Test-beam and irradiation facility at the 25 MeV proton cyclotron CYRCé at Strasbourg

9th edition of the Beam Telescopes and Test Beams Workshop February 8th, 2021

Emery Nibigira

On Behalf of the CMS Tracker Group

- 2027: LHC enters the high luminosity stage (HL-LHC) and this marks the start of the Phase-2 run
- To cope with **HL-LHC** operating conditions (high rate, high radiation....) CMS needs a completely new Tracker detector:
 - Inner tracker: pixel modules strip-strip (2S) modules • Outer tracker:

pixel-strip (PS) modules

Strasbourg team contribution

- Ongoing R&D \implies requires Test Beam Facilities
- prototypes need to be tested
 - * performance, maintenance, cooling, high rate, radiation, ...

Test-beam Results

Summary & Outlook

Test-Beam facility at Strasbourg

CYRCÉ Cyclotron pour la Recherche et l'Enseignement

- Beam energy : 16-25 MeV protons
 - $\Rightarrow large energy deposition (~ 11 \times MIP)$ $\Rightarrow range in Silicon: about 3 mm$
- Bunch clock frequency: 85 MHz
 - \Rightarrow reduced to **42.5 MHz** by a "kicker" \Rightarrow close to LHC clock
- High intensities : up to 100 nA
 - \rightarrow high rate (up to ~ 6 × 10¹¹ protons/s)
- Beam spot: 2 mm to 30 mm Ø

Test-beam Results

5

CMS Beam line

 Switching magnet
 X-Y steerer
 Q-poles
 X-Y profiler
 Experimental setup with preliminary thermal insulation

CHROMini Telescope (Phase-1 pixel modules)

Mini version of CHROMIE Telescope

$under \ commissioning...$

Design of the Telescope

Introduction

One layer with 2 pixel modules

CMS Phase-1 pixel module Active area $16.2 \times 64.8 \text{ mm}^2$ 16 readout chips per module

Experimental setup

Test-beam Results

Summary & Outlook

Device Under Test (DUT): 2S module

 2×1016 strips per sensor (Top/Bottom) strip length: 5 cm, pitch: 90 μ m Active area: ~ 90 × 90 cm², ~ 2 × 290 μ m thick

Left FEH

Front-end hybrid (FEH)

- 2×8 CMS Binary Chip (CBC) Each chip reads out 2×127 strips Inter-chip communication
- 2×1 Common Concentrator IC (CIC) Buffers, aggregates, and sparsifies each CBC's data

Service hybrid (SEH)

• HV/LV connectors, DC-DC converter,

(Lp)GBT distributes clock & trigger,

data from left & right FEHs are merged and sent via optical link to the back-end @ 5.12 Gb/s (10.24 Gb/s)

2S module on a sliding support (2D)
 Pixel Telescope: 2 layers of pixels
 3 Scintillator: trigger (NIM logic)

• cooling system dry air or water cooling

 \bullet T $^\circ$ & Humidity sensors

 $\mu {\rm TCA}$ can hold up to 12 full size AMC cards 1Gb/s Ethernet network access to all cards through MCH (MicroTCA Carrier Hub)

Runs, last: 4	14 (export runs log) Device Under Test	Initial	program
Add	options: latency •	option value	commissio
a DutLyPS	LV control B	HV control 🗲	B DutHvP

Configurations

For DUT, only remote control of power supplies is used

1 15

Pixel column pos [cm]

0.5

-2

-1.5

-0.5

pixels at the left corner

of a ROC

 Outline
 Introduction
 Test-beam facility
 Experimental setup
 Test-beam Results
 Summary & Outlook

 Latency scan with DUT (2S module)
 Latency scan: to read the right data for each trigger
 11

 Latency scan: to read the right data for each trigger
 time between event & arrival of trigger

 Outline
 Introduction
 Test-beam facility
 Experimental setup
 Test-beam Results
 Summary & Outlook

 Beam profile with DUT (2S module)
 Image: Compare the setup of the setup o

Hit occupancy map for the 2S Module (top and bottom sensors)

Collimated beam: signal readout by one chip (CBC)

Correlation between the hits in the top and the bottom sensors

Outline	Introduction	Test-beam facility	Experimental setup	Test-beam Results	Summary & Outlook	
Summ	ary & Our	tlook				14

- CYRCé can be used for
 - * High rate tests
 - * Radiation tests
- Being used for the CMS 2S module (DUT)
 - * 2S module characterization
 - * Pixel telescope commissioning
- Other DUT than the 2S module
 - \star already irradiated DC-DC converters of the CMS Phase-1 pixel
 - \star module of the ATLAS timing detector (last month)

Outlook

- Finalise the Telescope commissioning
- Central trigger to synchronize events from 2S module and Telescope (TLU, ...)
- Perform high rate tests

• IPHC-Strasbourg team

J. Andrea, C. Bonnin, J-M Brom, L. Charles, C. Collard, C. Grimault, U. Goerlach, T. Goeltzenlichter, L. Gross, M. Krauth, E. Nibigira, N. Ollivier-Henry, S. Veeramooto, M. Pellicioli, J. Schuler, T. Foehrenbacher, M. Rousseau, C. Haas, C. Mathieu, C. Ruescas

• KIT (Karlsruhe)

S. Maier, A. Dierlamm (KIT)

• Inst. of Nucl. Phys. (Demokritos)

P. Asenov, D. Loukas

• Significant help from

N. Deelen(+CHROMIE team), D. Kotlinski, V. Veszpremi, M. Tsirou, J. Sonneveld, S. SeifEl Nasr, S.Mersiand

many others

Outline	Introduction	Test-beam facility	Experimental setup	Test-beam Results	Summary & Outlook
---------	--------------	--------------------	--------------------	-------------------	-------------------

