Beam Tests of the CALICE AHCAL

Jiri Kvasnicka¹, Lorenz Emberger²

¹FZU Prague, kvas@fzu.cz, ²MPI Munich, emberger@mpp.mpg.de

9th Beam Telescopes and Test Beams Workshop 10 Feb 2021

Content

- AHCAL imaging calorimetry introduction
- Testbeams 2020:
 - AHCAL with Alpide Telescope
 - "Megatile" scintillator project
 - KlauS readout ASIC
- AHCAL timing performance
- Testbeam 2020: Scintilator timing setup

Covered by Lorenz

Introduction to AHCAL

- Analogue Hadron Calorimeter is one of the technology options for a calorimeter at a future linear e+e- collider
- Excellent jet energy resolution (3 4%) achieved via a **particle flow** algorithms
 - Very high granularity required for separation of overlapping showers
- Small 30x30x3 mm³ scintillator tiles with individual SiPMs
 - → 8M channels (barrel+endcap)
- Challenges:
 - No active cooling inside of the absorber \rightarrow need <25 uW / channel
 - Electronics inside 4T magnetic field
 - Mass-production feasibility

Jiri Kvasnicka & Lorenz Emberger

36 cm

AHCAL detector evolution

- "Physics prototype", tested @CERN and @FNAL (2006-2012)
 - First large-scale use of SiPMs: 7608 channels, various scintillator sizes (3x3, 6x6x 12x12)
 - SiMP coupled to a WLS fibre inside the scintillator tile
 - physics demonstration of the high granular calorimeter

- Also demonstrated the scalability of the base modules (HBU) to form large modules (up to 2m in length)
- 2018: construction of a large scale technological prototype with 22000 channels
 - Mass production: automated assembly, QA of ASICs & SiPMs, module commissioning & calibration
 Demonstration of feasibility to construct a multi-million-channel detector
 - SMD SiPMs from HPK used (S13360-1325PE), Scintillator tile with a dome, wrapped in reflective foil (automated manufacturing).
 - New DAQ HW, DQM, online monitoring, EUDAQ integration
 - Broad physics program @CERN SPS testbeam 2018, ongoing analyses
- AHCAL Tests in 2020 @DESY testbeam:
 - "Megatile" scintillator (Combined running: AIDA-TLU + Alpide telescope)
 - "KlauS" very front-end readout chip as an alternative to SPIROC ASIC
 - CMS HGCAL Tile-board (previous talk)
 - **Tile Timing** studies (second part of this talk by Lorenz)

Hadron shower in Physics prototype

Integrated front-end ASIC: SPIROC2E

SMD SiPM, Scint. Tile 3x3cm³ "naked" and wrapped in reflective foil

Jiri Kvasnicka & Lorenz Emberger

AHCAL prototype operation (intro)

- Designed for very low duty cycle of ILC machine
 - <1 ms spill followed by 199 ms idle
 - Bunch Crossing (collisions) within acquisition every few hundreds of ns
 - Separate power for Acquisition, Conversion and Readout stages
 → significant reduction of power & heat dissipation
- The SPIROC ASIC has 16-events deep analogue memory cells,
 - store the signal amplitude (High & Low gain) + TDC value for all channels
 - 1728 capacitors!
 - Converted after acquisition
- Hits are self-triggered (discrimination typically at the level of several single-photo-electrons) \rightarrow Hits are not triggered externally
 - Event *validation* (everything not validated is rejected) is possible order to reduce the noise occupancy
 - \rightarrow not needed and not used since 2018 due to very low-noise SiPMs (typical 0.1-0.2 Hz / Tile, incl. cosmics)
- ILC timing is **inefficient** with CERN/DESY Beams \rightarrow need some tricks for TB
 - Acquisition phase is prolonged to 16 ms
 - Acquisition phase is stopped earlier if any asic fills its all memory cells (propagation via "busy" signal)
 - Wait until all modules are done with readout, then restart immediately
- Acquisition rate strongly depends on particle type, hit occupancy and beam rate
 - Typical achieved data taking rate in TB mode is hundreds evt/s (100-800 evt/s)
 - Maximum acquisition duty cycle in TB mode: 90% (cosmics)
- Effort put into combined data-taking and hardware/software synchronisation with other detectors
 - Calice ECAL, Mimosa Telescope, eudet-TLU, AIDA-TLU, CMS-HGCAL, mini-TLU
 - Intrinsically, events are addressed by an Acquisition cycle & BXID
 - $\rightarrow\,$ External timestamping and trigger counting implemented in the DAQ concentrator card ("LDA")

TB 2020: Alpide + AIDA-TLU

- Unusual setup: DUT is 1 m behind the Telescope
 - Track extrapolation accuracy not critical: aiming for $0.1 \sim 1 \text{ mm}$
 - Additional material in the path (black cloth cover, steel cassette)
- Past experience with Alpide telescope in 2019 EUDET TLU synchronization & counting of triggers → occasional de-synchronization problem
- Alpide telescope implemented a "sync" mode of AIDA-TLU (trigger number sent along the clock from TLU)
- New: AHCAL DAQ implemented the same scheme, though still running on independent 40 MHz clock
- With great help from Yi Liu, all hardware and software problem solved → enjoyed remaining **2 days of stable combined running**
- New way of building Alpide software (including EUDAQ producer): built outside of the EUDAQ repository very convenient
- (small) problems:
 - TLU clock signal stops during init/configuration
 - \rightarrow clock not internally usable by AHCAL CCC
 - TLU/telescope trigger efficiency and scalers not well understood (due to new PMTs?)
 - Bit shifts in trigger number seen in LDA (35 times) AHCAL DAQ firmware bug?
 - Not an issue Immediately recovers and re-synchronizes with new trigger number

DESY TB 08/2020: Megatile

- Evolving design @Uni Mainz
- One piece of scintillator 36x36 cm² with trenches
 - Trenches filled with reflective glue with TiO₂ separation of channels
 - Tilted trenches (30°) → Small dead area
 - Reflective foil on HBU (with laser-cut holes)
 - Air gap can create crosstalk (simulated 3.5% for 100 µm)
- Simplification of manufacturing and assembly
- Compatible with the current tile-on-SiPM design
- New type of edge coating: white varnish
- Tests performed with 1 Megatile HBU and 2 reference HBUs

Measurements done:

- Light yield (automated scan using DESY table)
- Uniformity scan (Alpide telescope & DESY table)
- Crosstalk (with W absorber)

Edge: reflective adhesive foil

Painted with white varnish

10.2.2021, BTTB9

Megatile very preliminary results

- · Light yield rather uniform in the center (~32 p.e. in the center), confirmed in the beam
 - Edges with reflective foil: 30% lower (Lab measurement 2019)
 - Edges with white varnish: only ~10% lower (preliminary, not fully analyzed yet)
 - Ongoing analysis!
 - Edge Light yield remains a challenge
- · Cross-talk:
 - Expected: 3.5% with air gap of 100 $\mu m.$ ~5% measured in cosmic test stand @Mainz
 - 2019: up to 15% observed & non-uniform possibly due to increase of the air gap between megatile and reflective foil
 → Has been addressed in this TB by gluing of the foil above the trenches
 - Ongoing analysis
- Tile uniformity fine scan in 4x6 cm regions: 600 measurements in 2 mm steps, 5k events per position
 - Ongoing analysis

Jiri Kvasnicka & Lorenz Emberger

KLauS

- Parallel development of Readout ASIC @KIP Uni Heidelberg
 - Alternative design of the readout ASIC
 - evolved in fully functional readout chip with 36 channels, 12-bit ADC and PLL-based TDC with 200 ps bins
 - Can operate in "ILC" spilled mode (similar to SPIROC)
 - Can run continuously
- New HBU with KLauS-5 ASIC
 - same form factor, connectors and DAQ interfaces
 - Aim is to keep the compatibility with "SPIROC" HBU
 - Different configuration and readout (I2C)
 - different DIF FW modified (@KIP)
 - Status: USB readout established in the LAB
- Full DAQ integration (HDMI readout) pending(@KIP,Prague)
- Testbeam with KlauS-6 on Testboard

60

KlauS-6 in Testbeam

- 12 equipped channels (out of 36), 4 layers
- Two types of SiPMs (15, 25 μm)
- Goal: validation of chip in the beam
 - Found bad filter capacitor \rightarrow Fixed
 - Single p.e. comparable to previous KlauS generations (after fix)
- Measure the timing performance between two layers
 - Full chain Scintillator+SiPM+Frontend/TDC: up to 1 ns resolution (VERY preliminary)
 - Varies will SiPM over-voltage and threshold
 - Lab reference measurement with LED (w/o scint.) < 100 ps
- Issue identified in the digital part \rightarrow fixed for the next revision KlauS-6b

Jiri Kvasnicka & Lorenz Emberger

(Intermediate) Summary & plans

- Reduced, but fruitful testbeams @DESY 2020
- Good push in the Megatile performance study
 - Improvements already done, waiting for analysis results (and another test)
- New version of KLauS readout chip tested in the beam
 - Chip performs well (detailed analysis still ongoing)
 - Some minor bugs fixed/identified
- The large AHCAL prototype waiting for the opportunity to show its performance again
- Next plans:
 - Combined running with the SiECAL (@DESY first, ultimately @CERN)
 - Combined beam with the fully assembled KlauS-HBU (still needs DAQ integration)

Backup slides

• AHCAL 2x2 (72x72 cm²) module

Bottom (Scintillator tiles)

Electronics side

AHCAL cross-section

