

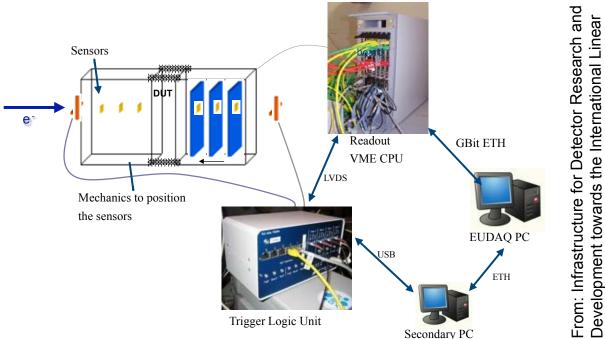
The AIDA Trigger/Timing Logic Unit:

Current status. Future Plans.

David Cussans, BTTB9, 8/Feb/21

Outline

- Triggering and Timing at Beam Tests
 - Why?
 - How?
- The AIDA(2020) Trigger/Timing Logic Unit (TLU)
 - History
 - Features
 - Documentation
- Plans for AIDA-Innova TLU
 - New/Changed/Improved features



Why?

- Beam Telescope with "Detector Under Test"
 - Need to correlate data from a single particle in all detectors
 - Match tracks in telescope with hits in your DUT

Collider. https://arxiv.org/abs/1201.4657

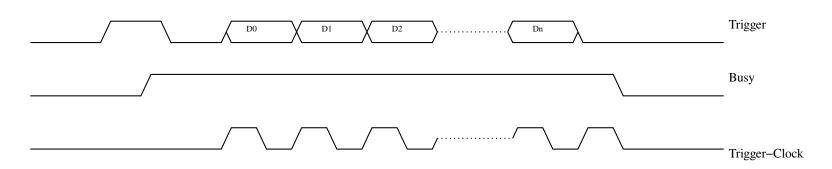
How?

- Sensors in beam to detect passage of particles.
 - $^{-}$ \rightarrow Electrical signals \rightarrow conditioning \rightarrow binary signal
- Combine binary signals from one or more beam sensor to produce a "trigger"
- Two choices:
 - Distribute a trigger signal to beam telescope and DUT readout systems.
 - Correlate data based on trigger number
 - Distribute central clock/time-stamp to beam telescope and DUT
 - · Correlate based on timestamps.
 - ... can mix time-stamping and triggering: TLU records both trigger-number and time-stamp
- Implementation: Box with signal conditioning and an FPGA
- Make available to use in home labs ease integration at beam-line

History - EUDET

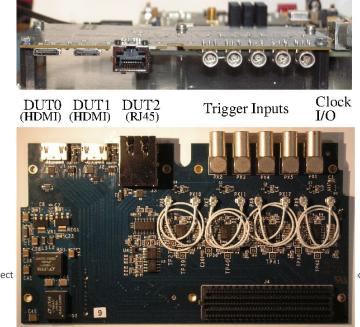
EUDET TLU

- Supporting beam tests for linear collider detector development at DESY
 - Low rate (< 10kHz)
 - Modest time precision
 - RJ45 for trigger/busyLVDS
- See
 https://www.eudet.org/e26/e28/e42441/e57298/ EUDET-MEMO-2009-04.pdf
- Many still in beam-lines and HEP institutes



History - EUDET

- No common beam-test clock
 - DUT and telescope asynchronous
- Use trigger (TLU → DUT) / Busy (DUT → TLU) to synchronize
- Optional transfer of trigger number
 - Very useful to check trigger integrity. Many beam-tests saved from desynchronized data....



AIDA miniTLU

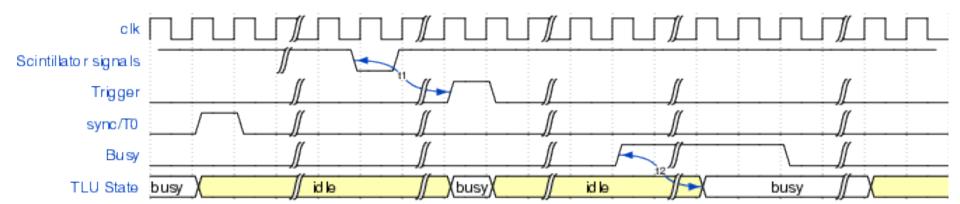
- First to use FMC standard connector
- Use of HDMI (Calice standard pinout) as well as RJ45
- Prototyping distribution of common clock
- Used for beam tests, but not many around.

- Fanout for TLU signals
 - Can only be used with common clock
 - Fans out triggers
 - "OR" of busy signals from DUTs

- Photo in use in LHCb beam telescope at CERN
- Design allows up to 30 DUT
- Serves role of TLU

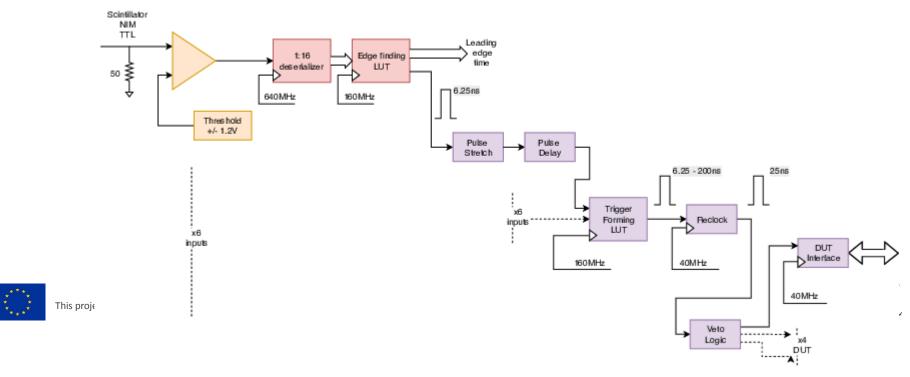
- LVDS ← → TTL converters exist
 - This example from NIKHEF
 - Other designs available
- Allow DUT to use TTL on Lemo rather than LVDS on HDMI

- Current production version
- 6 trigger inputs
- 4 DUT connections
 - CALICE HDMI pinout
 - But direction of each line can be swapped in hardware to allow different firmware mapping
- Low jitter clock
- Hardware permits optical distribution of clock/trigger
- In small desktop case or rackmount case

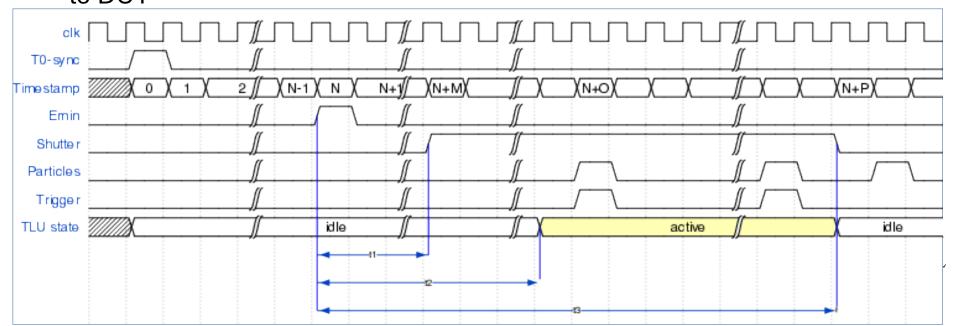


AIDA-2020 TLU – DUT Interfaces

- DUT interfaces can be used in "EUDET mode"
 - Trigger/Busy handshake
 - Need passive HDMI RJ45 converter
- Can be used with a common clock
 - Permits higher trigger rate
 - No event-by-event handshake. Cross-check on trigger timestamps.



Trigger Logic


- Inputs clocked at 160MHz (nominal)
- Input signals can be delayed and/or stretched in units of 1/160MHz
- Signals from the 6 inputs fed into a look-up table
- LUT programmed with which combinations produce a trigger
- Trigger output moved to clock fed to DUT (40MHz nominal)
- State of all inputs recorded at point that trigger "fires"
 - Can be used to tag events e.g. Cherenkov information.

AIDA-2020 TLU DUT "Shutter"

- Some detectors can only capture data with a low duty cycle
- In many beam-lines particle are only present a certain times
 - DESY 50Hz cycle
 - CERN SPS cycle
- Detectors active period should occur when particles are present
- → Signal from accelerator can be used to generate a "shutter" signal sent to DUT

Documentation

- https://doi.org/10.1088/1748-0221/14/09/p09019
 "The AIDA-2020
 TLU: a flexible trigger logic unit for test beam facilities", JINST
- Open Hardware project "AIDA-2020 TLU"
 - https://ohwr.org/project/fmc-mtlu
 - Hardware design files https://ohwr.org/project/fmc-mtlu-hw/
 - Firmware source code https://ohwr.org/project/fmc-mtlu-fw/
- User manual

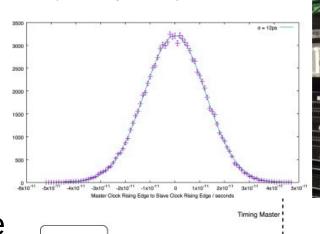
https://ohwr.org/project/fmc-mtlu/blob/master/Documentation/Main_TLU.pdf

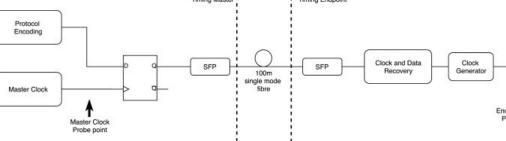
Firmware

- IPBus for control and readout of timestamps
 - UDP/IP 1 Gbit/s Ethernet
- Ipbb build system
 - Scriptable build. Working on CI
- Open Source
 - https://ohwr.org/project/fmc-mtlu-fw/

Software

- All versions of TLU integrated with EUDAQ DAQ software.
 - Run control
 - Configuration
 - Monitoring
 - Readout of trigger timestamps




AIDA-2020 TLU Synchronization over fibre

- AIDA-2020 TLU used as synchronization and trigger distribution master in ProtoDUNE-SP tests at CERN
 - Using DUNE firmware
- Signals distributed over optical fibre
- Lab tests: Master \rightarrow endpoint clock relative jitter $\sigma \sim 12ps$

Taken from Timing and synchronization of the DUNE neutrino detector, https://doi.org/10.1016/j.nima.2019.04.097

AIDA-2020 TLU F/ware, S/ware updates?

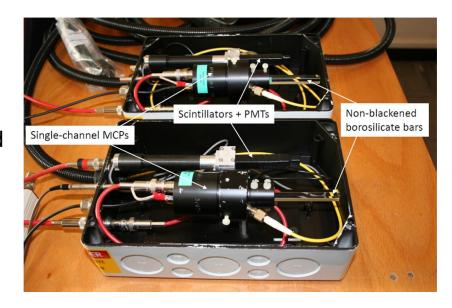
- Use external RAM to buffer time-stamps
 - Not useful for continuous beam (e.g DESY)
 - Useful for high-rate CERN beam-tests
 - Take high rate during spill, readout triggers between spills
- Use of "carry chain TDC" implemented in FPGA
 - See e.g. https://ohwr.org/project/tdc-core/
 - Calibration of FPGA carry chain TDCs "fiddly"
 - Likely accuracy of TDC ~ 50ps
 - Current firmware 781ps bins

TLU Production

- New production of AIDA-2020 TLUs
 - Organized by DESY.
 - Contact Lennart Huth for details.

AIDAInnova TLU

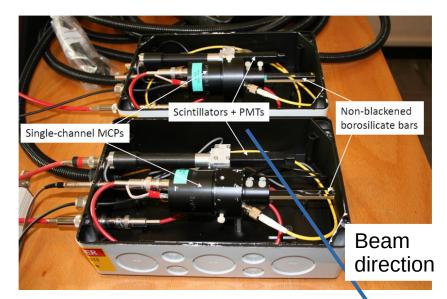
- Aim: (tens of) Picosecond Timing (clock distribution and time-stamping)
 - EUDET TLU Precision ~ 100ns
 - AIDA/AIDA-2020 Precision ~ 1ns
- Use TDC ASIC for time-stamping triggers?
 - PicoTDC?
 - Carry-chain TDC inside FPGA probably not adequate (?)
- Constant Fraction Discriminator and/or ADC for time-walk correction?
- ~ 8 inputs
- >= 4 "DUT Interfaces
 - Move away from HDMI → Display Port
 - Passive adaptor HDMI ← → Display port
 - More robust. Better signal integrity on trigger line



AIDAInnova TLU: Why timing?

- Increasing use of detectors with high timing precision to disentangle events in high-pileup beam-crossings.
 - Testing pico-second detectors requires picosecond time reference
 - Some beam-line users will bring their own time reference detectors. Some would benefit from precise time reference at beamline
- Could use, e.g. Cherenkov light and high speed photo-detector
 - Used for "TORCH" LHCb upgrade beamtests
 - MCP-PMT single photon jitter 66ps FWHM
 http://www.photek.co.uk/pdf/datasheets/detectors/DS006%20Photomultiplier%2
 0Tube%20Datasheet%20issue%202.pdf

Taken from http://dx.doi.org/10.1016/j.nima.2016.06.087



AIDAInnova TLU: Why timing?

- Increasing use of detectors with high timing precision to disentangle events in high-pileup beam-crossings.
 - Testing pico-second detectors requires picosecond time reference
 - Some beam-line users will bring their own time reference detectors. Some would benefit from precise time reference at beamline
- Could use, e.g. Cherenkov light and high speed photo-detector
 - Used for "TORCH" LHCb upgrade beamtests
 - MCP-PMT single photon jitter 66ps FWHM
 http://www.photek.co.uk/pdf/datasheets/detectors/DS006%20Photomultiplier%2
 0Tube%20Datasheet%20issue%202.pdf
 - For many photons timing precision ~ 10ps

Taken from http://dx.doi.org/10.1016/j.nima.2016.06.087

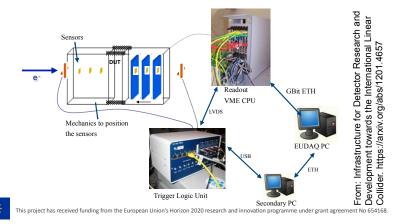
Summary

- The AIDA family of TLUs provides a way of synchronizing detectors at beam-lines
- Integrated with EUDAQ
- Can be used in home-labs to simplify integration at AIDA supported beam-line
- Open Source hardware/firmware
 - Can be used for applications that require signal conditioning of pulses, clock distribution, FPGA logic.
 - e.g. was used for ProtoDUNE timing system

The AIDA Trigger/Timing Logic Unit:

Current status. Future Plans.

David Cussans, BTTB9, 8/Feb/21


- Triggering and Timing at Beam Tests
 - Why?
 - How?
- The AIDA(2020) Trigger/Timing Logic Unit (TLU)
 - History
 - Features
 - Documentation
- Plans for AIDA-Innova TLU
 - New/Changed/Improved features

- Beam Telescope with "Detector Under Test"
 - Need to correlate data from a single particle in all detectors
 - Match tracks in telescope with hits in your DUT

- Sensors in beam to detect passage of particles.
 - $^{\text{-}} \rightarrow \text{Electrical signals} \rightarrow \text{conditioning} \rightarrow \text{binary signal}$
- Combine binary signals from one or more beam sensor to produce a "trigger"
- Two choices:
 - Distribute a trigger signal to beam telescope and DUT readout systems.
 - · Correlate data based on trigger number
 - Distribute central clock/time-stamp to beam telescope and DUT
 - · Correlate based on timestamps.
 - ... can mix time-stamping and triggering: TLU records both trigger-number and time-stamp
- Implementation: Box with signal conditioning and an FPGA
- Make available to use in home labs ease integration at beam-line

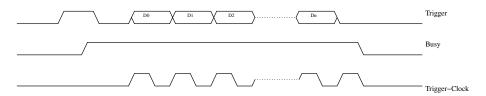
History - EUDET

EUDET TLU

- Supporting beam tests for linear collider detector development at DESY
 - Low rate (< 10kHz)
 - · Modest time precision
 - RJ45 for trigger/busy
 LVDS
- See

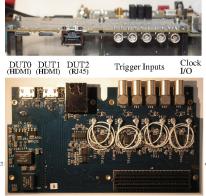
https://www.eudet.org/e26/e28/e42441/e57298/ EUDET-MEMO-2009-04.pdf

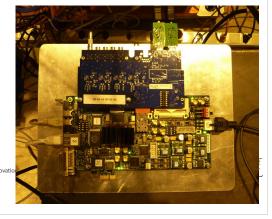
 Many still in beam-lines and HEP institutes



History - EUDET

- · No common beam-test clock
 - DUT and telescope asynchronous
- Use trigger (TLU → DUT) / Busy (DUT → TLU) to synchronize
- Optional transfer of trigger number
 - Very useful to check trigger integrity. Many beam-tests saved from desynchronized data....





- AIDA miniTLU
 - First to use FMC standard connector
 - Use of HDMI (Calice standard pinout) as well as RJ45
 - Prototyping distribution of common clock
 - Used for beam tests, but not many around.

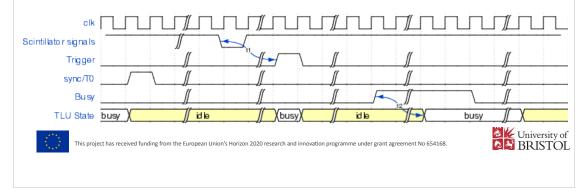
his project

- Fanout for TLU signals
 - Can only be used with common clock
 - Fans out triggers
 - "OR" of busy signals from DUTs

- Photo in use in LHCb beam telescope at CERN
- Design allows up to 30 DUT
- Serves role of TLU

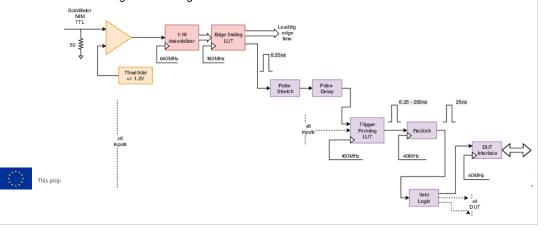
- LVDS ← → TTL converters exist
 - This example from NIKHEF
 - Other designs available
- Allow DUT to use TTL on Lemo rather than LVDS on HDMI

- Current production version
- 6 trigger inputs
- 4 DUT connections
 - CALICE HDMI pinout
 - But direction of each line can be swapped in hardware to allow different firmware mapping
- · Low jitter clock
- Hardware permits optical distribution of clock/trigger
- In small desktop case or rackmount case



This project has received funding from the European Union's Horizon 2020 research and inn

AIDA-2020 TLU – DUT Interfaces


- DUT interfaces can be used in "EUDET mode"
 - Trigger/Busy handshake
 - Need passive HDMI RJ45 converter
- Can be used with a common clock
 - Permits higher trigger rate
 - No event-by-event handshake. Cross-check on trigger timestamps.

Trigger Logic


- Inputs clocked at 160MHz (nominal)
- Input signals can be delayed and/or stretched in units of 1/160MHz
- Signals from the 6 inputs fed into a look-up table
- · LUT programmed with which combinations produce a trigger
- Trigger output moved to clock fed to DUT (40MHz nominal)
- State of all inputs recorded at point that trigger "fires"
 - Can be used to tag events e.g. Cherenkov information.

AIDA-2020 TLU DUT "Shutter"

- Some detectors can only capture data with a low duty cycle
- In many beam-lines particle are only present a certain times
 - DESY 50Hz cycle
 - CERN SPS cycle
- Detectors active period should occur when particles are present
- \rightarrow Signal from accelerator can be used to generate a "shutter" signal sent to DUT

Documentation

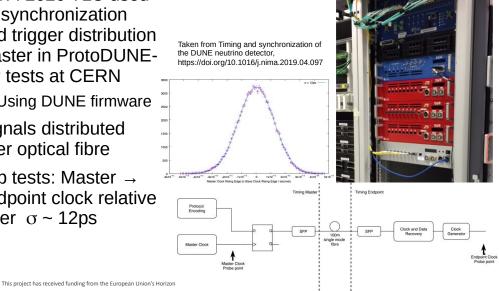
- https://doi.org/10.1088/1748-0221/14/09/p09019
 "The AIDA-2020
 TLU: a flexible trigger logic unit for test beam facilities", JINST
- Open Hardware project "AIDA-2020 TLU"
 - https://ohwr.org/project/fmc-mtlu
 - Hardware design files https://ohwr.org/project/fmc-mtlu-hw/
 - Firmware source code https://ohwr.org/project/fmc-mtlu-fw/
- User manual https://ohwr.org/project/fmc-mtlu/blob/master/Documentation/Main_TLU.pdf

Firmware

- IPBus for control and readout of timestamps
 - UDP/IP 1 Gbit/s Ethernet
- Ipbb build system
 - Scriptable build. Working on CI
- Open Source
 - https://ohwr.org/project/fmc-mtlu-fw/

Software

- All versions of TLU integrated with EUDAQ DAQ software.
 - Run control
 - Configuration
 - Monitoring
 - Readout of trigger timestamps



AIDA-2020 TLU Synchronization over fibre

- AIDA-2020 TLU used as synchronization and trigger distribution master in ProtoDUNE-SP tests at CERN
 - Using DUNE firmware
- · Signals distributed over optical fibre
- Lab tests: Master → endpoint clock relative jitter $\sigma \sim 12ps$

AIDA-2020 TLU F/ware, S/ware updates?

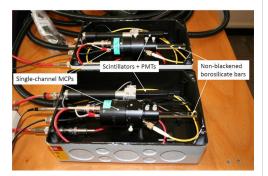
- Use external RAM to buffer time-stamps
 - Not useful for continuous beam (e.g DESY)
 - Useful for high-rate CERN beam-tests
 - Take high rate during spill, readout triggers between spills
- Use of "carry chain TDC" implemented in FPGA
 - See e.g. https://ohwr.org/project/tdc-core/
 - Calibration of FPGA carry chain TDCs "fiddly"
 - Likely accuracy of TDC ~ 50ps
 - Current firmware 781ps bins

TLU Production

- New production of AIDA-2020 TLUs
 - Organized by DESY.
 - · Contact Lennart Huth for details.

AIDAInnova TLU

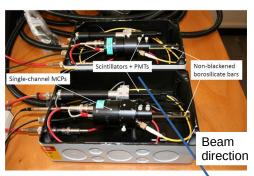
- Aim: (tens of) Picosecond Timing (clock distribution and time-stamping)
 - EUDET TLU Precision ~ 100ns
 - AIDA/AIDA-2020 Precision ~ 1ns
- Use TDC ASIC for time-stamping triggers?
 - PicoTDC ?
 - Carry-chain TDC inside FPGA probably not adequate (?)
- · Constant Fraction Discriminator and/or ADC for time-walk correction?
- ~ 8 inputs
- >= 4 "DUT Interfaces
 - Move away from HDMI → Display Port
 - Passive adaptor HDMI \leftarrow \rightarrow Display port
 - More robust. Better signal integrity on trigger line



AIDAInnova TLU: Why timing?

- Increasing use of detectors with high timing precision to disentangle events in high-pileup beam-crossings.
 - Testing pico-second detectors requires picosecond time reference
 - Some beam-line users will bring their own time reference detectors. Some would benefit from precise time reference at beamline
- Could use, e.g. Cherenkov light and high speed photo-detector
 - Used for "TORCH" LHCb upgrade beamtests
 - MCP-PMT single photon jitter 66ps FWHM http://www.photek.co.uk/pdf/datasheets/detectors/DS006%20Photomultiplier%2 0Tube%20Datasheet%20issue%202.pdf

Taken from http://dx.doi.org/10.1016/j.nima.2016.06.087



AIDAInnova TLU: Why timing?

- Increasing use of detectors with high timing precision to disentangle events in high-pileup beam-crossings.
 - Testing pico-second detectors requires picosecond time reference
 - Some beam-line users will bring their own time reference detectors. Some would benefit from precise time reference at beamline
- Could use, e.g. Cherenkov light and high speed photo-detector
 - Used for "TORCH" LHCb upgrade beamtests
 - MCP-PMT single photon jitter 66ps FWHM http://www.photek.co.uk/pdf/datasheets/detectors/DS006%20Photomultiplier%2 0Tube%20Datasheet%20issue%202.pdf

For many photons timing precision ~ 10ps

Taken from http://dx.doi.org/10.1016/j.nima.2016.06.087

Summary

- The AIDA family of TLUs provides a way of synchronizing detectors at beam-lines
- Integrated with EUDAQ
- Can be used in home-labs to simplify integration at AIDA supported beam-line
- Open Source hardware/firmware
 - Can be used for applications that require signal conditioning of pulses, clock distribution, FPGA logic.
 - e.g. was used for ProtoDUNE timing system

