production!
CONTUR to explore new regions

VLQs coupling to 1st Gen

- Despite lack of dedicated searches, the 1st-generation κ-m_{VLQ} plane is largely excluded
- ‘ATLAS WW’ pool contains measurements in control regions of a search for leptoquarks. In many parts of plane, this is most sensitive analysis (unusual phase space probed!)
 - A strong argument for searches to make auxiliary particle-level measurements in their papers!
- The lep+MET+jet inclusions occur where pair production has died off but single-production retains appreciable cross-section
 - Sensitivity driven by control region measurements in an 8 TeV Wjj measurement
- “One model’s control region is another model’s search region”: model-independent measurements may be key to handling this conundrum!

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
Despite lack of dedicated searches, the 1st-generation κ-m_{VLQ} plane is largely excluded.

‘ATLAS WW’ pool contains measurements in control regions of a search for leptoquarks. In many parts of plane, this is most sensitive analysis (unusual phase space probed!)

A strong argument for searches to make auxiliary particle-level measurements in their papers!

The lep+MET+jet inclusions occur where pair production has died off but single-production retains appreciable cross-section.

Sensitivity driven by control region measurements in an 8 TeV Wjj measurement.

“One model’s control region is another model’s search region”: model-independent measurements may be key to handling this conundrum!
Despite lack of dedicated searches, the 1st-generation κ-m_{VLQ} plane is largely excluded.

‘ATLAS WW’ pool contains measurements in control regions of a search for leptoquarks. In many parts of the plane, this is most sensitive analysis (unusual phase space probed!)

A strong argument for searches to make auxiliary particle-level measurements in their papers!

The lep+MET+jet inclusions occur where pair production has died off but single-production retains appreciable cross-section.

Sensitivity driven by control region measurements in an 8 TeV Wjj measurement.

“One model’s control region is another model’s search region”: model-independent measurements may be key to handling this conundrum!
VLQs coupling to 1st Gen

- Despite lack of dedicated searches, the 1st-generation κ-m_{VLQ} plane is largely excluded.

- ‘ATLAS WW’ pool contains measurements in control regions of a search for leptoquarks. In many parts of plane, this is most sensitive analysis (unusual phase space probed!)
 - A strong argument for searches to make auxiliary particle-level measurements in their papers!

- The lep+MET+jet inclusions occur where pair production has died off but single-production retains appreciable cross-section
 - Sensitivity driven by control region measurements in an 8 TeV Wjj measurement

- “One model’s control region is another model’s search region”: model-independent measurements may be key to handling this conundrum!

Corner of phase space where B/T decay via Z is dominated by $ll+$jet measurements

Colours indicate dominant pool of LHC analyses in each point of param space

Louie Corpe, UCL (l.corpe@ucl.ac.uk)

Illustration by Chris Wormell From “A Map of the Invisible”
VLQs coupling to 2nd Gen

- Difference in exclusion pattern wrt 1st-gen scan driven by proton PDF!

- κ-dependent single-production modes were only appreciable if VLQs could couple to valence quarks

- This explains why 2nd-gen scan has reduced κ-dependent shape

- Impact of QCD jet analyses also seen for higher masses (CMS 13 TeV jet mass, and ATLAS 13 TeV dijet and inclusive jet analyses)

Colours indicate dominant pool of LHC analyses in each point of param space

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
VLQs coupling to 2nd Gen

- Difference in exclusion pattern wrt 1st-gen scan driven by proton PDF!
- κ-dependent single-production modes were only appreciable if VLQs could couple to valence quarks
- This explains why 2nd-gen scan has reduced κ-dependent shape
- Impact of QCD jet analyses also seen for higher masses (CMS 13 TeV jet mass, and ATLAS 13 TeV dijet and inclusive jet analyses)

Colours indicate dominant pool of LHC analyses in each point of param space

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
Biggest difference with lower-generation scans is the WZH=010 case, where
Z+jets-like measurements cease to play a leading role: VLQs will decay chiefly to
tops, leading to missing-energy signatures

- Also notable is that a lot of the sensitivity in this scan is only possible because of published uncertainty breakdowns in these measurements, which allow correlations between bins to be accounted for
- Exclusion much more modest if error breakdowns would not have been published (see backup)!
What about the (many) more realistic scenarios?

- During journal review, it has been pointed out to us that the scenario with all 4 extra VLQs is unrealistic — unlikely that new particles would form a quadruplet. Instead, we should consider:
 - Singlets: (B), (T)
 - Doublets: (BT), (XT), (TY)
 - Triplets: (BTX), (BTY)
- Each for 1st, 2nd, 3rd-generation couplings, and 4 benchmark W/H/Z-coupling assumptions
- That’s 7 multiplets, each with 3 generation-couplings, each with 4 W/H/Z-couplings, each with 300 points per scan, running 30,000 events at each point…
- Determining the constraints for this many scenarios in short order would normally take months… but can it be done with CONTUR?
- We wanted to use this challenge to put the CONTUR machinery to the test, and demonstrate the flexibility/speed of the method
What about the (many) more realistic scenarios?

28 days later...
What about Singlets?

1st-Generation

2nd-Generation

3rd-Generation

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
What about Singlets?

In general, fewer new VLQs lead to weaker constraints.

If no X or Y in the multiplet, WZH=001 scenarios weaker since no W-decays, and thus only Higgs measurements are sensitive.

In 3rd-gen cases, lack of top density in proton PDF can prevent single-VLQ production. So only pair-production is viable, which is \(\sim \) independent of \(\kappa \).

Original BTXY results for reference in final row.
What about Doublets?

1st-Generation

2nd-Generation

3rd-Generation

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
What about Triplets?

1st-Generation

2nd-Generation

3rd-Generation

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
Bonus model: Inert Doublet Model
Inert Doublet Model

- Inert Doublet Model: simple 2HDM that obeys discrete Z_2 symmetry. New particles: A^0, H^\pm, H^0 (DM candidate) Large mass splittings excluded by prevision EW, so take $m_{H^\pm} = m_{A^0} + 20$ GeV

- Dominant BSM production diagrams show that we expect highest cross-sections from difficult MET-only signature…

- … but could also be sensitive from MET+Jets or multilepton processes

Thanks to G. Zilgavis (UCL undergrad) who ran this nice study!
Inert Doublet Model

• Results: very little sensitivity from existing measurements!

• Better sensitivity could come from updates to these measurements:
 • MET+X (only have 3.2/fb analysis)
 • 4lepton cross-section (only have 36/fb analysis)
 \[A^0 A^0 \rightarrow H^0 H^0 ZZ \rightarrow H^0 H^0 \ell\ell\ell\ell \]

• Also candidate for dedicated search!

Thanks to G. Zilgavis (UCL undergrad) who ran this nice study!
Conclusions and Discussion

• CONTUR allows study of existing LHC sensitivity to whole classes of models, here focusing on VLQs. Many other results available at https://hepcedar.gitlab.io/contur-webpage/results/index.html

• Extract all 2->2 processes from Lagrangian: more comprehensive picture than just working on most spectacular signatures of model

• Measurements not explicitly designed for this purpose can exclude significant regions of VLQ parameter space, in a wider range of models than typically considered by search programme

• Should this sort of scan (which takes ~days on a cluster) be part of the ‘due diligence’ when proposing a new model or designing a search?

 • Increasing amounts of data and pressure on computing resources makes this a compelling argument

 • Highly complementary approach to search programme, which is liberated to pin down the most elusive parts of parameter space (e.g. areas like long-lived particles, exotic signatures, etc…)

 • Searches can also contribute to CONTUR, e.g. unfolded measurements in control (+ search ?) regions, or providing smeared Rivet routines

• CONTUR can be run by anyone! Please ask us about installing it on your cluster. User manual coming soon!

• Not discussed: CONTUR potential for analysis prototyping, upgrade studies, and more!

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
• UCL has one MCNet studentship left:
 • Projects on CONTUR available
 • please get in touch with myself or Jon Butterworth if interested!

• We are very keen to get SM predictions for existing Rivet measurements so they can be used in CONTUR (and avoid making certain assumptions)
 • Please get in touch if you think you can help!
Thank you

PS: ask us about CONTUR tutorials, running via docker, or installing it on your institute cluster!
B Uncorrelated 3rd generation dominant-analyses maps
Figure 8: ATLAS 8 TeV Wjj forward-lepton control region leading-jet p_T distributions at three points on the 95% exclusion contour for $WZ: H = 1:0$, respectively at M_Q values of (a) 1000 GeV, (b) 1750 GeV, and (c) 2250 GeV. The rise and subsidence of a 90% CLs exclusion from a single Wjj bin is seen as the contour passes from below 1 TeV to above 2 TeV. The black points are data, the red histogram is the VLQ contribution stacked on top of the data. In the lower insets, the ratio is shown and the yellow band indicates the significance, taking into account the statistical and systematic uncertainties on the data. The legend gives the exclusion (i.e. one minus the p-value) for that histogram after fitting nuisance parameters for the correlated systematic uncertainties.
Figure 6: Sensitivity of LHC measurements to VLQ production when B, T, X, Y are degenerate in mass. The CONTUR exclusion is shown in the bins in which it is evaluated, graduated from yellow through green to black on a linear scale, with the 95% CL (solid white) and 68% CL (dashed white) exclusion contours superimposed. Limit in the plane of M_Q and $\text{BF}(Q \rightarrow Wq) = 1 - \text{BF}(Q \rightarrow Zq) - \text{BF}(Q \rightarrow Hq)$, for $\text{BF}(Q \rightarrow Hq) = \text{BF}(Q \rightarrow Zq)$.

Louie Corpe, UCL (l.corpe@ucl.ac.uk)
Assuming ξ such that $W:Z:H=1:1:1$

1st-gen couplings: even pair-production has κ-dependence due to weak production initiated by valence quarks
VLQs

Assuming ξ such that $W:Z:H=1:1:1$

VLQ production with associated weak boson (for X and Y, this is only possible via W)
VLQs

Assuming ξ such that W:Z:H=1:1:1

VLQ production with SM quark: can be dominant over pair-production in 1st-gen scenario!

Louie Corpe, UCL (l.corpe@ucl.ac.uk)