Iterative image reconstruction algorithm for computed tomography with very high energy electron beam

9th Beam Telescopes and Test Beams Workshop, 10.2.2020 Daiki Hayakawa, Hendrik Jansen, Paul Schütze

Outline

- Introduction of electron computed tomography
- Iterative image reconstruction algorithm
- Image analysis
- Future plans
- Conclusions

Imaging

Source

- x-ray, neutron
- charged particle

Interaction with the target

- absorption
- energy loss
- scattering

Measure physical quantity

- intensity
- remaining energy
- variance of the deflection angle

- Novel imaging modality using
 - High energy electron
 - Multiple Coulomb Scattering

Multiple Coulomb Scattering (MCS)

Highland's formula:

 $\Theta_0 = \left(\frac{13.6 \text{ MeV}}{\beta cp}z\right)\sqrt{\varepsilon}(1+0.038\ln\varepsilon)$

Material budget

z: electron charge number βc : electron velocity *p*: electron momentum X_0 : material's radiation length

- Electrons undergo MCS when transversing material
- Gaussian width of the deflection angle distribution correlates with material budget
- Material budget imaging by measuring the scattering angle distribution

Testbeam Experiment at DESY

►

Beam

- Performed in June and August in 2020
- Electron energy: 2 GeV
- Test 2 phantoms
 - 5 iron rods + plastic
 - DESY logo

Electron Computed Tomography

- Measure trajectory of electrons

- Group electrons into pixels at a virtual plane though the phantom
- Calculate squared width of angular distribution per pixel (AAD₉₀²)

- Repeat for various projections (400*0.9° = 360°)
- Create a sinogram
 - \rightarrow Tomographic image reconstruction

Tomographic Image Reconstruction Algorithm

- 1. Filtered Back Projection (FBP)
 - Analytical reconstruction using inverse Radon transform
 - Artefacts and noise due to statistical/systematic effects
- 2. Iterative reconstruction
 - Reconstruction based on a model with statistical noise using iterative methods
 - Artefacts and noise removal by adding a regularization method

Iterative Image Reconstruction

Suppose that:

 $\overrightarrow{y} = A\overrightarrow{x} + \overrightarrow{n}$ n: noise

Reconstruct image x when noise n is minimized

Objective function:

$$J(\vec{x}) = \|A\vec{x} - \vec{y}\|^2$$
$$A^T A \vec{x} = A^T \vec{y} \quad (\text{minimize } J(\vec{x}) \to \partial J(\vec{x}) / \partial \vec{x} = 0)$$

Landweber method:

$$\overrightarrow{x}^{(k+1)} = \overrightarrow{x}^{(k)} + \alpha A^T (\overrightarrow{y} - A \overrightarrow{x}^{(k)}) \qquad \stackrel{\text{k: number of iteration}}{\alpha: \text{ step size}}$$

Simultaneous iterative reconstruction technique (SIRT)

TVS Regularization β : regularization strength U(x): energy function ∂U $\overrightarrow{x}^{(k+1)} = \overrightarrow{x}^{(k)} + \alpha \left[A^T (\overrightarrow{y} - A \overrightarrow{x}^{(k)}) + \beta \right]$ Regularization

Total Variation Superiorization (TVS):

truth

12.5

10.0

7.5

5.0

2.5

0.0

-2.5

-5.0

0

20

40

$$U(\overrightarrow{x}) = \sum_{i,j} \sqrt{(x_{i,j} - x_{i-1,j})^2 + (x_{i,j} - x_{i,j-1})^2}$$

Magnitude of gradient

(Quote: https://pylops.readthedocs.io/en/latest/gallery/plot_tvreg.html) TV regularization (L1 regularization) Normal L2 regularization 12.5 - truth 10.0 \cdot truth + noise truth + noise 7.5 reconstruction reconstruction 5.0 2.5 0.0 -2.5 -5.0 100 20 0 40 60 80 100

Smoothing while preserving "edge" ►

Image analysis

FBPSIRT + TVS (30 iterations)
 $\beta = 0$ $\beta = 0$ $\beta = 3$ $\beta = 10$

Image cell: 100 x 100 μm^2

- Quantitative image analysis
 - Contrast to noise ratio
 - Spatial resolution

Contrast to Noise Ratio (CNR)

 Circle detection to define the region of iron and plastic (https://scikit-image.org/docs/dev/ auto_examples/edges/ plot_circular_elliptical_hough_transfor m.html)

- Calculate the mean and the standard deviation within the area of iron and plastic
- Calculate CNR

SIRT+TVS (β = 3) shows the best CNR Page: 11

Spatial Resolution

Image cell: 100 x 100 µm²

Regularization Strength (β)

8

10

0.5

0.0

0

2

Edge-spread-function:

$$ESF(x) \propto A + Erf\left(\frac{x-\mu}{\sigma}\right)$$

$$Erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$$

- Circle detection for 5 iron rods
- Plotting material budget as a function of radius from the center of the irons
- Fitting with ESF
- σ of the ESF corresponds to spatial resolution

TVS regularization only slightly worsen the spatial resolution

Image Analysis (DESY logo)

FBP SIRT + TVS (30 iterations) $\beta = 0$ $\beta = 0.4$

Iterative reconstruction yields noise reduction while maintaining <u>contrast</u> and <u>spatial resolution</u>

projections

Number of

400

Image Analysis (DESY logo)

IG mm IC Steele]

FBP

SIRT + TVS (30 iterations) $\beta = 0$ $\beta = 0.4$

Number of projections

200

100

Noise increases as the numberThe degradation is suppressedof projections decreased in FBPin iterative reconstruction

Applications

 Material Budget imaging for HEP detector upgrade

 Non-destructive imaging ¹¹ for high-Z materials

Future Plans

- Imaging for use in combination with Very High Energy Electron Radiotherapy (VHEE-RT)
 - Energy: 50-250 MeV
 - Better dose conformity than conventional photon radiotherapy
 - Reasonable cost and size compared to hadron therapy
 - Possibility of treatment with ultra-high dose rate (FLASH-RT)
- Portal Imaging with 200 MeV
 - Example: Detecting metal markers implanted in the body to determine the location of the target

Pulse Beam Imaging

This is not the final image!

Merely the response per bunch.

- Place a sensor only downstream of target
- 2D beam scanning with pulsed beam
- Read data from each bunch and calculate material budget from the beam spread without track reconstruction

DESY. | Electron CT | Hendrik Jansen |

First tests planned at PITZ/DESY-Zeuthen

15

Conclusions

- Iterative image reconstruction algorithm was developed for novel electron computed tomography
- The proposed algorithm yields noise reduction and better contrast
- Small negative effect for spatial resolution
- The improvement of the algorithm is significant with lower statistics
- Under development for medical imaging with 200 MeV

Iterative Reconstruction for e-CT

- Statistical noise
 - Unknown statistical noise of the width (AAD₉₀) of the scattering angle distribution
- Regularization
 - A large variety of regularization terms can be implemented in the iterative algorithm

$$\overrightarrow{x}^{(k+1)} = \overrightarrow{x}^{(k)} + \alpha \left[A^T (\overrightarrow{y} - A \overrightarrow{x}^{(k)}) + \beta \frac{\partial U(\overrightarrow{x})}{\partial \overrightarrow{x}} \right]$$

Function: quadratic, gaussian, total variation, \cdots

Image Analysis (DESY logo)

16 mm [M. Steele]

Projection method

$$\overrightarrow{x}^{(k+1)} = \overrightarrow{x}^{(k)} + \sum_{i=1}^{l} \alpha_{i} \|\overrightarrow{a_{i}}\|^{2} \frac{y_{i} - \overrightarrow{a_{i}} \cdot x_{i}^{(k)}}{\|\overrightarrow{a_{i}}\|^{2}} \overrightarrow{a_{i}}$$

= 1 \rightarrow Algebraic reconstruction technique

SIRT Projection

$$\overrightarrow{x}^{(k+1)} = \overrightarrow{x}^{(k)} + \sum_{i=1}^{I} \alpha \|\overrightarrow{a_i}\|^2 \frac{y_i - \overrightarrow{a_i} \cdot x_i^{(k)}}{\|\overrightarrow{a_i}\|^2} \overrightarrow{a_i}$$

Simultaneous projection with weighting $\sum_{i=1}^{r} \alpha \|\vec{a}_i\|^2$

 α : step size (free parameter)

