

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168

Testbeam Studies of ATLAS ITk Strip modules at DESY-II

Emma Buchanan On behalf of the ITK Strip Testbeam Group

Institute of High Energy Physics **Chinese Academy of Sciences**

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

BTTB 2021

HL-LHC

- The High-Luminosity upgrade of the LHC is scheduled to begin colliding protons in 2026
- * The peak instantaneous luminosity will be up to 7.5 x 10³⁴ cm⁻²s⁻¹
- + The mean number of interactions per bunch crossing $\mu = 200$ (currently) μ=50)
- Expected total integrated luminosity of **4000 fb**⁻¹
- The current Inner Detector in the ATLAS experiment does not meet the requirements of the High-Luminosity LHC upgrade
- Current tracking system will need to be upgraded to cope with the increased occupancies and radiation damage

HL-LHC: High Luminosity LHC LS: Long Shutdown **TeV: Tera electron Volt**

LHC (25 vertices)

Emma Buchanan

ATLAS Tracking Detector Upgrade

Current Inner Detector (ID)

- Currently the Inner Detector uses both silicon layers and a Transition Radiation Tracker
- The new Inner Tracker will be an all-silicon tracker
 - Pixels nearest the interaction region and strips in the outer regions

New Inner Tracker (ITk)

Emma Buchanan

ATLAS ITK Strip Detector

Module Design

Short Strip (SS) Module

+

Sensor

- n+-on-p strip sensor
 - 320 µm thick
 - Strip pitch 75.5 µm
- * 9.7 x 9.7 cm²
 - Short Strip (SS) and Long Strip (LS) layouts
 - **SS** 24.1 mm long strips in four segments
 - **LS** 48.2 mm long strips in two segments
- Hybrid
 - **One** hybrid for a **LS** module and **two** for a **SS** module
 - 10 ABCStars (ATLAS Binary Chips) per hybrid
 - Converts incoming charge signal into hit information
 - Final chipset design ready for production
- 1 HCCStar (Hybrid Controller Chip) per hybrid
 - Interface between ABCStar and End-of-Substructure card

Module Design

Short Strip (SS) Module

Powerboard

- One per module
- Provides low voltage for the ASICs
- Switchable sensor HV bias

Endcap Modules

- Key difference is the sensor design
 - Radial Strips
- Strip Pitch: 69 μm to 85 μm
 - Small stereo angle rotation of 20 mrad
- Hybrids with various number of ASICs and 1 or 2 HCCs

Upgrade Performance Requirements

• To test that the modules fulfil the requirements we test them at DESY testbeams both before and after irradiation

- The maximum non-ionizing dose of about 1.1 x 10^{15} n_{eq}/cm² is expected in the forward innermost region of the strip detector
- This expected dose includes a safety factor of 1.5
- Performance requirements at the end-of-lifetime:
 - Efficiency > 99%
 - Noise-occupancy $< 10^{-3}$
 - Signal-to-noise ratio >10

DESY Testbeam and the EUTDET Telescope

- DESY provides an electron beam with energy up to 6 GeV
- Telescope has six mimosa planes and one FEI4 timing plane which is needed for time tagging the telescope tracks
- The DUTs are installed in the centre
- Telescope has a pointing resolution \sim 5-10 µm

• Track reconstruction is done using the EUTelescope framework (transition to Corryvreckan will be discussed later)

2019 & 2020 Testbeams

Testing ABCStar Modules for the first time at testbeams

- * April 2019
 - Non-irradiated LS and R0 modules mounted back to back
- June 2019 +
 - Irradiated R0 module
- September 2019
 - Non-irradiated SS module and an irradiated LS + module installed separately
- November 2020
 - Investigation of a new timing plane made of ITk Strip Detector Module parts

*The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF) 10th February 2021 Emma Buchanan

Sensor Irradiations

- **RO**: protons at CERN SPS to a NIEL fluence of $1.5 \times 10^{15} n_{eq}/cm^2$
- **LS**: neutrons at Ljubljana to a NIEL fluence of $5.1 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$

Plane Timing Tk

Timing Plane - Why do we need one?

- Integration time of the Mimosa planes is $\sim 115 \,\mu s$
- Multiple triggers could arrive within this integration time, but only 1 hit is registered in the DUT
- Timing plane verifies that reconstructed track is relevant for an event that was read out by DUT
- Timing plane is crucial for efficiency measurements (due to >99% requirement!)

Timing Plane - Why do we need one?

- Integration time of the Mimosa planes is $\sim 115 \,\mu s$
- Multiple triggers could arrive within this integration time, but only 1 hit is registered in the DUT
- Timing plane verifies that reconstructed track is relevant for an event that was read out by DUT
- Timing plane is crucial for efficiency measurements (due to >99% requirement!)

Timing Plane - Why do we need one?

- Integration time of the Mimosa planes is $\sim 115 \,\mu s$
- Multiple triggers could arrive within this integration time, but only 1 hit is registered in the DUT
- Timing plane verifies that reconstructed track is relevant for an event that was read out by DUT
- * Timing plane is crucial for efficiency measurements (due to >99% requirement!)

Noise Occupancy and Efficiency Comparisons

- ITk modules requirement: operating window where hit detection efficiency > 99% and Noise occupancy < 0.1%
- These requirements are met, though operational window is smaller for irradiated modules
- All ABCStar modules have also satisfied the S/N requirement of > 10

1^{°0th} February 2021

(E. Rossi) Module (ABCStar)	Signal [fC] (e.)	S/N
Unirrad. LS (400 V)	3.28 (20500)	23.8
Unirrad. R0S (400 V)	3.28 (20475)	29.3
Irrad. R0 innermost ring (500 V)	1.65 (9281)	14.8
Irrad. R0 second ring (500 V)	1.71 (9619)	13.2
Irrad. R0 third ring (500 V)	1.80 (10125)	11.9
Irrad. R0 outermost ring (500 V)	1.84 (10350)	11.6
Irrad. LS (500 V)	1.59 (9956)	15.9

E. Rossi Thesis: http://cds.cern.ch/record/2743994/files/CERN-THESIS-2020-177.pdf BTTB 2020 Talk: https://indico.cern.ch/event/813822/contributions/3648316/attachments/1979107/3295063/ATLAS_StripTB_ArturoRodriguez.pdf

Preliminary Non-irradiated LS Module Results

- - +

Lowest efficiency is seen for tracks traversing edge of the strip - charge is shared by 2 strips With increasing threshold, charge is "lost" and hence the fraction of size 1 clusters increases

Preliminary Non-irradiated LS Module Results

Intra-Strip Efficiency depending on the threshold

- At low threshold the full strip is >99% efficient
- As the thresholds start to increase, there is a clear dip in efficiency at the edge of the strip
- The overall efficiency over the strip decreases with increasing threshold as expected

n efficiency at the edge of the strip easing threshold as expected

Hot/Cold Comparisons of a non-irradiated SS Module

Comparison of Efficiency when the DUT is operated at different temperatures

- Warm: 30 °C +
- Cold: -30 °C
- There is no expected difference in efficiency when operating in warm and cold temperatures
- But there are expected differences in the noise

Hot/Cold Comparisons of a non-irradiated SS Module

Comparison of Noise Occupancy when the DUT is operated at different temperatures

- At high threshold, the majority of noise when the module is

Hot/Cold Comparisons of a non-irradiated SS Module

Comparison of Noise Occupancy when the DUT is operated at different temperatures

- At low threshold and warm temperatures, the noise is large and can fluctuate below threshold giving a lower noise occupancy
- At high threshold, the majority of noise when the module is operated cold is below threshold giving a lower noise occupancy than the module operated at a warmer temperature

Corner Studies - Non-Irradiated LS Module

- The beam was focused on the corner of the sensor
- We want to check the performance of the sensor in this region

- Below bond pads, the width of the strip implant is increased to cover the full bond pad area
- P-stop implants are arranged around these bond pads, leading to uneven distances between p-stops and strip implants

is visible

Corner Studies - non-irradiated LS Module

Efficiency along the y-direction

- Similar structure is seen when measuring the efficiency
- But when efficiency of all strips in this area is >99 %
- Slight decrease in efficiency for tracks very close to the edge of the active area of the sensor

Emma Buchanan

EUTelescope and The Move to Corryvreckan

EUTelescope

- EUTelescope was our standard reconstruction framework for the last decade
- So far we have been successful at reconstructing some of the ABCStar 2019 data
- However the reconstruction of endcap modules is complex due to the radial reconstruction
- Some of our recent students and postdocs that were experienced in EUTelescope have moved on to other projects and EUTelescope is not really a supported framework anymore
- Therefore we are now transitioning to the Corryvreckan reconstruction software Corryvreckan
- Corryvreckan is widely tested in the pixel community but new to ITk Strip
- Should be straightforward to implement barrel modules (strips == long pixels)
- We first implemented the barrel module and compared results with EUTelescope
- Once we achieved this radial geometry will be implemented to allow for endcap analysis

Barrel Module Implementation in Corryvreckan

Example Geometry File for LS Module

[ITS_ABC_15] material_budget = 0.0032 number_of_pixels = 1280, 2 orientation = -0, -0, -0orientation_mode = "xyz" $pixel_pitch = 75.5um, 25000um$ position = 13.706 mm, -10 mm, 375 mmrole = "dut" spatial_resolution = 22um,8000um time_resolution = 400us type = "itk_strip"

- Main changes needed to implement a strip detector in Corryvreckan
 - Geometry config +
 - Spatial window when looking for DUT hits associated to a track
 - + χ^2 calculation when running the alignment
- We also found we had to iterate the alignment more times to achieve a good alignment than is needed for the telescope

Comparison of EUTelescope and Corryvreckan for Barrel Module

• Mimosa 1 **EUTel** Std Dev: $\sigma = 3.39 \,\mu\text{m}$

- Mimosa_1 **Corry** Std Dev: $\sigma = 3.08 \,\mu\text{m}$
- These results are preliminary and further studies are ongoing for more detailed comparisons between the two frameworks

+ LS Corry Std Dev: $\sigma = 35.64 \,\mu m$

Corryvreckan Reconstruction of the R0 DUT

Specific R0 module geometry: A Built-in Stereo-angle Endcap strip sensor

- Strip pointed to focus point (f), which is defined by stereo-angle
- Implementation in corryvreckan
 - Describe endcap R0 module in a local polar coordinate system

Strip Frame: local Polar coordinate system focused at f Sensor Frame : local Cartesian coordinate system on module center(O) Global Frame : telescope global Cartesian coordinate system

```
[ITS_ABC_11]
coordinates = "polar"
number_of_strips = 1152,1
order = 1
orientation = -0.323549 deg, 1.30909 deg, 89.8593 deg
orientation_mode = "xyz"
pixel_pitch = 0.171837mrad, 31981mm
position = -22.9163 mm, -39.0513 mm, 376 mm
                                                        +
r_center = 438.614mm
r_{max} = 488.422 mm
r_{min} = 456.51mm
role = "dut"
                                                        +
spatial_resolution = 0.0496mrad,8000mm
stereo_angle = 20mrad
time_resolution = 400us
type = "itk_strip"
```


Calculations are defined in Strip Frame

• e.g., Clustering, Hit association, Residual calculation

Global coordinate information retrieved from coordinate transform

 local Polar coordinate <--> local Cartesian coordinate <--> global Cartesian coordinate

Comparison of EUTelescope and Corryvreckan for R0 Module

- + **EUTel** Std Dev: $\sigma = 54.94$ mrad
- **Corry** Std Dev: $\sigma = 77.19$ mrad
- start!

• There are still improvements to be made to the alignment of the Corryvreckan reconstruction of the R0 but so far a good

ITk Strip Timing Plane

- Usually the FEI4 timing plane is used for ITk Strip Testbeams
- To reduce dependence on FEI4 availability we would like to have our own timing plane
- The ITk strip timing plane is made of 3 mini strip sensors with 105 channels each
- The timing plane was installed in the telescope as the DUT with the FEI4 used as the timing plane
- All analysis has been done using Corryvreckan!

Reconstructing the ITk Strip Timing Plane with Corryvreckan

Reconstructing the ITk Strip Timing Plane with Corryvreckan

• On closer inspection of the module we found that the shift was due to wire bonding issues

Emma Buchanan

Reconstructing the ITk Strip Timing Plane with Corryvreckan

- This can be corrected for in the conversion
- Once the alignment is rerun the residual no longer has a double peak feature

ABC_10 Residuals X

• Next steps are to check the efficiency performance to see if this would be a suitable timing plane for future testbeams

Conclusions

- ITk Strip prototype modules are tested at DESY to check performance
- Data has been collected for irradiated and non-irradiated barrel and endcap modules
- + ABCstar modules have been shown to fulfil upgrade requirements for the efficiency, noise occupancy and the S/N
- Preliminary analysis of 2019 data has been performed using EUTelescope
- We are moving from the EUTelescope to the Corryvreckan framework
 - Both the barrel and endcap geometries have been implemented and we are currently comparing the Corryvreckan results with EUTelescope outputs
- In November 2020 we installed the new ITK Strip timing plane into the EUDET telescope to test its performance Initial reconstruction has been done using Corryvreckan

 - Next steps are to check the efficiency of the R0 module, measured using FEI4 and the ITk Strip timing plane
 - We have data using Alpide as a timing plane but analysis is still to be performed

