Ambiguity Resolution with Machine Learning and ACTS

Xiaocong Ai, <u>Irina Ene</u>, Heather Gray, Tomohiro Yamazaki UC Berkeley

IRIS-HEP Topical Meeting Sep 2, 2020

Outline

- Introduction / motivation
- Training the neural network
 - Training set and features
 - Network architecture
 - Validating network learning
- Implementation in ACTS
 - MLTrackClassifier class
 - Various options
- Discussion / future directions

Introduction

- LHC Run 1: ~280 tracks/event
- HL-LHC expect to see ~10k
 tracks/event
- This will stress computational resources
- Need fast, accurate, and efficient track reconstruction algorithms

TrackML Accuracy Phase Paper

ACTS

- Acts Common Tracking Software / A Common Tracking Software
- Experiment-independent toolkit for track reconstruction (for future detectors)
- Open-source platform for implementing new tracking techniques and hardware architectures

ACTS

- Modern C++ 17
- Efficient memory allocation & access
- Strict thread-safety
- Rigorous unit tests
- Highly configurable
- Well-documented

Ambiguity resolution

- LHC Run 1: ~280 tracks/event
- HL-LHC expect to see ~10k
 tracks/event
- Tracking performance is not 100% → not all reconstructed tracks are real tracks
- Need to ambiguity resolve to distinguish "good" tracks from "duplicate" and "fake" tracks

TrackML Accuracy Phase Paper

Track reconstruction in ATLAS

Motivation: Machine Learning

- For ATLAS, use simple scoring function based on track quality for ambiguity resolution
- In ACTS, currently have performance validation using truth-based information (i.e. truth-match probability for fakes, particle barcode for duplicates)

```
// Check if the trajectory is matched with truth.
   // If not, it will be classified as 'fake'
    bool isFake = false;
   if (nMajorityHits * 1. / trajState.nMeasurements >=
        m cfg.truthMatchProbMin) {
      matched[majorityParticleId].push back(
          {nMajorityHits, fittedParameters});
    } else {
      isFake = true;
      unmatched[majorityParticleId]++;
10
11 }
12 // ...
   // Sort the reco tracks matched to this particle by the number of majority
   // hits
   std::sort(matchedTracks.begin(), matchedTracks.end(),
              [](const RecoTrackInfo& lhs, const RecoTrackInfo& rhs) {
16
17
                return lhs.first > rhs.first:
18
              }):
   for (size t itrack = 0: itrack < matchedTracks.size(): itrack++) {</pre>
      const auto& [nMajorityHits, fittedParameters] = matchedTracks.at(itrack);
     // The tracks with maximum number of majority hits is taken as the 'real'
     // track; others are as 'duplicated'
      bool isDuplicated = (itrack != 0);
24 }
```

Motivation: Machine Learning

- For ATLAS, use simple scoring function based on track quality for ambiguity resolution
- In ACTS, currently have performance validation using truth-based information (i.e. truth-match probability for fakes, particle barcode for duplicates)
- A possibility for ambiguity resolution is to use ML (e.g. neural network) to predict whether a given reconstructed track is good/duplicate/fake based on certain track features
 - Caveat: track information currently available is rather simple

```
// Check if the trajectory is matched with truth.
    // If not, it will be classified as 'fake'
    bool isFake = false;
    if (nMajorityHits * 1. / trajState.nMeasurements >=
        m cfg.truthMatchProbMin) {
      matched[majorityParticleId].push back(
          {nMajorityHits, fittedParameters});
    } else {
      isFake = true;
      unmatched[majorityParticleId]++;
10
11 }
12 // ...
    // Sort the reco tracks matched to this particle by the number of majority
   // hits
   std::sort(matchedTracks.begin(), matchedTracks.end(),
              [](const RecoTrackInfo& lhs, const RecoTrackInfo& rhs) {
16
17
                return lhs.first > rhs.first:
18
              }):
   for (size t itrack = 0: itrack < matchedTracks.size(): itrack++) {</pre>
20
      const auto& [nMajorityHits, fittedParameters] = matchedTracks.at(itrack);
     // The tracks with maximum number of majority hits is taken as the 'real'
21
22
     // track; others are as 'duplicated'
      bool isDuplicated = (itrack != 0);
24 }
```

Generating the training data set

- Use ACTS FAst TRAck Simulation (FATRAS)
 to generate simulated particles/hits
 - \circ 50 ttbar events at μ = 200
 - TrackML detector
 - 2T constant magnetic field (along z)
- Use Combinatorial Kalman Filter track finding and fitting: ~115k reconstructed tracks
 - ~85.96% good (truth-match prob >= 50%)
 - ~14.04% duplicate (same majority truth particle as good track, but less majority particle hits)
 - <0.001% fake (truth-match prob < 50%)
 - binary classifier (good/duplicate)

- Readily available features used for training
 - Number of hits
 - Number of outliers
 - Number of holes (didn't end up using, more details in a bit)
 - \circ χ^2/dof
- With a more realistic detector description, can be extended to use additional information
 - e.g. ITk geometry was first integrated in ACTS just last week

Training features

Separation, but also overlap!

Training features

No inefficiencies in the modules \rightarrow holes info not informative, don't use

Constructing the NN

TensorFlow → "Deep" Neural Network*

Training the NN

- 75 % train / 25% test split
- Train NN → maximize Area Under the Curve of the Receiver Operating Characteristic on test set
- Use trained model to make predictions
- Output probability > prediction threshold
 (=50%) → predicted duplicate track

Duplicate tracks predicted to be duplicate

Good tracks predicted to be duplicate

Training the NN

- 75 % train / 25% test split
- Train NN → maximize Area Under the Curve of the Receiver Operating Characteristic on test set
- Use trained model to make predictions
- Output probability > prediction threshold
 (=50%) → predicted duplicate track
- NN is doing great on good tracks, not so great on duplicate tracks
 - Good enough considering limitations of simple input features

Need extra info such as e.g. shared hits to resolve the duplicates!

Checking NN learning

- NN has learned that duplicate tracks have fewer hits, lots of outliers, and large χ^2 /dof (easy case)
- Need extra info to resolve the duplicates that "look" like good tracks!
- Currently working on track-by-track basis, but eventually would like to find an architecture that can consider multiple tracks at a time!

Implementing neural network into ACTS

MLTrackClassifier class (v1)

- m_weightsPerLayer
 - Vector that stores trained weights matrices for each layer
 - o weights → dynamic-size Eigen::Matrix
- predictTrackLabel function
 - o For each layer:
 - Take input
 - Add bias term
 - Apply the weights
 - Apply activation function
 - Predict good or duplicate based on decision threshold probability
- Can use for duplication rate plots

```
FW::MLTrackClassifier::TrackLabels FW::MLTrackClassifier::predictTrackLabel(
        const Acts::MultiTrajectory<SimSourceLink>& multiTraj,
        const size t& entryIndex, const double& decisionThreshProb) const {
      // ...
      // get the trajectory summary info
      auto traiState =
          Acts::MultiTrajectoryHelpers::trajectoryState(multiTraj, entryIndex);
      // the vector of input features
      Acts::ActsVectorXd inputFeatures(3);
10
      inputFeatures[0] = trajState.nMeasurements;
11
      inputFeatures[1] = trajState.nOutliers;
12
      inputFeatures[2] = trajState.chi2Sum * 1.0 / trajState.NDF;
13
      // linear algebra for layer 1 (hidden layer)
14
      Acts::ActsVectorXd wInputLayer1 =
15
          weightedInput(m weightsPerLayer[0], inputFeatures);
16
      Acts::ActsVectorXd outputLayer1 = reluActivation(wInputLayer1);
      // linear algebra for layer 2 (output layer)
17
18
      Acts::ActsVectorXd wInputLayer2 =
          weightedInput(m weightsPerLayer[1], outputLayer1);
19
20
      Acts::ActsVectorXd outputLayer2 = sigmoidActivation(wInputLayer2);
21
      // output layer prediction
22
      if (outputLayer2[0] > decisionThreshProb) {
23
        return TrackLabels::duplicate;
24
25
      return TrackLabels::good;
26 }
```

Validating implementation

Duplication rate vs eta using predictions of NN directly in TensorFlow

Neural network in TensorFlow + python 0.14 0.12 Duplication rate 0.0 01.0 00.0 0.06 0.04 -2 -1

Duplication rate vs eta using predictions of **MLTrackClassifier** instance

Thinking ahead

- Currently, MLTrackClassifier is customized to:
 - One architecture for neural network
 - Trained on data from one detector + magnetic field configuration
 - Some other aspects are hard-coded
- Would like the implementation to be more general
 - Multiple detector + magnetic field configurations
 - Use ML inference framework for other applications (e.g. seed finding)

Thinking ahead

- Currently, MLTrackClassifier is customized to:
 - One architecture for neural network
 - Trained on data from one detector + magnetic field configuration
 - Some other aspects are hard-coded
- Would like the implementation to be more general
 - Multiple detector + magnetic field configurations
 - Use ML inference framework for other applications (e.g. seed finding)
- Open Neural Network Exchange (ONNX) format and runtime
 - This has already been integrated into Athena for more general ML tasks in ATLAS
 - Exploring implementation as plugin for ACTS

ONNX integration

- ONNX format
- Open-source format for DNN/ML models
- Supports many ML frameworks
 - Keras/TensorFlow
 - PyTorch
 - Scikit-learn
 - Matlab
 - LibSVM
 - MyCaffe
 - XGBoost
 - Etc.
- Save model architecture, trained weights, compiler info

- ONNX runtime
- Cross-platform inferencing accelerator (training feature in preview)
- Has APIs for
 - Python
 - o C#
 - o C/C++
 - Java
 - Node.js
- Abstracts away the complex linear algebra behind the ML model prediction function

ONNX integration

MLTrackClassifier class (v2 - WIP)

- "Wrapper" around ONNX runtime
- predictTrackLabel function
 - Predict good or duplicate based on decision threshold probability
- NN prediction function
 - o Ort::Session
 - Loads model
 - o Inference in the usual way
 output = model.predict(input)

```
FW::MLTrackClassifier::TrackLabel FW::MLTrackClassifier::predictTrackLabel(
        std::vector<float>& input tensor values,
        const double& decisionThreshProb) const {
      // run onnx inference
      float outputProbability = runONNXInference(input tensor values);
      if (outputProbability > decisionThreshProb) {
        return TrackLabel::duplicate;
      return TrackLabel::good;
10
                                               Stores representation of model
11
    // onnxruntime inference function
   float FW::MLTrackClassifier::runONNXInference(
        std::vector<float>& input tensor values) const {
15
     // ...
     // score model & input tensor, get output tensor
      std::vector<Ort::Value> output tensors = m session->Run(
          Ort::RunOptions{nullptr},
19
          m inputNodeNames.data(), &input tensor, m inputNodeNames.size(),
20
          m outputNodeNames.data(), m outputNodeNames.size());
21
     // get pointer to output tensor float values
22
      float* floatarr = output tensors.front().GetTensorMutableData<float>();
     // binary decision classification, only need first value
      return floatarr[0];
26 }
```

Future work

- ONNX format+runtime provide a general ML inference framework that can be integrated within ACTS
- But we have future plans to:
 - Improve network performance on duplicate tracks
 - Class imbalance problem
 - Tweaking network architecture
 - Access to additional features such as shared hits information is needed
 - Train network on more realistic detector description (i.e. decent fraction of fake tracks)

Thank you for your attention!