Mariana 12 August 2020
Lagrangian

$$
\begin{aligned}
\mathcal{L}= & -\frac{n^{\alpha} n^{\mu}}{2 n^{2}} g^{\beta \nu}\left(F_{\alpha \beta}^{A} F_{\mu \nu}^{A}+F_{\alpha \beta}^{B} F_{\mu \nu}^{B}\right)+ \\
& +\frac{n^{\alpha} n^{\mu}}{4 n^{2}} \varepsilon^{\mu \nu \gamma \delta}\left(F_{\alpha \nu}^{B} F_{\gamma \delta}^{A}-F_{\alpha \nu}^{A} F_{\gamma \delta}^{B}\right)-J_{\mu} A^{\mu}-K_{\mu} B^{\mu} \\
& -\frac{n^{\alpha} n^{\mu}}{2 n^{2}} g^{\beta \nu}\left(F_{\alpha \beta}^{A_{D}} F_{\mu \nu}^{A_{D}}+F_{\alpha \beta}^{B_{D}} F_{\mu \nu}^{B_{D}}\right) \\
& +\frac{e e e_{D}}{n^{2}} g^{\beta \nu}\left(F_{\alpha \beta}^{A D} F_{\mu \nu}^{A}-F_{\alpha \beta}^{B_{D}} F_{\mu \nu}^{B}\right) \\
& +\frac{n^{\alpha} n^{\mu}}{4 n^{2}} \varepsilon^{\mu \nu \gamma \delta}\left(F_{\alpha \nu}^{B_{p}} F_{\gamma \delta}^{A_{D}}-F_{\alpha \gamma}^{A_{D}} F_{\gamma \delta}^{B_{D}}\right)-J_{\mu}^{D} A_{D}^{\mu}-K_{\mu}^{D} B_{D}^{\mu} \\
F_{\mu \nu}^{x} & =\partial_{\mu} x^{\nu}-\partial_{\nu} x^{\mu} \\
J_{\mu} & =e \bar{\psi}_{e} \gamma^{\mu} \psi_{e} \quad K_{\mu}=g \bar{\psi}_{g} \gamma^{\alpha} \psi_{g} \\
J_{\mu}^{D} & =e_{D} \bar{\psi}_{e_{D}} \gamma^{\mu} \psi_{e D} \quad K_{\mu}^{D}=g_{D} \bar{\psi}_{g D} \gamma^{\mu} \psi_{g D}
\end{aligned}
$$

Note: normalization of Lagrangian is chosen for díagonalizatron of kinetic terms
g, go must match with Terning's or Verhaaren's convention
\therefore It will amount to redifining $F_{\mu \nu}^{x}$ to induce couplings.

Equations of motion
Visible
(1)

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}}\left(n^{\mu} \partial_{y} F_{A}^{\alpha \nu}-n^{\gamma} \partial_{y} F_{A}^{\alpha \mu}-\varepsilon_{\beta}^{\mu \gamma \kappa} n_{\gamma} \partial_{y} F_{B}^{\gamma \beta}\right) \\
& \quad+\frac{\varepsilon e e_{\phi}}{n^{2}} n_{\alpha} \partial_{y}\left(n^{\mu} F_{A_{D}}^{\alpha \nu}-n^{\nu} F_{A_{D}}^{\alpha \mu}\right)=J^{\mu}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}}\left(n^{\mu} \partial_{\nu} F_{B}^{\alpha \nu}-n^{\nu} \partial_{\nu} F_{B}^{\alpha \mu}+\varepsilon^{\mu \nu \alpha} n_{\gamma} \partial_{\nu} F_{A}^{\gamma \beta}\right) \\
& -\frac{\epsilon e e_{p}}{n^{2}} n_{\alpha} \partial_{\gamma}\left(n^{\mu} F_{B_{D}}^{\alpha \nu}-n^{\nu} F_{B_{D}}^{\alpha \mu}\right)=K^{\mu}
\end{aligned}
$$

$\frac{\text { DARK }}{(3)}$

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}}\left(n^{\nu} \partial_{\nu} F_{A_{D}}^{\alpha \nu}-n^{\nu} \partial_{\nu} F_{A_{D}}^{\alpha \mu}-\varepsilon_{\beta}^{\mu \nu \alpha} n_{\gamma} \partial_{\nu} F_{B_{D}}^{\gamma \beta}\right) \\
& +\frac{\epsilon e e_{D}}{n^{2}} n_{\alpha} \partial_{y}\left(n^{\mu} F_{A}^{\alpha \nu}-n^{\nu} F_{A}^{\alpha \mu}\right)=J_{D}^{\mu}+M_{A_{D}}^{2} A_{D}^{\mu} A_{D \mu}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}}\left(n^{\mu} \partial_{y} F_{B_{D}}^{\alpha \gamma}-n^{\gamma} \partial_{\nu} F_{B_{D}}^{\alpha \mu}+\varepsilon_{\beta}^{\mu \gamma \alpha} n_{\gamma} \partial_{\nu} F_{A_{D}}^{\gamma \beta}\right) \\
& -\frac{\epsilon e_{p}}{n^{2}}\left(n_{\alpha} \partial_{\nu} n^{\mu} F_{B}^{\alpha \gamma}-n_{\beta}^{\gamma} F_{B}^{\alpha \mu}\right)=K_{D}^{\mu}+M_{B_{D}}^{2} B_{D}^{\mu} B_{D_{\mu}}
\end{aligned}
$$

Rewrite equations, grouping terms
(1^{\prime})

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}}\left[n^{\mu} \partial_{y}\left(F_{A}^{\alpha \nu}+\epsilon e e_{D} F_{A_{D}}^{\alpha \nu}\right)-n^{\gamma} \partial_{\nu}\left(F_{A}^{\alpha \mu}+\epsilon e e_{D} F_{A_{D}}^{\alpha \mu}\right)\right. \\
& \left.-n_{\gamma} E^{\mu \nu \alpha} \beta \partial_{\nu} F_{B}^{\gamma \beta}\right]=J^{\mu}
\end{aligned}
$$

$\left(2^{\prime}\right)$

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}} n^{\mu} \partial_{y}\left(F_{B}^{\alpha \nu}-\epsilon e_{\rho} F_{B_{p}}^{\alpha \nu}\right)-n^{\gamma} \partial_{\nu}\left(F_{B}^{\alpha \mu}-\epsilon e e_{D} F_{B D}^{\alpha \mu}\right) \\
& \left.+n_{\gamma} \epsilon_{\beta \gamma \gamma}^{\mu \gamma \alpha} \partial_{A}^{\gamma \beta}\right]=K^{\mu}
\end{aligned}
$$

$\left(3^{\prime}\right)$

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}}\left[n^{\mu} \partial_{\nu}\left(F_{A_{D}}^{\alpha \nu}+\epsilon e e_{D} F_{A}^{\alpha \nu}\right)-n^{\nu} \partial_{\nu}\left(F_{A_{D}}^{\alpha \mu}+\epsilon e e_{D} F_{A}^{\alpha \mu}\right)\right. \\
& \left.\quad-n_{\gamma} \epsilon^{\mu \gamma \alpha} \beta \partial_{\nu} F_{B_{D}}^{\gamma \beta}\right]=J_{D}^{\mu}+M_{A_{D}}^{R} A_{D}^{\mu} A_{D \mu}
\end{aligned}
$$

$\left(4^{\prime}\right)$

$$
\begin{aligned}
& \frac{n_{\alpha}}{n^{2}} n^{\mu} \partial_{\nu}\left(F_{B_{p}}^{\alpha \nu}-\epsilon e e_{D} F_{B}^{\alpha \gamma}\right)-n^{\nu} \partial_{\nu}\left(F_{B_{D}}^{\alpha \alpha}-\epsilon e e_{p} F_{B}^{\alpha \mu}\right) \\
& \left.+n_{\gamma} \epsilon^{\mu \gamma \alpha} \partial_{\nu} F_{A_{D}}^{\gamma \beta}\right]=K_{D}^{\mu}+M_{B_{D}}^{2} B_{D}^{\mu} B_{D \mu}
\end{aligned}
$$

Rotations

$$
\begin{aligned}
& A_{\mu}=\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \overline{A_{\mu}}+\left(-\sin \phi-e_{D} \cos \phi\right) \bar{A}_{\mu}^{D} \\
& A_{D \mu}=\sin \phi \bar{A}_{\mu}+\cos \phi \bar{A}_{D \mu} \\
& B_{\mu}=\cos \phi \bar{B}_{\mu}-\sin \phi \bar{B}_{D \mu} \\
& B_{D \mu}=\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{B}_{\mu}+\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{B}_{\mu}^{D}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \operatorname{in}\left(I^{\prime}\right) F_{A}^{\alpha \nu}+\operatorname{\epsilon e} e_{D} F_{A_{D}}^{\alpha \nu} \\
& =\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{F}_{A}^{\alpha \gamma}+\epsilon e e_{D}\left(\sin \phi \bar{F}_{A}^{\alpha \gamma}+\cos \phi \bar{F}_{A_{D}}^{\alpha \nu}\right) \\
& \left(-\sin \phi-\epsilon e e_{D} \cos \phi\right) \bar{F}_{A_{\phi}}^{\alpha \nu}=\cos \phi \bar{F}_{A}^{\alpha \nu}+\sin \phi \bar{F}_{A_{D}}^{\alpha \nu} \\
& \left(1^{\prime \prime}\right) \frac{n \alpha}{n^{2}}\left[n^{\mu} \partial_{y}\left(\cos \phi \bar{F}_{A}^{\alpha \nu}+\sin \phi \bar{F}_{A_{D}}^{\alpha \gamma}\right)-n^{\gamma} \partial_{y}\left(\cos \phi \bar{F}_{A}^{\alpha \mu}+\sin \phi \bar{F}_{A D}^{\alpha \mu}\right)\right. \\
& \left.-n_{\gamma} \epsilon^{\mu \nu \alpha} \partial_{\nu}\left(\cos \phi \bar{F}_{B}^{\gamma \beta}-\sin \phi \bar{F}_{B_{D}}^{\gamma \beta}\right)\right]=J_{\mu} \\
& \Rightarrow J_{\mu}=\cos \phi \overline{J_{\mu}}+\sin \phi \bar{J}_{\mu}{ }^{D} \\
& \rightarrow \ln \left(2^{\prime}\right) \quad F_{B}^{\alpha \nu}-\operatorname{eee_{D}} F_{B_{D}}^{\alpha \nu}= \\
& =\cos \phi \bar{F}_{B}^{\alpha \nu}-\sin \phi{\overline{F_{B}}}_{B_{D}}^{\alpha \nu}-\epsilon e e_{D}\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{F}_{B}^{\alpha \nu} \\
& -\epsilon e e_{D}\left(\cos \phi-\epsilon e e_{p} \sin \phi\right) \bar{F}_{B_{D}}^{\alpha \nu} \\
& \approx\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{F}_{B}^{\alpha \nu}-\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{F}_{B_{D}}^{\alpha \nu} \\
& \left(2^{\prime \prime}\right) \frac{n \alpha}{n^{2}}\left[n^{n} \partial_{\nu}\left\{\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{F}_{B}^{\alpha \nu}-\left(\sin \phi+\epsilon e e_{D} \cos \phi\right){\overline{F_{B}}}^{\alpha \nu}\right\}\right. \\
& -n^{\nu} \partial_{\nu}\left\{\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{F}_{B}^{\alpha \mu}-\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{F}_{B_{D}}^{\alpha \mu}\right\} \\
& +n_{\gamma} \epsilon_{\beta}^{\mu \nu \alpha} \partial_{\gamma}\left[\left(\cos \phi-\epsilon e e_{D} \sin \phi\right){\overline{F_{A}^{\gamma \beta}}}_{\gamma^{\gamma}}-\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{F}_{A_{p}}^{\gamma \beta}\right] \\
& =K^{\mu} \\
& \Rightarrow K_{\mu}=\left(\cos \phi-\epsilon e e_{\phi} \sin \phi\right) \bar{K}_{\mu}-\left(\sin \phi+\epsilon e e_{p} \cos \phi\right) \overline{K_{\mu}}{ }^{D}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \ln \left(3^{\prime}\right) \quad F_{A_{D}}^{\alpha \nu}+\epsilon e e_{D} F_{A}^{\alpha \nu}= \\
& \sin \phi \bar{F}_{A}^{\alpha \nu}+\cos \phi \bar{F}_{A_{D}}^{\alpha \nu}+\operatorname{\epsilon ees}(\cos \phi-\operatorname{ee} \operatorname{ees} \sin \phi) \bar{F}_{A}^{\alpha \nu} \\
& -\epsilon \operatorname{ee} e_{p}\left(\sin \phi+\epsilon e e_{p} \cos \phi\right) \bar{F}_{A_{D}}^{\alpha \nu} \\
& \cong\left(\sin \phi+\epsilon e e_{D} \cos \phi \phi \bar{F}_{A}^{\alpha \nu}+\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) F_{A_{D}}^{\alpha \nu}\right. \\
& \text { (3i) } \\
& \begin{aligned}
& \frac{n_{\alpha}}{n^{2}}\left\{n^{\mu} \partial_{\nu}\left[\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{F}_{A}^{\alpha \nu}+\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{F}_{A_{D}}^{\alpha \nu}\right]\right. \\
&-n^{\nu} \partial_{\nu}\left[\left(\sin \phi+\epsilon e e_{\infty} \cos \phi\right) F_{A}^{\alpha \mu}+\left(\cos \phi-\epsilon e e_{p} \sin \phi\right) \bar{F}_{A_{D}}^{\alpha \mu}\right]
\end{aligned} \\
& -n_{\gamma} \epsilon_{\beta}^{\mu \nu \alpha} \partial_{\nu}\left[\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{F}_{B}^{\gamma \beta}+\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{F}_{A D}^{\gamma \beta}\right] \\
& =J_{D}^{\mu}+M_{A_{D}}^{2}\left(\sin ^{2} \phi{\overline{A_{\mu}}}^{2}+\cos ^{2} \phi A_{\mu D}^{2}+2 \sin \phi \cos \phi A_{\mu} A_{\mu D}\right) \\
& J_{D_{\mu}}=\left(\sin \phi+\epsilon e e_{D} \cos \phi\right) J_{\mu}+\left(\cos \phi-\epsilon e e_{D} \sin \phi\right) \bar{J}_{\mu}{ }^{\phi} \\
& \rightarrow \quad \ln \left(4^{\prime}\right) \quad F_{B_{D}}^{\alpha \nu}-\epsilon e e_{D} F_{B}^{\alpha \nu}= \\
& \left(\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{F}_{B}^{\alpha \nu}+\left(\cos \phi-\epsilon e e_{D} \sin \phi\right){\overline{F_{B_{D}}}}^{\alpha \nu} \\
& -\varepsilon e e_{D} \cos \phi \bar{F}_{B}^{\alpha \nu}+\varepsilon e e_{D} \sin \phi \bar{F}_{B_{D}}{ }^{\alpha \nu} \\
& =\sin \phi \bar{F}_{B}^{\alpha \nu}+\cos \phi \bar{F}_{B_{D}}^{\alpha \nu} \\
& \text { (4i) } \frac{n_{\alpha}}{n^{2}}\left[n^{\mu} \partial_{\nu}\left(\cos \phi \bar{F}_{B_{D}}^{\alpha \nu}+\sin \phi \bar{F}_{B}^{\alpha \nu}\right)-n^{\nu} \partial_{\nu}\left(\cos \phi \bar{F}_{B_{D}}^{\alpha \mu}+\sin \phi \bar{F}_{B}^{\alpha / \alpha}\right)\right. \\
& \left.+n_{\gamma} \epsilon_{\beta}^{\mu \nu \alpha} \partial_{\nu}\left(\cos \phi \bar{F}_{A_{\phi}}^{\gamma \beta}+\sin \phi \bar{F}_{A}^{\gamma \beta}\right)\right]= \\
& =K_{D}^{\mu}+M_{B_{0}}^{2}\left(\sin ^{2} \phi \overline{B_{\mu}^{2}}+\cos ^{2} \phi \overline{B_{D \mu}^{2}}+2 \cos \phi \sin \phi B_{D \mu} B^{\mu}\right) \\
& K_{D \mu}=\cos \phi \bar{K}_{D \mu}+\sin \phi \bar{K}_{\mu}
\end{aligned}
$$

1 Normalization of Lagrangian terms with visible and dark sectors - 12 August 2020

Our current Lagrangian. Until now, we have worked with Lagrangian terms collected from Eqs. (2.4), (4.1) and (4.2) (with $\theta=0$) in Ref. [1] (or Eq. (2.1) in Ref. [2])

$$
\begin{align*}
\mathcal{L}= & -\frac{n^{\alpha} n^{\mu}}{8 \pi n^{2}} g^{\beta \nu} g\left(F_{\alpha \beta}^{A} F_{\mu \nu}^{A}+F_{\alpha \beta}^{B} F_{\mu \nu}^{B}\right)+\frac{n^{\alpha} n_{\mu}}{16 \pi n^{2}} \epsilon^{\mu \nu \gamma \delta} g\left(F_{\alpha \nu}^{B} F_{\gamma \delta}^{A}-F_{\alpha \nu}^{A} F_{\gamma \delta}^{B}\right)-J_{\mu} A^{\mu}-g K_{\mu} B^{\mu} \\
& -\frac{n^{\alpha} n^{\mu}}{8 \pi n^{2}} g^{\beta \nu} g_{D}\left(F_{\alpha \beta}^{A_{D}} F_{\mu \nu}^{A_{D}}+F_{\alpha \beta}^{B_{D}} F_{\mu \nu}^{B_{D}}\right)+\frac{n^{\alpha} n_{\mu}}{16 \pi n^{2}} \epsilon^{\mu \nu \gamma \delta} g_{D}\left(F_{\alpha \nu}^{B_{D}} F_{\gamma \delta}^{A_{D}}-F_{\alpha \nu}^{A_{D}} F_{\gamma \delta}^{B_{D}}\right)-e_{D} J_{\mu} A_{D}{ }^{\mu}-e_{D} g_{D} K_{\mu} B_{D}{ }^{\mu} \\
& -\frac{1}{2} M_{A_{D}}^{2} A_{D}^{2}-\frac{1}{2} M_{B_{D}}^{2} B_{D}^{2}+\epsilon e e_{D} \frac{n^{\alpha} n^{\mu}}{n^{2}} g^{\beta \nu}\left(F_{D \alpha \beta}^{A} F_{\mu \nu}^{A}-F_{D \alpha \beta}^{B} F_{\mu \nu}^{B}\right) \tag{1}
\end{align*}
$$

where $g=\frac{4 \pi}{e^{2}}, g_{D}=\frac{4 \pi}{e_{D}^{2}}$ and $F_{\mu \nu}^{X}=\partial_{\mu} X_{\nu}-\partial_{\nu} X_{\mu}\left(X=A, B, A_{D}, B_{D}\right)$. Note that I added an extra e_{D} here in the last term of line 2: $-e_{D} g_{D} K_{\mu} B_{D}{ }^{\mu}$, to agree with Eq. (4.1) of Ref. [1]. The mass terms are from Eqs. (5.1) and (5.3) in Ref. [1] and Ref. [3].

We did not use them yet but it is not clear how the currents would be defined; we tentatively suggested

$$
\begin{gather*}
J_{\mu}=e \bar{\Psi}_{e} \gamma_{\mu} \Psi_{e}, \quad K_{\mu}=g \bar{\Psi}_{g} \gamma_{\mu} \Psi_{g} \\
J_{D \mu}=e_{D} \bar{\Psi}_{D e} \gamma_{\mu} \Psi_{D e}, \quad K_{D \mu}=g_{D} \bar{\Psi}_{D g} \gamma_{\mu} \Psi_{D g} \tag{2}
\end{gather*}
$$

where Ψ_{e} and Ψ_{g} are some sort of projections on the electric and magnetic components.
Would this be a better normalization? The lack of symmetry with the charges in the interaction terms of Eq. (1) seems to have been remedied in p. 6 of Ref. [4]. Also, in p. 4 (as well, see Eq. (3.9) or Ref. [1], they use the magnetic coupling $b=\frac{4 \pi}{e}$ and likewise for b_{D}, rather than g. But I did not check the kinetic terms of Verhaaren's p. 6. It looks like Eq. (1) would be replaced with

$$
\begin{align*}
\mathcal{L}= & -\frac{n^{\alpha} n^{\mu}}{8 \pi n^{2}} g^{\beta \nu} b\left(F_{\alpha \beta}^{A} F_{\mu \nu}^{A}+F_{\alpha \beta}^{B} F_{\mu \nu}^{B}\right)+\frac{n^{\alpha} n_{\mu}}{16 \pi n^{2}} \epsilon^{\mu \nu \gamma \delta} b\left(F_{\alpha \nu}^{B} F_{\gamma \delta}^{A}-F_{\alpha \nu}^{A} F_{\gamma \delta}^{B}\right)-e J_{\mu} A^{\mu}-b K_{\mu} B^{\mu} \\
& -\frac{n^{\alpha} n^{\mu}}{8 \pi n^{2}} g^{\beta \nu} b_{D}\left(F_{\alpha \beta}^{A_{D}} F_{\mu \nu}^{A_{D}}+F_{\alpha \beta}^{B_{D}} F_{\mu \nu}^{B_{D}}\right)+\frac{n^{\alpha} n_{\mu}}{16 \pi n^{2}} \epsilon^{\mu \nu \gamma \delta} b_{D}\left(F_{\alpha \nu}^{B_{D}} F_{\gamma \delta}^{A_{D}}-F_{\alpha \nu}^{A_{D}} F_{\gamma \delta}^{B_{D}}\right)-e_{D} J_{\mu} A_{D}^{\mu}-b_{D} K_{\mu} B_{D}{ }^{\mu} \\
& -\frac{1}{2} M_{A_{D}}^{2} A_{D}^{2}-\frac{1}{2} M_{B_{D}}^{2} B_{D}^{2}+\epsilon e e_{D} \frac{n^{\alpha} n^{\mu}}{n^{2}} g^{\beta \nu}\left(F_{D \alpha \beta}^{A} F_{\mu \nu}^{A}-F_{D \alpha \beta}^{B} F_{\mu \nu}^{B}\right) \tag{3}
\end{align*}
$$

where $b=\frac{4 \pi}{e}, b_{D}=\frac{4 \pi}{e_{D}}$. It seems some terms in Eq. (3) are obtained by multiplying terms in Eq. (1) by e (but not all?!?) Now with the charges included explicitly in the interaction terms, should we use We did not use them yet but it is not clear how the currents would be defined; we tentatively suggested

$$
\begin{gather*}
J_{\mu}=\bar{\Psi}_{e} \gamma_{\mu} \Psi_{e}, \quad K_{\mu}=\bar{\Psi}_{g} \gamma_{\mu} \Psi_{g} \\
J_{D \mu}=\bar{\Psi}_{D e} \gamma_{\mu} \Psi_{D e}, \quad K_{D \mu}=\bar{\Psi}_{D g} \gamma_{\mu} \Psi_{D g} \tag{4}
\end{gather*}
$$

rather than Eq. (2)?

2 Diagonalization of the kinetic term

The other equations that are not clear to me are the transformation that alledgedly lead to the diagonal basis \bar{V} (with $V=A, B, A_{D}, B_{D}$) of the kinetic term:

$$
\begin{align*}
A_{\mu} & =\left(\cos \phi+\epsilon e e_{D} \sin \phi\right) \bar{A}_{\mu}+\left(-\sin \phi+\epsilon e e_{D} \cos \phi\right) \bar{A}_{D \mu} \\
A_{D \mu} & =\sin \phi \bar{A}_{\mu}+\cos \phi \bar{A}_{D \mu} \\
B_{\mu} & =\cos \phi \bar{B}_{\mu}-\sin \phi \bar{B}_{D \mu} \\
B_{D \mu} & =\left(\sin \phi-\epsilon e e_{D} \cos \phi\right) \bar{B}_{\mu}+\left(\cos \phi+\epsilon e e_{D} \sin \phi\right) \bar{B}_{D \mu} \tag{5}
\end{align*}
$$

along with the diagonal currents

$$
\begin{align*}
e \bar{J}_{\mu} & =\left(\cos \phi+\epsilon e e_{D} \sin \phi\right) e J_{\mu}+\sin \phi e_{D} J_{D \mu} \\
e_{D} \bar{J}_{D \mu} & =\left(-\sin \phi+\epsilon e e_{D} \cos \phi\right) e J_{\mu}+\cos \phi e_{D} J_{D \mu} \\
\frac{1}{e} \bar{K}_{\mu} & =\cos \phi \frac{1}{e} K_{\mu}+\left(\sin \phi-\epsilon e e_{D} \cos \phi\right) \frac{1}{e_{D}} K_{D \mu} \\
\frac{1}{e_{D}} \bar{K}_{D \mu} & =-\sin \phi \frac{1}{e} K_{\mu}+\left(\cos \phi+\epsilon e e_{D} \sin \phi\right) \frac{1}{e_{D}} \bar{K}_{D \mu} . \tag{6}
\end{align*}
$$

By solving for the currents in the non-diagonal basis, I obtained (to be verified)

$$
\begin{align*}
e J_{\mu} & =\cos \phi e \bar{J}_{\mu}-\sin \phi e_{D} \bar{J}_{D \mu} \\
e_{D} J_{D \mu} & =\left(\sin \phi-\epsilon e e_{D} \cos \phi\right) e \bar{J}_{\mu}+\left(\cos \phi+\epsilon e e_{D} \sin \phi\right) e_{D} \bar{J}_{D \mu} \\
\frac{1}{e} K_{\mu} & =\left(\cos \phi+\epsilon e e_{D} \sin \phi\right) \frac{1}{e} \bar{K}_{\mu}+\left(-\sin \phi+\epsilon e e_{D} \cos \phi\right) \frac{1}{e_{D}} \bar{K}_{D \mu} \\
\frac{1}{e_{D}} K_{D \mu} & =\sin \phi \frac{1}{e} \bar{K}_{\mu}+\cos \phi \frac{1}{e_{D}} \bar{K}_{D \mu} \tag{7}
\end{align*}
$$

Now should Eqs. (5) and (6) diagonalize the mixing of the kinetic term in Eq. (1)? I tried -probably the wrong way- and it did not work. And how does one obtain Eqs. (5) and (6) anyways?

References

[1] J. Terning and C. B. Verhaaren, JHEP 12, 123 (2018) doi:10.1007/JHEP12(2018)123 [arXiv:1808.09459 [hep-th]].
[2] J. Terning and C. B. Verhaaren, JHEP 12, 152 (2019) doi: 10.1007/JHEP12(2019)152 [arXiv: arXiv:1906.00014v2 [hep-ph]].
[3] A. Hook and J. Huang, Phys. Rev. D 96, no.5, 055010 (2017) doi:10.1103/PhysRevD.96.055010 [arXiv:1705.01107 [hep-ph]].
[4] C. Verhaaren, Magnetic Monopole Dark Matter, Talk given at the International Conference on Neutrinos and Dark Matter (NDM-2020), Hurghada, Egypt, 13 January 2020.

