

SPIROC2E provides:

- Ramp TDC for single channel timing
- 16 switched capacitor memory cells per channel
- Clock speed of 250kHz (test beam mode) and 5MHz(ILC mode)

SPIROC2E provides:

- Ramp TDC for single channel timing
- 16 switched capacitor memory cells per channel
- Clock speed of 250kHz (test beam mode) and 5MHz(ILC mode)

Time resolution of the electronics:

- 204.3ps (ILC mode)
- 2.7ns (test beam mode)

SPIROC2E provides:

- Ramp TDC for single channel timing
- 16 switched capacitor memory cells per channel
- Clock speed of 250kHz (test beam mode) and 5MHz(ILC mode)

Time resolution of the electronics:

- 204.3ps (ILC mode)
- 2.7ns (test beam mode)

TDC Slope:

- $\sim 80 \text{ ps} / \text{TDC bin}$ (ILC mode)
- ~1.6 ns / TDC bin (test beam mode)

Time Calibration

- 1. External trigger with ~1ns resolution
- 2. Ramp up voltage during one bunch crossing ID

- 1. External trigger with ~1ns resolution
- 2. Ramp up voltage during one bunch crossing ID
- 3. On hit, the current voltage is stored in one of 16 memory cells

- 1. External trigger with ~1ns resolution
- 2. Ramp up voltage during one bunch crossing ID
- 3. On hit, the current voltage is stored in one of 16 memory cells
- 4. Digitized voltage (TDC reading) needs to be calibrated against trigger reference

- 1. External trigger with ~1ns resolution
- 2. Ramp up voltage during one bunch crossing ID
- 3. On hit, the current voltage is stored in one of 16 memory cells
- 4. Digitized voltage (TDC reading) needs to be calibrated against trigger reference

Operation <thondown and for the data data data data data data data

- 1. Extract slope by plotting trigger time against TDC readings
- 2. Fit with linear function

- 1. Extract slope by plotting trigger time against TDC readings
- 2. Fit with linear function
- 3. Calculate hit time by

$$t_{hit}[ns] = TDC_{hit} \cdot Slope \left[\frac{ns}{TDC}\right] + Offset [ns] - T_0$$

Design goal: ~1ns

- 1. Extract slope by plotting trigger time against TDC readings
- 2. Fit with linear function
- 3. Calculate hit time by

$$t_{hit}[ns] = TDC_{hit} \cdot Slope \left[\frac{ns}{TDC}\right] + Offset [ns] - T_0$$

Design goal: ~1ns

Single channel resolution: $2.859/\sqrt{2} = 2.014$ ms

- 1. Extract slope by plotting trigger time against TDC readings
- 2. Fit with linear function
- 3. Calculate hit time by

$$t_{hit}[ns] = TDC_{hit} \cdot Slope \left[\frac{ns}{TDC}\right] + Offset [ns] - T_0$$

Design goal: ~1ns

Single channel resolution: $1.1/\sqrt{2} = 0.78$ ns

Scintillator Timing Setup

Scintillator Timing Setup

Independent of the AHCAL electronics and DAQ

- Independent of the AHCAL electronics and DAQ
- In a simple but modular setup

- Independent of the AHCAL electronics and DAQ
- In a simple but modular setup
- Without involved calibration and reconstruction procedures

- Independent of the AHCAL electronics and DAQ
- In a simple but modular setup
- Without involved calibration and reconstruction procedures
- With high particle rate and controlled energies

- Independent of the AHCAL electronics and DAQ
- In a simple but modular setup
- Without involved calibration and reconstruction procedures
- With high particle rate and controlled energies

Goal2: Identification of limiting factors of the time resolution of the AHCAL

Jiri Kvasnicka & Lorenz Emberger

Stack of 4 Tiles:

- BC408 or Polystyrene (AHCAL)
- Hamamatsu S13360-1325PE

Trigger Channel G

Tile Channel E Tile Channel C

Trigger Channel A

Stack of 4 Tiles:

- BC408 or Polystyrene (AHCAL)
- Hamamatsu S13360-1325PE

Ethernet Cat 7

Receiver Box:

- USB controlled power supply
- Split signal and power lines

Receiver Box

Trigger Channel G

Tile Channel E Tile Channel C

Trigger Channel A

Stack of 4 Tiles:

- BC408 or Polystyrene (AHCAL)
- Hamamatsu S13360-1325PE

Picoscope

Ethernet Cat 7

Receiver Box:

- USB controlled power supply
- Split signal and power lines

BNC

Picoscope:

- **Trigger Channel G**
 - **Tile Channel E Tile Channel C**

Trigger Channel A

- Up to 2.5GHz sampling rate on 4 channels
- 300kHz peak trigger rate
- Save complete analog waveform

Jiri Kvasnicka & Lorenz Emberger

- Polystyrene scintillator and BC408 scintillator for higher light yield
- 2.5GHz and 1.25GHz sampling rate
- Tile size of 3×3cm² and 2×2cm²

- Polystyrene scintillator and BC408 scintillator for higher light yield
- 2.5GHz and 1.25GHz sampling rate
- Tile size of 3×3cm² and 2×2cm²

- Polystyrene scintillator and BC408 scintillator for higher light yield
- 2.5GHz and 1.25GHz sampling rate
- Tile size of 3×3cm² and 2×2cm²

- Polystyrene scintillator and BC408 scintillator for higher light yield
- 2.5GHz and 1.25GHz sampling rate
- Tile size of 3×3cm² and 2×2cm²
- MIP spectrum with different cable length:
- Study impact on energy measurement
- Study impact on time measurement

Integral of 1pe signal

- Increase statistics of high energy hits
- Impact of shower on time resolution

- Increase statistics of high energy hits
- Impact of shower on time resolution

- Increase statistics of high energy hits
- Impact of shower on time resolution

- Increase statistics of high energy hits
- Impact of shower on time resolution

Displaced scintillators:

- Position dependent dataset
- Impact on energy response
- Impact on time resolution

Event Reconstruction

Event Reconstruction

Per event:

1. Search for maximum amplitude in each waveform

- 1. Search for maximum amplitude in each waveform
- 2. Per waveform, search for first time, the signal crosses 25% of maximum amplitude (constant fraction discrimination)

- 1. Search for maximum amplitude in each waveform
- 2. Per waveform, search for first time, the signal crosses 25% of maximum amplitude (constant fraction discrimination)
- 3. If crossing is between two time bins, interpolate linear

- 1. Search for maximum amplitude in each waveform
- 2. Per waveform, search for first time, the signal crosses 25% of maximum amplitude (constant fraction discrimination)
- 3. If crossing is between two time bins, interpolate linear
- 4. Obtain 2 trigger times(ChA, ChG) and 2 hit times (ChC, ChE)

- 1. Search for maximum amplitude in each waveform
- 2. Per waveform, search for first time, the signal crosses 25% of maximum amplitude (constant fraction discrimination)
- 3. If crossing is between two time bins, interpolate linear
- 4. Obtain 2 trigger times(ChA, ChG) and 2 hit times (ChC, ChE)

5. Calculate event time from average of trigger times

- 1. Search for maximum amplitude in each waveform
- 2. Per waveform, search for first time, the signal crosses 25% of maximum amplitude (constant fraction discrimination)
- 3. If crossing is between two time bins, interpolate linear
- 4. Obtain 2 trigger times(ChA, ChG) and 2 hit times (ChC, ChE)

5. Calculate event time from average of trigger times

6. Calculate relative hit times by: event time - hit time

Time Distribution Channel C 16000 - $Mean = -0.0113 \pm 0.0030$ Sigma=0.5986± 0.0030 14000 12000 -**CALICE AHCAL** Work in Progress 10000 -8000 -6000 4000 2000 -

0

Hit Time[ns]

0

-6

6

4

Time Distribution Channel C 16000 - $Mean = -0.0113 \pm 0.0030$ Sigma=0.5986± 0.0030 14000 12000 -**CALICE AHCAL** Work in Progress 10000 -8000 -6000 -4000 -2000 -0 6 -6 4 ()Hit Time[ns]

Obtain time difference of hits in channel C and channel E to calculate the resolution

Jiri Kvasnicka & Lorenz Emberger

Time resolution=0.718/sqrt(2)=0.507ns

Interpret as Intrinsic time resolution of SiPM-on-Tile

Jiri Kvasnicka & Lorenz Emberger

Time resolution=0.718/sqrt(2)=0.507ns

Interpret as Intrinsic time resolution of SiPM-on-Tile

Compared to 0.780ns of the AHCAL:

AHCAL front-end contributes ~0.6ns

Successful implementation of modular tile test setup:

- Tested at DESY in October 2020
- Simple setup allows for various configurations and short access times

Conclusion and Outlook

Time resolution of SiPM-on-Tile configuration with polystyrene scintillator at 0.507ns

AHCAL prototype time resolution at 0.780ns:

- Front-end contributes ~0.6ns
- Improve front-end and SiPM-on-Tile configuration, to significantly improve the AHCAL time resolution

Time resolution of SiPM-on-Tile configuration with polystyrene scintillator at 0.507ns

AHCAL prototype time resolution at 0.780ns:

- Front-end contributes ~0.6ns
- Improve front-end and SiPM-on-Tile configuration, to significantly improve the AHCAL time resolution

Analysis of full dataset ongoing:

 Preliminary analysis of SiPM-on-Tile configuration with BC408 scintillator yields a time resolution of 0.697 ns/sqrt(2) = 0.490 ns

Backup

Sensors

Number of channels	1 ch
Effective photosensitive area / ch	1.3 × 1.3 mm
Number of pixels /ch	2668
Pixel size	25 μm
Spectral response range	320 to 900 nm
Gain (typ.)	7.0×105

Information taken from: https://www.hamamatsu.com/eu/en/product/type/S13360-1325PE/index.html

Time Walk Channel E

Correction = 1.7578*exp(-0.0037*x) + 0.0164

Time Walk Channel C

Time Walk Channel C

68

Time Walk Channel C

Be

Correction = $0.3663^{*} \exp(-0.0018^{*}x) + 0.02103$ Same procedure done for channel E

Very low statistics under ~500mVns

Corr = 1.7578*exp(-0.0037*x) + 0.0164Corr = 0.3663*exp(-0.0018*x) + 0.02103

Pre-trigger time: 500samples * 0.4ns/sample=200 ns

Earlier trigger times from noise or additional particle arriving earlier

Trigger Channel A vs. Trigger Channel G

Pre-trigger time: 500samples * 0.4ns/sample=200 ns

Earlier trigger times from noise or additional particle arriving earlier

Only take triggers in between 198ns and 202ns

Trigger Channel A vs. Trigger Channel G

(TriggerA+TriggerG)/2 = reference time

Relative hit time = hit time - reference time

Tail to early times from noise or additional particle

Jiri Kvasnicka & Lorenz Emberger