Ambiguity Resolution
with Machine Learning and ACTS

Xiaocong A, Irina Ene, Heather Gray, Tomohiro Yamazaki
UC Berkeley

7\ 1S IRIS-HEP Topical Meeting /
@ hep Sep 2,2020 a\t\S/

Outline

e |ntroduction/ motivation

e Training the neural network
o Training set and features
o Network architecture
o Validating network learning
e |Implementationin ACTS
o MLTrackClassifier class
o Various options

e Discussion/future directions

PERIMENT

Introduction

e LHCRun1:~280 tracks/event

e HL-LHC expect tosee ~10k
tracks/event

e This will stress computational
resources

e Need fast, accurate, and efficient
track reconstruction algorithms

TrackML Accuracy Phase Paper

ACTS

e Acts Common Tracking Software /A
Common Tracking Software

e Experiment-independent toolkit for
track reconstruction (for future

detectors)

e Open-source platform for
implementing new tracking
techniques and hardware

architectures

Experiment ir

How-t

ad the Docs

Docs » Acts Common Tracking Software

Acts Common Tracking Software

© Edit on GitHub

Acts is an experiment-independent toolkit for (charged) particle track reconstruction in (high

energy) physics experiments implemented in modern C++.

The Acts project provides high-level track reconstruction modules that can be used for any tracking
detector. The tracking detector geometry description is optimized for efficient navigation and fast

extrapolation of tracks. Converters for several common geometry description packages are
available. In addition to the algorithmic code, this project also provides an event data model for the

description of track parameters and measurements.

Key features:

input.
+ Simple event data model.
. ions of common i for track ion and fitting.
« Implementations of basic seed finding algorithms.
+ Implementations of common vertexing algorithms.

« Getting started

o Quick start

o Prerequisites

o Building Acts

o Building the documentation

o Build options

o Using Acts

Core library

o Event data

o Geometry module

o Geometry building

o Magnetic field

o Material

o Propagation and extrapolation
o Track Seeding

o Grid and axis

o Logging

o Unit definitions and conversions

o Visualization

Core plugins

o+ DD4hep plugin

o Digitization plugin

o Identification plugin

o TGeo plugin

Experiment integration

o Using Acts from Athena

o Usage for the Future Circular Collider study
How-to guides

Run the FAst TRAck Simulation
ACTS Material Mapping Tutorial

Run the truth tracking examples

Run the CombinatorialKalmanFilter (CKF) tracking example

ACTS Vertexing Tutorial - Example: Adaptive Multi-Vertex Finder (AMVF) - Pythia8

Atracking geometry description which can be constructed manually or from TGeo and DD4Hep

R

N’

https://acts.readthedocs.io/en/latest/

Docs » Acts Common Tracking Software © Edit on GitHub

Acts Common Tracking Software

ACTS

Modern C++ 17

Efficient memory allocation & access
Strict thread-safety

Rigorous unit tests

Highly configurable

Well-documented -

Acts is an experiment-independent toolkit for (charged) particle track reconstruction in (high
energy) physics experiments implemented in modern C++.

The Acts project provides high-level track reconstruction modules that can be used for any tracking
detector. The tracking detector geometry description is optimized for efficient navigation and fast
extrapolation of tracks. Converters for several common geometry description packages are
available. In addition to the algorithmic code, this project also provides an event data model for the
description of track parameters and measurements.

Atracking geometry description which can be constructed manually or from TGeo and DD4Hep
input.

+ Simple event data model.

. ions of common i for track ion and fitting.

« Implementations of basic seed finding algorithms.

+ Implementations of common vertexing algorithms.

« Getting started
o Quick start
o Prerequisites
o Building Acts

o Building the documentation
o Build options &

o Using Acts

Core library

o Event data

o Geometry module

o Geometry building
o Magnetic field
o Material

o Propagation and extrapolation e
o Track Seeding \ &
o Grid and axis

o Logging

o Unit definitions and conversions

o Visualization
Core plugins

o DD4hep plugin

o Digitization plugin

o Identification plugin

o TGeo plugin
Experiment integration

o Using Acts from Athena

o Usage for the Future Circular Collider study

How-to guides

Run the FAst TRAck Simulation

ACTS Material Mapping Tutorial

Run the truth tracking examples

Run the CombinatorialKalmanFilter (CKF) tracking example

ACTS Vertexing Tutorial - Example: Adaptive Multi-Vertex Finder (AMVF) - Pythia8

https://acts.readthedocs.io/en/latest/

ad the Docs

Ambiguity resolution

e LHCRun1:~280 tracks/event

e HL-LHC expect tosee ~10k
tracks/event

e Tracking performance is not 100% —
not all reconstructed tracks are real
tracks

e Needto ambiguity resolve to
distinguish “good” tracks from
“‘duplicate” and “fake” tracks

TrackML Accuracy Phase Paper

Track reconstruction in ATLAS

Transition —,,.
Radiation
Tracker

o o ™,
Silicon "y TRT Extension

Track
Candidate

° findi — Combinatorial Kalman Filter
" Track finding All realistic combinations of hits

« Track candidates with overlapping
or incorrectly assigned hits

Silicon
Detectors

Nominal

]
Interaction !
Point

Motivation: Machine Learning

e For ATLAS, use simple scoring function
based on track quality for ambiguity
resolution

e [nACTS, currently have performance
validation using truth-based information
(i.e. truth-match probability for fakes,
particle barcode for duplicates)

ONO VA WN

// Check if the trajectory is matched with truth.
// If not, it will be classified as 'fake'
bool isFake = false;
if (nMajorityHits * 1. / trajState.nMeasurements >=
m_cfg.truthMatchProbMin) {
matched[majorityParticlelId].push back(
{nMajorityHits, fittedParameters});
} else {
isFake = true;
unmatched[majorityParticleId]++;
}
AT
// Sort the reco tracks matched to this particle by the number of majority
// hits
std::sort(matchedTracks.begin(), matchedTracks.end(),
[1(const RecoTrackInfo& lhs, const RecoTrackInfo& rhs) {
return lhs.first > rhs.first;
1)
for (size t itrack = 0; itrack < matchedTracks.size(); itrack++) {
const auto& [nMajorityHits, fittedParameters] = matchedTracks.at(itrack);
// The tracks with maximum number of majority hits is taken as the 'real’
// track; others are as 'duplicated’
bool isDuplicated = (itrack != 0);
}

For ATLAS, use simple scoring function
based on track quality for ambiguity
resolution

In ACTS, currently have performance
validation using truth-based information
(i.e. truth-match probability for fakes,
particle barcode for duplicates)

A possibility for ambiguity resolution is to
use ML (e.g. neural network) to predict
whether a given reconstructed track is
good/duplicate/fake based on certain track

features
o Caveat: track information currently
available is rather simple

ONO VA WN

Motivation: Machine Learning

// Check if the trajectory is matched with truth.
// If not, it will be classified as 'fake'
bool isFake = false;
if (nMajorityHits * 1. / trajState.nMeasurements >=
m_cfg.truthMatchProbMin) {
matched[majorityParticlelId].push back(
{nMajorityHits, fittedParameters});
} else {
isFake = true;
unmatched[majorityParticleId]++;
}
AT
// Sort the reco tracks matched to this particle by the number of majority
// hits
std::sort(matchedTracks.begin(), matchedTracks.end(),
[1(const RecoTrackInfo& lhs, const RecoTrackInfo& rhs) {
return lhs.first > rhs.first;
1)
for (size t itrack = 0; itrack < matchedTracks.size(); itrack++) {
const auto& [nMajorityHits, fittedParameters] = matchedTracks.at(itrack);
// The tracks with maximum number of majority hits is taken as the 'real’
// track; others are as 'duplicated'
bool isDuplicated = (itrack != 0);
}

Machine Learning

Generating the training data set

® Use ACTS FAst TRAck Simulation (FATRAS) e Readily available features used for training
to generate simulated particles/hits © Number of hits
o 50ttbar events atu = 200 © Number of outliers
o TrackML detector © Number of holes (didn't end up using, more
details in a bit)

O 2T constant magnetic field (along z)
o y?/dof

® With amore realistic detector description,
can be extended to use additional

® Use Combinatorial Kalman Filter track
finding and fitting: ~115k reconstructed

tracks information
o ~85.96% good (truth-match prob >= 50%) o eg. ITk geometry was first integrated in
0 ~14.04% duplicate (same majority truth ACTS just last week

particle as good track, but less majority
particle hits)

o <0.001% fake (truth-match prob < 50%)
O binary classifier (good/duplicate)
10

Relative frequency

Training features

0.25+
0.201
0.151
0.101
0.05 1

0.00-
8

Hit distribution of track candidates

10

Track quality

. [good

duplicate

12 14 16 18 20
Number of hits

0.8 1

Relative frequency

o
[N

0.0-

Machine Learning

Separation, but also overlap!

Outlier distribution of track candidates

o
o

o
IS

Track quality
I good
duplicate

2 4 6
Number of outliers

1

10

Machine Learning

Tra i n i ng featu res No inefficiencies in the modules — holes info

not informative, don’t use

x?/dof distribution of track candidates Hole distribution of track candidates
Track quality 1.0 Track quality
I good I good
duplicate duplicate
0.8
>
9]
[
S
2 0.6
g
P
2
© 0.4+
[}
o
0.2
0.0 . T ;
= ¢ 1 2 3

Number of holes

12

Machine Learning

Constructing the NN

TensorFlow — “Deep” Neural Network*

no. hits .
e Binary cross-entropy loss

e Adam optimizer

no. outliers Sigmoid
Network confidence level
input is duplicate track
(output probability)

chi2/dof Output Layer

Input Layer Hidden Layer *architecture limited by simple set of input features 13

Training the NN

75 % train/ 25% test split

Train NN — maximize Area Under the
Curve of the Receiver Operating
Characteristic on test set

Use trained model to make predictions
Output probability > prediction threshold
(=50%) — predicted duplicate track

Duplicate tracks predicted

to be duplicate

True positives [%]

100+

801

60 1

40-

Machine Learning

AUC: ~0.87
—-—'7
,/
,/
,/
/,/
o
f" //’/
,/
//
,/
,/
,/
,/
,/

] ~
] e
.’ 1//
I ot
1 R4
i /’ — == Train Baseline
‘. et ——- Test Baseline
: ,," ---- Random Model
1 /’ e threshold 0.25
: ’ e threshold 0.5
v e threshold 0.75
0 20 40 60 80 100

False positives [%]

Good tracks predicted to be duplicate "’

Machine Learning

Training the NN

o 75%train/25% test split

e Train NN — maximize Area Under the
Curve of the Receiver Operating
Characteristic on test set

e Use trained model to make predictions

e Output probability > prediction threshold
(=50%) — predicted duplicate track

e NN isdoing great on good tracks, not so
great on duplicate tracks

o Good enough considering limitations of
simple input features

Confusion Matrix @ 0.50 - test set
(normalized to true labels)

gad 0.018

True label

duplicate 0.426

Need extra info such as e.g. ,
shared hits to resolve the X
duplicates! Predicted label

15

Machine Learning

Checking NN learning

800 ~

600 -

Counts

2001

Test set Test set Test set
Track quality Track quality 3001 Track quality
r [true duplicate 1400 [true duplicate [true duplicate
1 true & predicted duplicate [true & predicted duplicate [true & predicted duplicate

1200 1 250

10001 200 4
800

150
600 -

100
400 -

2001 201

0 0
10 12 14 16 18 0 2 4 6 8 10 4
Number of hits Number of outliers x2/dof

e NN haslearned that duplicate tracks have fewer hits, lots of outliers, and large y?/dof (easy case)

e Need extra info to resolve the duplicates that “look” like good tracks!
e Currently working on track-by-track basis, but eventually would like to find an architecture that can

consider multiple tracks at a time! 10

C++

Implementing neural network into ACTS

MLTrackClassifier class(v1)

e m _weightsPerLayer

o Vector that stores trained weights matrices

for each layer

o weights — dynamic-size Eigen: :Matrix

e predictTrackLabel function

o Foreach layer:
m Takeinput
m Addbiasterm
m Apply the weights
m Apply activation function

o Predict goodorduplicate basedon

decision threshold probability

e Canuse for duplication rate plots

FW::MLTrackClassifier::TrackLabels FW::MLTrackClassifier::predictTrackLabel(
const Acts::MultiTrajectory<SimSourceLink>& multiTraj,
const size t& entryIndex, const double& decisionThreshProb) const {
VL wims
// get the trajectory summary info
auto trajState =
Acts::MultiTrajectoryHelpers::trajectoryState(multiTraj, entryIndex);
// the vector of input features
Acts::ActsVectorXd inputFeatures(3);
inputFeatures[0] = trajState.nMeasurements;
inputFeatures[1] = trajState.nOutliers;
inputFeatures[2] = trajState.chi2Sum * 1.0 / trajState.NDF;
// linear algebra for layer 1 (hidden layer)
Acts::ActsVectorXd wInputLayerl =
weightedInput(m weightsPerLayer[0], inputFeatures);
Acts::ActsVectorXd outputLayerl = reluActivation(wInputLayerl);
// linear algebra for layer 2 (output layer)
Acts::ActsVectorXd wInputLayer2 =
weightedInput(m weightsPerLayer[1], outputLayerl);
Acts::ActsVectorXd outputLayer2 = sigmoidActivation(wInputLayer2);
// output layer prediction
if (outputLayer2[0] > decisionThreshProb) {
return TrackLabels::duplicate;
}

return TrackLabels: :good;

17

Duplication rate

Validating implementation

Duplication rate vs eta using predictions of NN
directly in TensorFlow

0.14 1

0.12 1

©
=
o

©
o
©

Neural network in TensorFlow + python

1o+
T
+++_[_++ +“H“+
_ 3 -2 -1 0 1 2

Duplication rate

0.14

0.12

0.1

0.08

0.06

0.04

Duplication rate vs eta using predictions of
MLTrackClassifier instance

ActsRecCKFTracks + MLTrackClassifier

‘lnl_l [T l T | T TT I T I T] T
——
=

C++

18

C++

Thinking ahead

e Currently,MLTrackClassifier is customized to:
o One architecture for neural network
o Trained on data from one detector + magnetic field configuration
o Some other aspects are hard-coded
e Would like the implementation to be more general
o Multiple detector + magnetic field configurations
o Use ML inference framework for other applications (e.g. seed finding)

19

C++

Thinking ahead

e Currently,MLTrackClassifier is customized to:
o One architecture for neural network
o Trained on data from one detector + magnetic field configuration
o Some other aspects are hard-coded

e Would like the implementation to be more general
o Multiple detector + magnetic field configurations
o Use ML inference framework for other applications (e.g. seed finding)

e Open Neural Network Exchange (ONNX) format and runtime
o This has already been integrated into Athena for more general ML tasks in ATLAS

o Exploringimplementation as plugin for ACTS O N N X
@ ONNX RUNTIME

https://onnx.ai/index.html https://github.com/microsoft/onnxruntime

20

ONNXintegration

e ONNXformat
e Open-source format for DNN/ML models

e Supports many ML frameworks
Keras/TensorFlow

PyTorch

Scikit-learn

Matlab

LibSVM

MyCaffe

XGBoost

Etc.

e Save model architecture, trained weights,
compiler info

o o O 0 O O o O

C++

ONNX runtime
Cross-platform inferencing accelerator
(training feature in preview)

Has APIs for
o Python
o C#

o) C/C++
o Java
o Node,js

Abstracts away the complex linear algebra
behind the ML model prediction function

21

ONNXintegration

MLTrackClassifier class (v2 - WIP)

o

1

e “Wrapper” around ONNX runtime -
e predictTrackLabel function s
o Predict goodorduplicate basedon 7
decision threshold probability S

e NN prediction function +
. 12

o Ort::Session 13

m Loads model
o Inference in the usual way
output = model.predict(input)

C++

FW: :MLTrackClassifier::TrackLabel FW::MLTrackClassifier::predictTrackLabel(

std::vector<float>& input tensor values,
const double& decisionThreshProb) const {

// run onnx inference

float outputProbability = runONNXInference(input tensor values);

if (outputProbability > decisionThreshProb) {
return TrackLabel::duplicate;

}

return TrackLabel: :good;
¥ Stores representation of model

// onnxruntime inference function
float FW::MLTrackClassifier::runONNXInference(
std::vector<float>& input tensor values) const {
Vi ——
// score model & input tensor, get output tens,
std::vector<Ort::Value> output_tensors = m_session->Run(
Ort::RunOptions{nullptr},
m_inputNodeNames.data(), &input tensor, m inputNodeNames.size(),
m_outputNodeNames.data(), m outputNodeNames.size());

// get pointer to output tensor float values

float* floatarr = output_tensors.front().GetTensorMutableData<float>();
// binary decision classification, only need first value

return floatarr[0];

22

Future work

e ONNX format+runtime provide a general ML inference framework that can be
integrated within ACTS

e But we have future plans to:
o Improve network performance on duplicate tracks
m Classimbalance problem
m Tweaking network architecture
m Access to additional features such as shared hits information is needed
o Train network on more realistic detector description (i.e. decent fraction of fake tracks)

23

Thank you for your attention!

