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Introduction

● LHC Run 1: ~280 tracks/event
● HL-LHC expect to see ~10k 

tracks/event
● This will stress computational 

resources
● Need fast, accurate, and efficient 

track reconstruction algorithms
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ACTS

● Acts Common Tracking Software / A 
Common Tracking Software

● Experiment-independent toolkit for 
track reconstruction (for future 
detectors)

● Open-source platform for 
implementing new tracking 
techniques and hardware 
architectures

4https://acts.readthedocs.io/en/latest/



ACTS

● Modern C++ 17
● Efficient memory allocation & access
● Strict thread-safety
● Rigorous unit tests
● Highly configurable
● Well-documented 

5https://acts.readthedocs.io/en/latest/



Ambiguity resolution

● LHC Run 1: ~280 tracks/event
● HL-LHC expect to see ~10k 

tracks/event
● Tracking performance is not 100% → 

not all reconstructed tracks are real 
tracks

● Need to ambiguity resolve to 
distinguish “good” tracks from 
“duplicate” and “fake” tracks
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Track reconstruction in ATLAS
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Space point formation

Seed finding

Track finding

Ambiguity Solving

TRT Extension

→ Combinatorial Kalman Filter
All realistic combinations of hits

← Track candidates with overlapping 
or incorrectly assigned hits



Motivation: Machine Learning

● For ATLAS, use simple scoring function 

based on track quality for ambiguity 

resolution

● In ACTS, currently have performance 

validation using truth-based information 

(i.e. truth-match probability for fakes, 

particle barcode for duplicates)
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Motivation: Machine Learning

● For ATLAS, use simple scoring function 

based on track quality for ambiguity 

resolution

● In ACTS, currently have performance 

validation using truth-based information 

(i.e. truth-match probability for fakes, 

particle barcode for duplicates)

● A possibility for ambiguity resolution is to 

use ML (e.g. neural network) to predict 

whether a given reconstructed track is 

good/duplicate/fake based on certain track 

features
○ Caveat: track information currently 

available is rather simple

9



Generating the training data set

● Use ACTS FAst TRAck Simulation (FATRAS) 

to generate simulated particles/hits

○ 50 ttbar events at 𝜇 = 200

○ TrackML detector

○ 2T constant magnetic field (along z)

● Use Combinatorial Kalman Filter track 

finding and fitting: ~115k reconstructed 

tracks

○ ~85.96% good (truth-match prob >= 50%)

○ ~14.04% duplicate (same majority truth 

particle as good track, but less majority 
particle hits)

○ <0.001% fake (truth-match prob < 50%)

○ binary classifier (good/duplicate)
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● Readily available features used for training

○ Number of hits

○ Number of outliers

○ Number of holes (didn’t end up using, more 

details in a bit)

○ 𝜒2/dof

● With a more realistic detector description, 
can be extended to use additional 
information

○ e.g. ITk geometry was first integrated in 

ACTS just last week

Machine Learning



Training features
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Separation, but also overlap!

Machine Learning



Training features
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No inefficiencies in the modules → holes info 
not informative, don’t use

Machine Learning



Constructing the NN

TensorFlow → “Deep” Neural Network*
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● Binary cross-entropy loss
● Adam optimizer

* architecture limited by simple set of input features

Machine Learning



Training the NN

● 75 % train / 25% test split

● Train NN → maximize Area Under the 

Curve of the Receiver Operating 

Characteristic on test set

● Use trained model to make predictions

● Output probability > prediction threshold 

(=50%) → predicted duplicate track
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AUC: ~0.87

Good tracks predicted to be duplicate

Duplicate tracks predicted 
to be duplicate

Machine Learning



Training the NN

● 75 % train / 25% test split

● Train NN → maximize Area Under the 

Curve of the Receiver Operating 

Characteristic on test set

● Use trained model to make predictions

● Output probability > prediction threshold 

(=50%) → predicted duplicate track

● NN is doing great on good tracks, not so 

great on duplicate tracks
○ Good enough considering limitations of 

simple input features
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Need extra info such as e.g. 
shared hits to resolve the 
duplicates!

Machine Learning



Checking NN learning
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● NN has learned that duplicate tracks have fewer hits, lots of outliers, and large 𝜒2/dof (easy case)

● Need extra info to resolve the duplicates that “look” like good tracks!
● Currently working on track-by-track basis, but eventually would like to find an architecture that can 

consider multiple tracks at a time!

Machine Learning



Implementing neural network into ACTS

MLTrackClassifier class (v1)

● m_weightsPerLayer
○ Vector that stores trained weights matrices 

for each layer
○ weights → dynamic-size Eigen::Matrix

● predictTrackLabel function
○ For each layer:

■ Take input
■ Add bias term
■ Apply the weights
■ Apply activation function

○ Predict good or duplicate based on 
decision threshold probability

● Can use for duplication rate plots
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Validating implementation
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Duplication rate vs eta using predictions of NN 

directly in TensorFlow

Duplication rate vs eta using predictions of 

MLTrackClassifier instance

C++



Thinking ahead

● Currently, MLTrackClassifier is customized to:
○ One architecture for neural network

○ Trained on data from one detector + magnetic field configuration

○ Some other aspects are hard-coded

● Would like the implementation to be more general
○ Multiple detector + magnetic field configurations

○ Use ML inference framework for other applications (e.g. seed finding)
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https://onnx.ai/index.html https://github.com/microsoft/onnxruntime

Thinking ahead

● Currently, MLTrackClassifier is customized to:
○ One architecture for neural network

○ Trained on data from one detector + magnetic field configuration

○ Some other aspects are hard-coded

● Would like the implementation to be more general
○ Multiple detector + magnetic field configurations

○ Use ML inference framework for other applications (e.g. seed finding)

● Open Neural Network Exchange (ONNX) format and runtime
○ This has already been integrated into Athena for more general ML tasks in ATLAS

○ Exploring implementation as plugin for ACTS
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ONNX integration

● ONNX format

● Open-source format for DNN/ML models

● Supports many ML frameworks
○ Keras/TensorFlow
○ PyTorch
○ Scikit-learn
○ Matlab
○ LibSVM
○ MyCaffe
○ XGBoost
○ Etc.

● Save model architecture, trained weights, 

compiler info
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● ONNX runtime

● Cross-platform inferencing accelerator 

(training feature in preview)

● Has APIs for
○ Python
○ C#
○ C/C++
○ Java
○ Node.js

● Abstracts away the complex linear algebra 

behind the ML model prediction function

C++



ONNX integration

MLTrackClassifier class (v2 - WIP)

● “Wrapper” around ONNX runtime
● predictTrackLabel function

○ Predict good or duplicate based on 
decision threshold probability

● NN prediction function
○ Ort::Session 

■ Loads model
○ Inference in the usual way                          

output = model.predict(input)
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Stores representation of model

C++



Future work

● ONNX format+runtime provide a general ML inference framework that can be 
integrated within ACTS

● But we have future plans to:
○ Improve network performance on duplicate tracks

■ Class imbalance problem

■ Tweaking network architecture

■ Access to additional features such as shared hits information is needed

○ Train network on more realistic detector description (i.e. decent fraction of fake tracks)
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Thank you for your attention!
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