
Ambiguity Resolution
with Machine Learning and ACTS

Xiaocong Ai, Irina Ene, Heather Gray, Tomohiro Yamazaki
UC Berkeley

1

IRIS-HEP Topical Meeting
Sep 2, 2020

Outline

● Introduction / motivation
● Training the neural network

○ Training set and features

○ Network architecture

○ Validating network learning

● Implementation in ACTS
○ MLTrackClassifier class

○ Various options

● Discussion / future directions

2

Introduction

● LHC Run 1: ~280 tracks/event
● HL-LHC expect to see ~10k

tracks/event
● This will stress computational

resources
● Need fast, accurate, and efficient

track reconstruction algorithms

3

TrackML Accuracy Phase Paper

ACTS

● Acts Common Tracking Software / A
Common Tracking Software

● Experiment-independent toolkit for
track reconstruction (for future
detectors)

● Open-source platform for
implementing new tracking
techniques and hardware
architectures

4https://acts.readthedocs.io/en/latest/

ACTS

● Modern C++ 17
● Efficient memory allocation & access
● Strict thread-safety
● Rigorous unit tests
● Highly configurable
● Well-documented

5https://acts.readthedocs.io/en/latest/

Ambiguity resolution

● LHC Run 1: ~280 tracks/event
● HL-LHC expect to see ~10k

tracks/event
● Tracking performance is not 100% →

not all reconstructed tracks are real
tracks

● Need to ambiguity resolve to
distinguish “good” tracks from
“duplicate” and “fake” tracks

6

TrackML Accuracy Phase Paper

Track reconstruction in ATLAS

7

Space point formation

Seed finding

Track finding

Ambiguity Solving

TRT Extension

→ Combinatorial Kalman Filter
All realistic combinations of hits

← Track candidates with overlapping
or incorrectly assigned hits

Motivation: Machine Learning

● For ATLAS, use simple scoring function

based on track quality for ambiguity

resolution

● In ACTS, currently have performance

validation using truth-based information

(i.e. truth-match probability for fakes,

particle barcode for duplicates)

8

Motivation: Machine Learning

● For ATLAS, use simple scoring function

based on track quality for ambiguity

resolution

● In ACTS, currently have performance

validation using truth-based information

(i.e. truth-match probability for fakes,

particle barcode for duplicates)

● A possibility for ambiguity resolution is to

use ML (e.g. neural network) to predict

whether a given reconstructed track is

good/duplicate/fake based on certain track

features
○ Caveat: track information currently

available is rather simple

9

Generating the training data set

● Use ACTS FAst TRAck Simulation (FATRAS)

to generate simulated particles/hits

○ 50 ttbar events at 𝜇 = 200

○ TrackML detector

○ 2T constant magnetic field (along z)

● Use Combinatorial Kalman Filter track

finding and fitting: ~115k reconstructed

tracks

○ ~85.96% good (truth-match prob >= 50%)

○ ~14.04% duplicate (same majority truth

particle as good track, but less majority
particle hits)

○ <0.001% fake (truth-match prob < 50%)

○ binary classifier (good/duplicate)

10

● Readily available features used for training

○ Number of hits

○ Number of outliers

○ Number of holes (didn’t end up using, more

details in a bit)

○ 𝜒2/dof

● With a more realistic detector description,
can be extended to use additional
information

○ e.g. ITk geometry was first integrated in

ACTS just last week

Machine Learning

Training features

11

Separation, but also overlap!

Machine Learning

Training features

12

No inefficiencies in the modules → holes info
not informative, don’t use

Machine Learning

Constructing the NN

TensorFlow → “Deep” Neural Network*

13

● Binary cross-entropy loss
● Adam optimizer

* architecture limited by simple set of input features

Machine Learning

Training the NN

● 75 % train / 25% test split

● Train NN → maximize Area Under the

Curve of the Receiver Operating

Characteristic on test set

● Use trained model to make predictions

● Output probability > prediction threshold

(=50%) → predicted duplicate track

14

AUC: ~0.87

Good tracks predicted to be duplicate

Duplicate tracks predicted
to be duplicate

Machine Learning

Training the NN

● 75 % train / 25% test split

● Train NN → maximize Area Under the

Curve of the Receiver Operating

Characteristic on test set

● Use trained model to make predictions

● Output probability > prediction threshold

(=50%) → predicted duplicate track

● NN is doing great on good tracks, not so

great on duplicate tracks
○ Good enough considering limitations of

simple input features

15

Need extra info such as e.g.
shared hits to resolve the
duplicates!

Machine Learning

Checking NN learning

16

● NN has learned that duplicate tracks have fewer hits, lots of outliers, and large 𝜒2/dof (easy case)

● Need extra info to resolve the duplicates that “look” like good tracks!
● Currently working on track-by-track basis, but eventually would like to find an architecture that can

consider multiple tracks at a time!

Machine Learning

Implementing neural network into ACTS

MLTrackClassifier class (v1)

● m_weightsPerLayer
○ Vector that stores trained weights matrices

for each layer
○ weights → dynamic-size Eigen::Matrix

● predictTrackLabel function
○ For each layer:

■ Take input
■ Add bias term
■ Apply the weights
■ Apply activation function

○ Predict good or duplicate based on
decision threshold probability

● Can use for duplication rate plots

17

C++

Validating implementation

18

Duplication rate vs eta using predictions of NN

directly in TensorFlow

Duplication rate vs eta using predictions of

MLTrackClassifier instance

C++

Thinking ahead

● Currently, MLTrackClassifier is customized to:
○ One architecture for neural network

○ Trained on data from one detector + magnetic field configuration

○ Some other aspects are hard-coded

● Would like the implementation to be more general
○ Multiple detector + magnetic field configurations

○ Use ML inference framework for other applications (e.g. seed finding)

19

C++

https://onnx.ai/index.html https://github.com/microsoft/onnxruntime

Thinking ahead

● Currently, MLTrackClassifier is customized to:
○ One architecture for neural network

○ Trained on data from one detector + magnetic field configuration

○ Some other aspects are hard-coded

● Would like the implementation to be more general
○ Multiple detector + magnetic field configurations

○ Use ML inference framework for other applications (e.g. seed finding)

● Open Neural Network Exchange (ONNX) format and runtime
○ This has already been integrated into Athena for more general ML tasks in ATLAS

○ Exploring implementation as plugin for ACTS

20

C++

ONNX integration

● ONNX format

● Open-source format for DNN/ML models

● Supports many ML frameworks
○ Keras/TensorFlow
○ PyTorch
○ Scikit-learn
○ Matlab
○ LibSVM
○ MyCaffe
○ XGBoost
○ Etc.

● Save model architecture, trained weights,

compiler info

21

● ONNX runtime

● Cross-platform inferencing accelerator

(training feature in preview)

● Has APIs for
○ Python
○ C#
○ C/C++
○ Java
○ Node.js

● Abstracts away the complex linear algebra

behind the ML model prediction function

C++

ONNX integration

MLTrackClassifier class (v2 - WIP)

● “Wrapper” around ONNX runtime
● predictTrackLabel function

○ Predict good or duplicate based on
decision threshold probability

● NN prediction function
○ Ort::Session

■ Loads model
○ Inference in the usual way

output = model.predict(input)

22

Stores representation of model

C++

Future work

● ONNX format+runtime provide a general ML inference framework that can be
integrated within ACTS

● But we have future plans to:
○ Improve network performance on duplicate tracks

■ Class imbalance problem

■ Tweaking network architecture

■ Access to additional features such as shared hits information is needed

○ Train network on more realistic detector description (i.e. decent fraction of fake tracks)

23

Thank you for your attention!

24

