

Front-end electronics and optical links

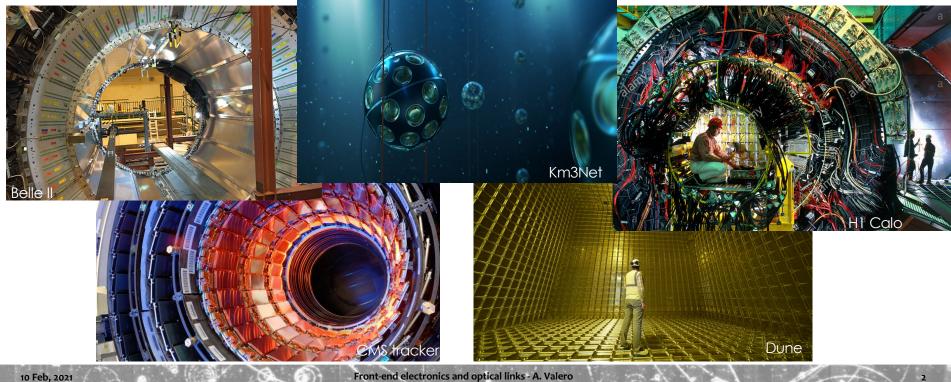
Alberto Valero

alberto.valero@cern.ch

Instituto de Física Corpuscular (Universidad de Valencia – CSIC)

9th Beam Telescopes and Test Beams Workshop

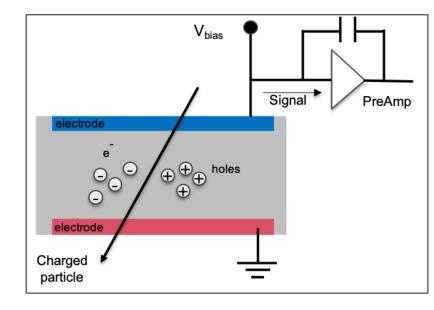
CSIC

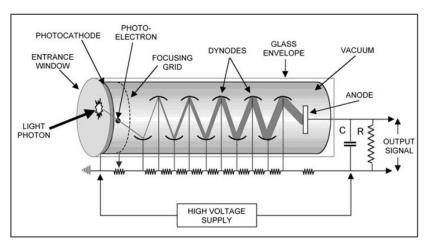

Outline

- ▲▼Sensors. Signal formation and characterization
- ▲ Front-end electronics
 - * Building blocks for energy and time measurement
 - ✤ Readout system architectures
 - * Front-end system implementation examples

▲▼Optical links

- * Fibers and connectors
- * Assemblies: types and future trends
- * Impact in readout systems


10 Feb, 2021

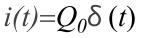

Signal formation in detectors

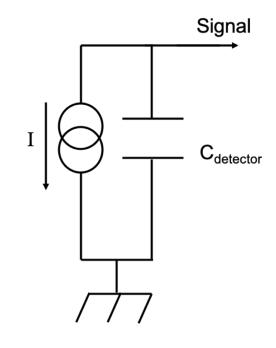
✓ Silicon: Charged particle creates e⁻ - holes pairs

- * The motion of the charges induces a current in electrodes
- \ast Signal ends when charges reach electrodes- Slew rate $\propto dV/dt$
- ▲▼ Similar principle in gas detectors

▲ Photomultipliers

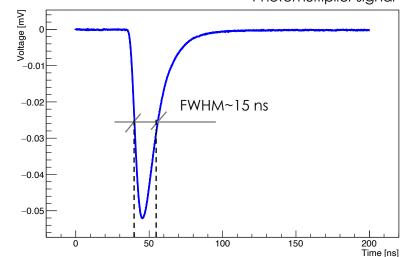
- * Photoelectric effect: $\gamma \rightarrow e^{-}$
- * Cascade multiplication in dynodes
- * Gain up to 10⁴ 10⁷ depends on HV value




Sensor model

▲ ■ Detector can be modelled as a Capacitance

- * Readout electronics specific for each case
 - Pixels : 0.1-10 pF
 - PMs: 3-30 pF
 - Ionization chambers: 10-1000 pF
- st R or RLC may be more accurate but still an ideal case
 - Connectors and cabling
 - Grounding
 - Crosstalk
 - HV, bias -> Calibration
- ▲▼ Signal : current source
 - * Pixels : ~100 e-/µm (MIP: ~104 e⁻)
 - * Gas detector: primary e⁻: ~10-40 cm⁻¹ (gain 10⁵-10⁷ with anode voltage)
 - * PMs : 1 photoelectron : 10^{5} - 10^{7} e⁻ (MIP ~10-20 photoelectrons)
- ▲▼ Modeled as an impulse (Dirac)


Sensor signals

Photomultiplier signal

▲▼ Usually short current pulses

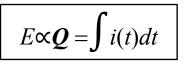
- * Thin silicon detector (10 –300 um): 100 ps–30 ns
- * Thick (~cm) Si or Ge detector: 1-1005
- * Proportional chamber: 10 ns 10 us
- * Microstrip Gas Chamber: 10 50 ns
- * Scintillator+ PMT/APD: 100 ps -10 us

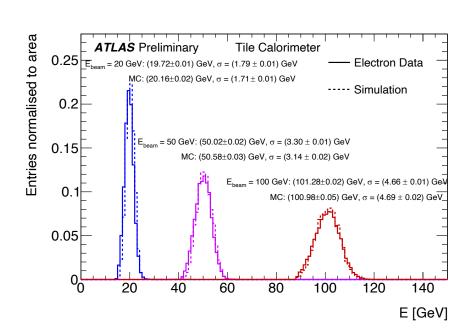
What can we measure from these signals?

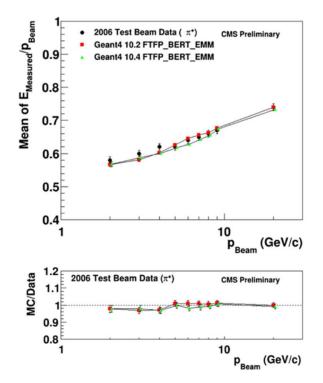
- Integral of current = charge \rightarrow proportional to Energy
 - Time of signal above a threshold -> Energy ToT
- Signal above a threshold \rightarrow Digital (tracks)
- Time of leading edge pulse peak \rightarrow time of arrival (ToF)

...and how do we measure?

 $E \propto Q = \int i(t) dt$

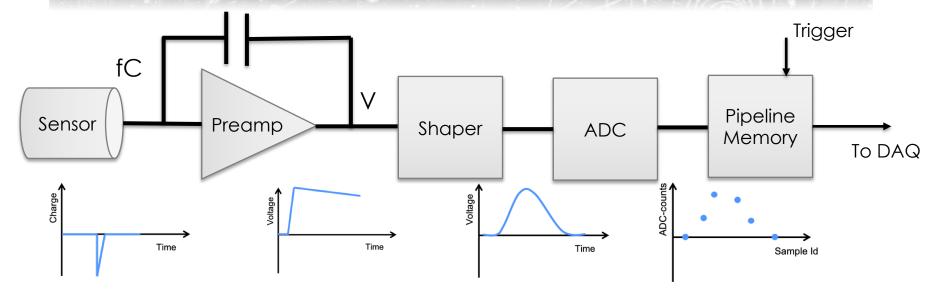

Front-end electronics for Energy measurement




▲ ■ Energy deposited in the detector: integrate sensor signal current

- * Charge integrator circuit
- * Preamplifier with pulse shaping and ADC
- * Amplify current pulse and use dual slope integrating ADC
- \blacksquare Then convert the charge into Energy ightarrow Calibration

* Detector response – charge collection parameters - electronics



Front-end electronics for Energy measurement

- Sensor : fC signal
- Preamplifier : amplification
- Shaper : improve S/N ratio
- ADC : sample the signal
- Memory : delay for trigger decision
- Signal processing : charge reconstruction
- More functionalities: Calibration, offset shifting

Preamplification

▲ Amplification of small signals from detector keeping high signal to noise

★ Keep output gain constant → high input capacitance in parallel with detector capacitance (not constant)

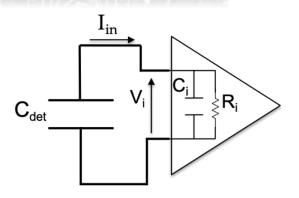
$$V_i = \frac{Q}{C_{det} + C_i}$$

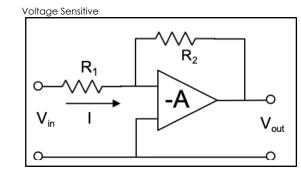
- * Located close to the sensor
 - Reduce looses
 - Reduce the pickup of noise

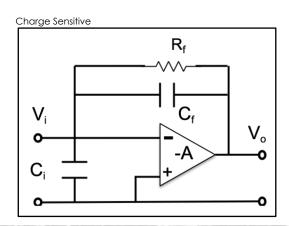
▲▼ Types of preamplifiers

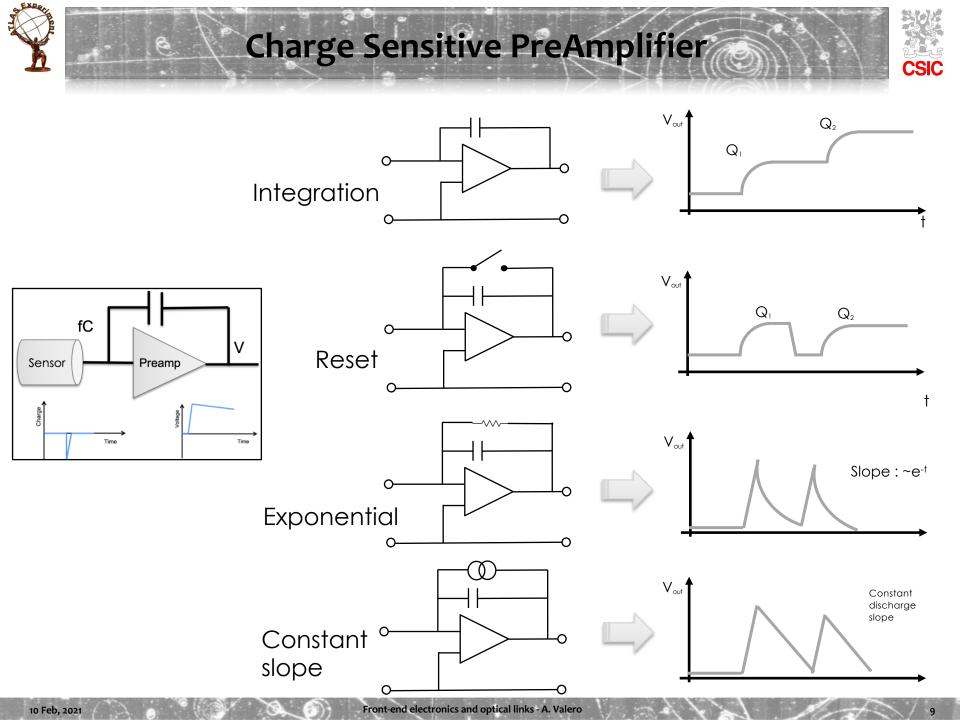
- * **Current sensitive** : not apply to detectors because the low amp impedance
- *** Voltage sensitive**

 $V_i = \frac{Q}{C_{det} + C_i} \rightarrow G = \frac{V_{out}}{V_{in}}$; sensible to impedance variations (semiconductors!)

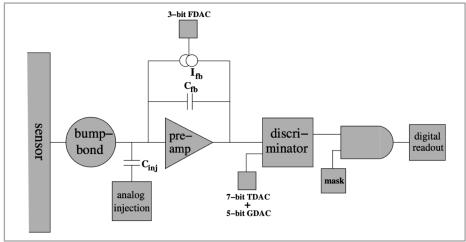

$$V_{out} = -\frac{R_2}{R_1} V_{in}$$

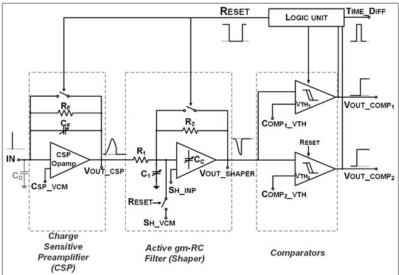

* Charge sensitive

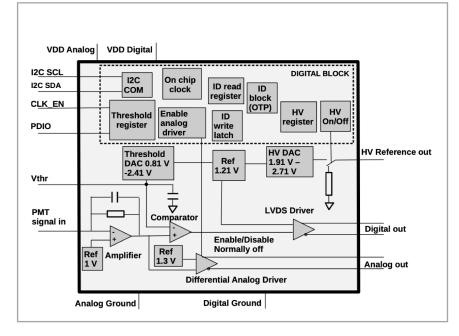

10 Feb, 2021


- Not sensitive to impedance variations : C_i = C_{det} + C_{cable}+C_{preamp}
- R_f and C_f determines the output decay constant of the signal produced

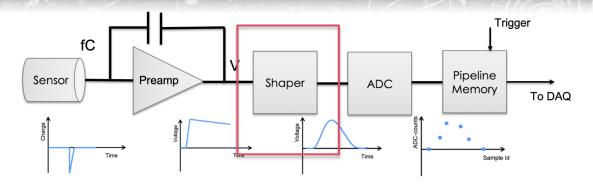
$$V_{out} = -\frac{Q}{C_f}$$



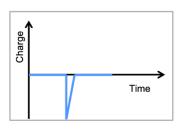


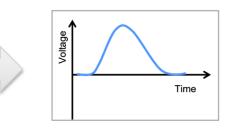

ATLAS Pixel FE-I4A

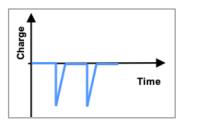
Upgrade ATLAS Muon Drift-Tube Detectors



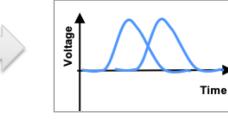
Km3Net


Pulse shaping




▲ Improve signal to noise ratio : compromise

- * Limit the bandwidth to decrease the noise but keeping information
- * Remove high frequencies before the ADC (Nyquist theorem)



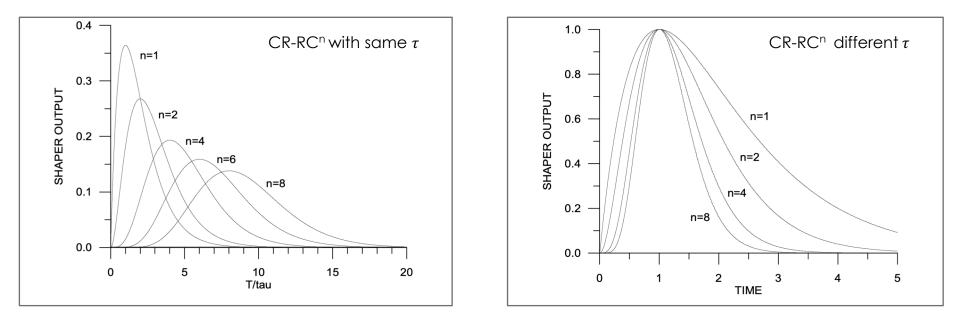
* In colliders with reduced bunch spacing pulses can overlap: pileup

10 Feb, 2021

Concatenation of filters CR : differentiator circuit - high pass filter RC : Integrator circuit - low pass filter

10 Feb, 2021

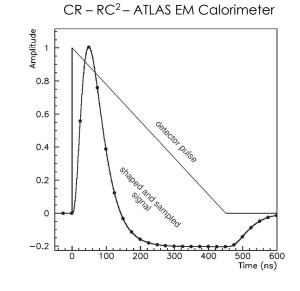
Pulse Shaping

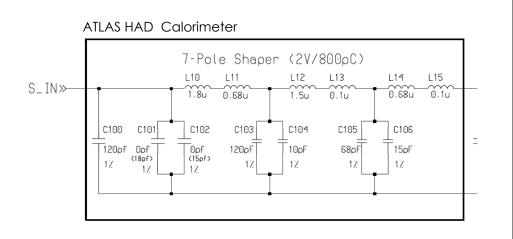


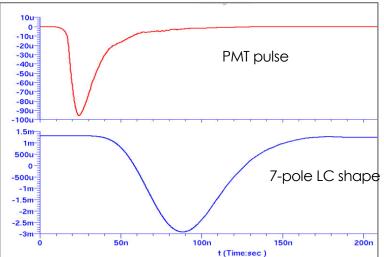
▲▼Circuit CR-RC-RC-RC....

★ A differentiator circuit CR followed by n integrator RC with the same time constant → the pulse forms approximately a gaussian shape

$$V_{out} = V_0 \left(\frac{t}{\tau}\right)^n e^{-t/\tau}$$


- * The peaking time is defined by $(n \times \tau)$ so wider shapes are obtained with more poles
 - Increased pileup with respect to a simple CR-RC but the S/N ratio can improve up to 20%
- ∗ If the time constant is changed $\tau_n = \tau_1/n \rightarrow$ preserves the peaking time




Pulse Shaping

- ▲ Circuits with 8 stages or more are common
- ▲▼Other passive networks provide similar results: LC
- ▲ ✓ Output frequencies in accordance with ADC sampling clock (Nyquist)

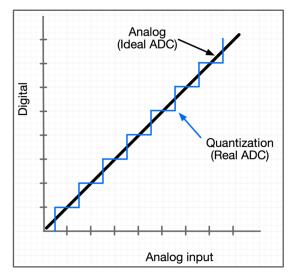
▲ Analog to Digital Conversion : quantization

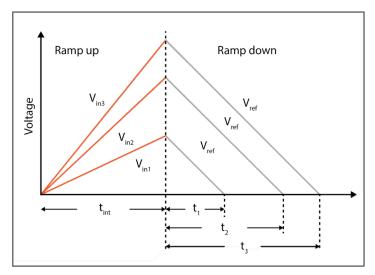
- * Pulse amplitude or current integration digitization
- * Sampling clock synchronization is crucial

▲▼Dynamic range

- * Is defined by the smallest and largest (range) voltage (energy) signal of interest
- * This can be achieved with one or multiple ranges

Example: Range [0.12, 800] pC


16-bit ADC (resolution $800/2^{16}=0.01$ pC) \rightarrow Two ranges of 10-bit each

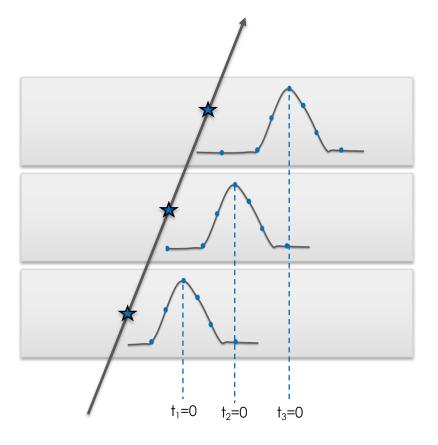

Gain1 (x1): resolution 800/2¹⁰ = 0.78 pC

Gain2 (x64): resolution (800pC/64)=12.5pC/ 2¹⁰ = 0.01 pC

⊿▼Types

- * Successive approximation register (SAR) (most popular)
 - Compares with a reference voltage which must be stable
 - Latency (~4-6 cycles) in pipeline mode
- ✤ Delta-sigma ADCs
 - Oversampling and DSP filter
 - High resolution (20 bits) but slow < Mbps
- ✤ Dual slope
 - Integrator discharged with known slop
- ✤ Flash ADC
 - Fast and no latency
 - Low resolution (usual < 8 bits)

ADC


ADC digitizing clock

▲▼ In particle colliders the clock is synchronous

with the beam crossing

- * Ideally a sample in the peak
- * Channel-to-channel configuration to adjust the phase
- * Good quality clock distributed with possibility to shift the phase
- * Phase must be fixed and deterministic not trivial!
- Small event by event variations can be measured

Memory – event selection latency

▲ Pipeline memories keep the data saved until a decision/trigger is received

Reduces the amount of data transferred → as data volumes and trigger rates increases new architectures must be adopted

▲ The memory can be analog

* Switch Capacitors Array : analog delay

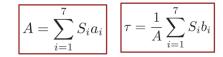
* Signals are digitized if event selected by trigger: slower ADC needed

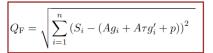
▲ ■ Depth of pipeline memory?

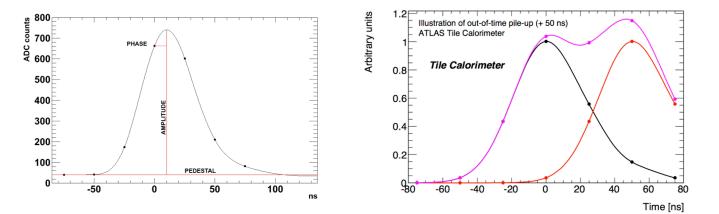
Defined by the trigger latency (~3-10 μs)
 Must be synchronous : event identification

- ▲ Gain selection. Before or after?
- ▲ Trigger veto? Buffers? Data flow control

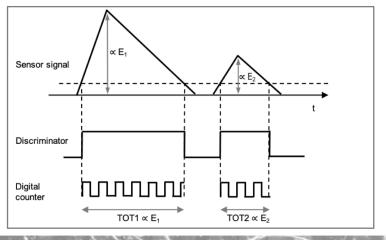
10 Feb, 2021


Energy measurement methods




✓ Signal reconstruction – digital filter

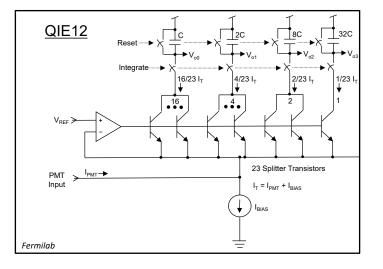
6


- * Relatively simple but requires DSP functions
- * Extraction of information after quantization and deformation

▲ Time Over Threshold : simple, front-end electronics * Example: ATLAS Pixel detector, Km3Net

10 Feb, 2021

Energy measurements methods


▲ Charge integration for a PMT

✤ Followed by an ADC

* No timing information for peak \rightarrow TDC

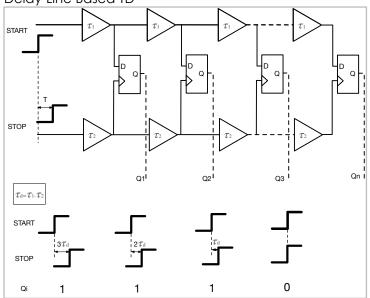
- ✤ Example: QIE ASIC
 - Several versions tailored for specific detectors
 - KTeV (QIE5), CDF (QIE6), MINOS (QIE7), CMS (QIE8, QIE10, and QIE11)

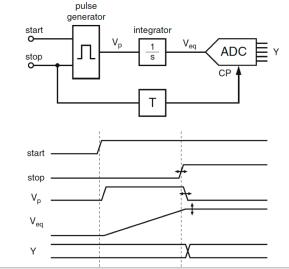
*In all the cases the digital value must be converted to Energy arrow Calibration

$$E(\text{GeV}) = A(\text{ADC}) \cdot C_{\text{ADC} \to \text{pC}} \cdot C_{\text{pC} \to \text{GeV}} \cdot C_{\text{Cesium}} \cdot C_{\text{Laser}}$$

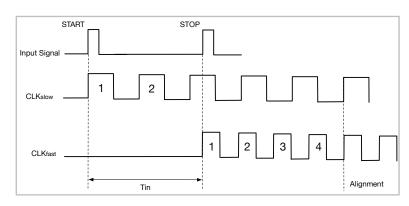
Electronics Testbeam Scintillator PMT

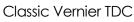
Front-end electronics for time measurement


▲▼ Discriminator followed by a TDC


* Same principle as the ToT

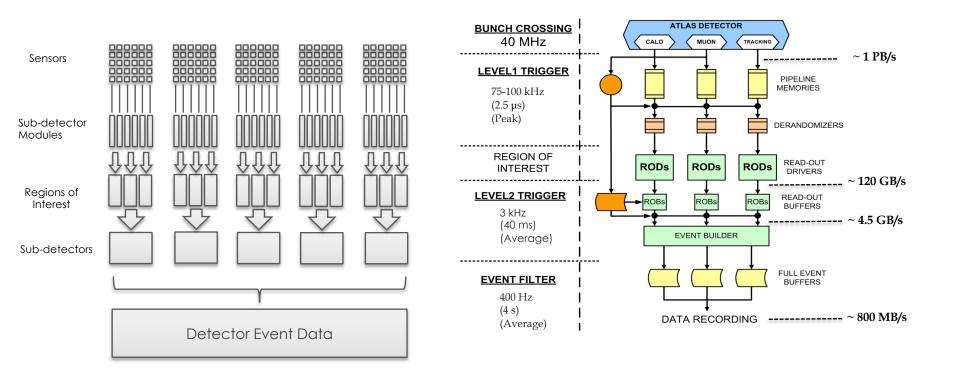
* Implemented in front-end and the result transmitted


- Different implementation techniques
 - Analog TDC
 - Dual slope (same approach as for ADC)
 - Fully digital :
 - » Vernier: Classic- Delay-Line Based
 - » Can be implemented in FPGA


Delay-Line Based TD

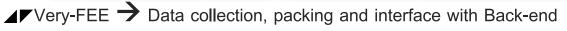
Analog TDC

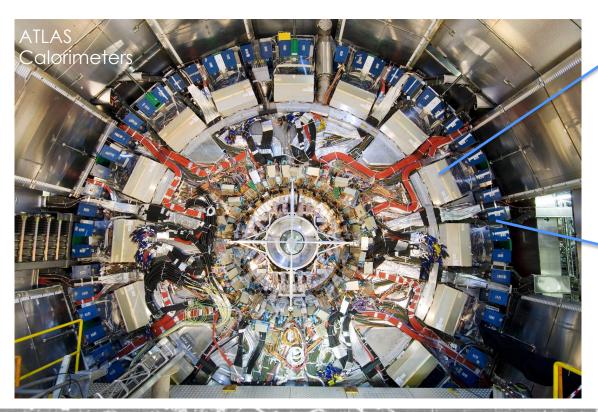
19

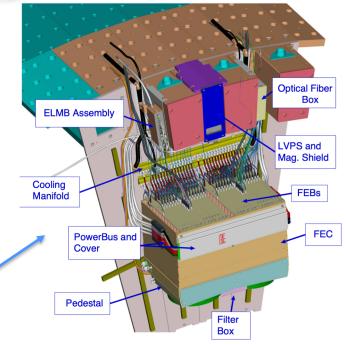

Signal processing \rightarrow back-end electronics

▲▼ The data readout follows a modular aggregation schema to gather information from bigger detector parts

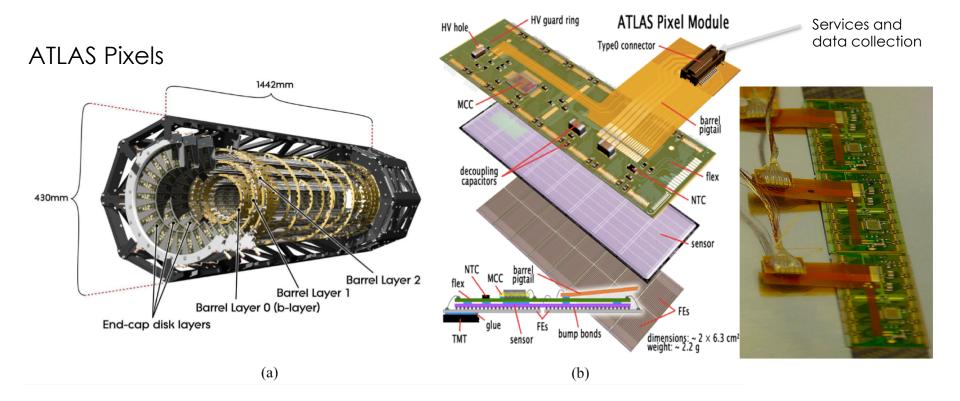
* Final goal is to obtain an event data packet for the entire detector


* Each step in data acquisition chain: select and pack




Front-end Implementation

- st Very-FEE as close as possible to the sensor
- * Back-end interface: data collection and basic packing/compression (zero suppression)
 - Custom backplanes
 - Mechanical structures with cabling
 - Accessibility



Front-end Implementation

Other front-end electronics functionalities and considerations

- ▲ Radiation tolerant ASICs (Mrad) vs COTS (Krad)
- ▲ Power regulation and distribution
 - Low and high voltage: stability, granularity, control and monitoring
 Front-end vs Back-end: access, cabling, redundancy
- ▲ **▼** Cooling

10 Feb, 2021

- ▲▼System slow control
 - * Decouple from data path. 24/7 functioning
- ▲▼System health monitoring
- ▲ Clock distribution
- ▲ Calibration systems
 - \ast Configuration and control: dedicated runs or during datataking \ast Same or different readout path
- ▲▼Connections to the backend
 - * Serialization/Deserialization
 - \ast Optical fibers : large aggregated data volumes

Optical links

▲ Class 1, 1M • Safe if not magnified (Laser printers, CD/DVD Players) - TYPICAL OPTICAL TX

- ∠ Class 2, 2M Safe if you blink, short periods! (bar code scan, pointers)
- ▲▼ Class 3R Low risk, be careful
- ▲▼• Class 3B Do not look directly (CD, DVD) Class 4

▲▼• Permanent eye damage (cutter)

Copper vs Fibers

▲ **P**ROs

- ✤ High rates (Tb/s)
- ✤ Low weight
- * Long range (1000s Km)
- * No interference / noise
- ✤ Evolving technology
- * Good integration with FPGAs

CONs

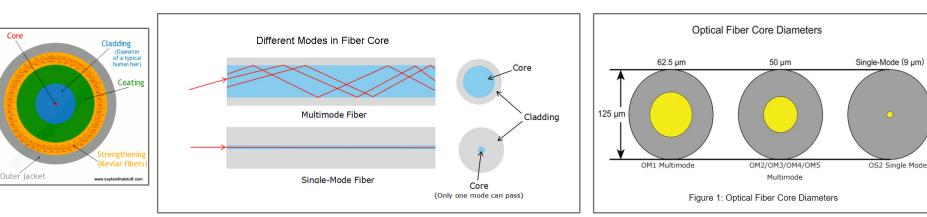
- Expensive technology
 System complexity
- * Mechanical fragility
- * Installation complexity
- * Terminations (connectors delicate)

Optical fiber transmission

▲ Basically is a light guide. Core: low refraction index. Cladding: high refraction index

▲▼ SINGLE MODE

- * Smaller core diameter (8-10 μm)
- * Higher bandwidth and longer range
- * No "modal dispersion"
- * ~80 Km unamplified : 1000s of Km amplified
- * Very expensive and precise laser transmitters


▲▼ MULTIMODE

- * Much wider core (~50 μ m)
- * Much more forgiving wrt light quality & alignment
- * Attenuation influenced by "modal dispersion"
- * Multiple propagation modes allowed in the light guide
- * Range limited to hundreds of meter
- * Light sources are considerably cheaper

Туре	Fiber Diameter(µm)	Fiber Type	Fast Ethernet 100BASE-FX	1 Gigabit Ethernet 1000BASE-SX	1 Gigabit Ethernet 1000BASE-LX	10Gbps Ethernet 10GBASE	40Gbps Ethernet 40GBASE SR4	100Gbps Ethernet 100GBASE SR4
OM1	62.5/125	MMF	2000m	275m	550m	33m	Not supported	Not supported
OM2	50/125	MMF	2000m	550m	550m	82m	Not supported	Not supported
OM3(laser optimization)	50/125	MMF	2000m	550m	550m	300m	100m(SR4)	100m(SR4)
OM4(laser optimization)	50/125	MMF	2000m	550m	550m	400m	150m(SR4)	150m(SR4)
SMF	9/125	SMF	2000m	5km at 1310nm	5km at 1310nm	10km at 1310nm	N/A	N/A

Datasheet

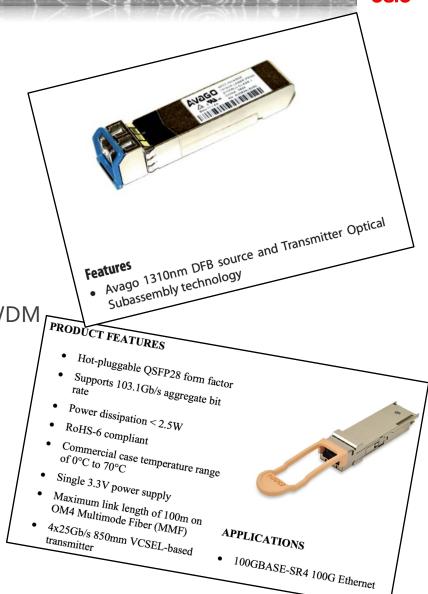
- Link Lengths at 1.25 GBd:
 - 0.5 to 550 m 50 µm MMF
 - 0.5 to 550 m 62.5 µm MMF
 - 0.5 m to 10 km SMF

Core

Transmission bands

▲▼ <u>"First Window" – 850 nm</u>

* Highest attenuation, "short range" (~100 m)


- ▲▼ <u>"Second Window" 1310 nm</u>
 - * "O-band", kilometer range
- ▲ Third Window" 1550 nm

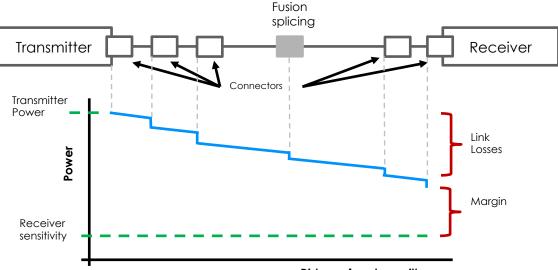
* "C-band", "Conventional band", long-reach DWDM

▲▼ "Fourth Window" – 1590 nm

* "L-band", "Long band"

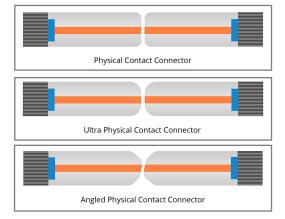
10 Feb, 2021

Attenuation



▲ As light propagates in a fiber, its intensity decreases – fiber losses

- * Scattered by defects in the glass
- \ast Absorbed by impurities and converted to heat
- ▲ Attenuation is measured in "Decibels" (logarithmic)
 - ℁ 1/10 = -10 dB
 - ※ 1/100 = -20 dB
- ∠ Combining losses/gains expressed in dB = addition

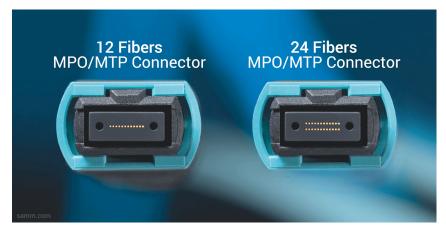

▲▼Other causes

- st Insertion loss (connectors) and splicing
- * Optical splitting (1:2 \rightarrow 3 dB)
- * Return loss (PC, UPC, APC)
- * Bending loss
- ∦ <u>Dirt</u>
- * Radiation induced "darkening"

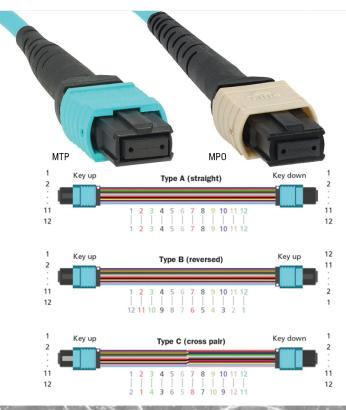
Distance from transmitter

Fiber optic connector endfaces

Assemblies



- ∠▼Single core fibers: SC, ST, FC, LC
- ▲▼MPO (Multi-Fiber Push On) cables
- ▲▼8, 12, 16, and 24. 32, 48, and 72 fiber counts


▲▼MTP® connector is a trademark by US Conect for a version

of the MPO connector with improved specifications

- * More robust metal
- * Pin Clamp (vs plastic)
- ***** Floating ferrule
- * Improved guide pins
- ***** Removable housing
- * Lower insertion loss and higher reliability

Form factors

▲▼ SFP/SFP+/SFP28 : Single Full Duplex lines: 4 / 10 / 25 Gbps (Compatible)

▲▼ QSFP (QSFP28) : 4 RX / 4 TX up to 10 Gbps/ 28 Gbps

 \ast QSFP-DD800: Individual lines speed up to 112 Gbps

* They support breakout cables QSFP \rightarrow SFP

▲▼ POD (miniPOD, microPOD): 12 lines TX or RX. More than 10 Gbps each

* Large density. Not mounted on PCB edge. Can be grouped in higher density patch cords: MTP12-MTP24-MTP72

▲ Firefly (SAMTEC) : High bandwidth density : 12 lines. 28 Gbps per line

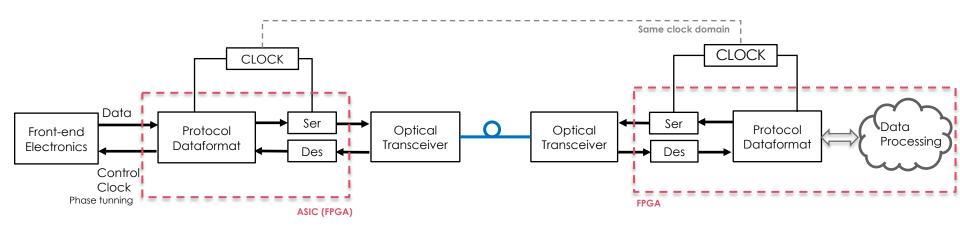
▲▼ Versatile Link PLUS : Custom Rad-hard CERN project

* SFP-like form factor. Compatible with commercial connectors

* Deterministic latency in both directions

System integration

- ▲ Front-end to back-end communication can be asymmetrical
 - * Fixed latency path for event identification
 - * One single clock domain across the optical link with phase tuning in the front-end

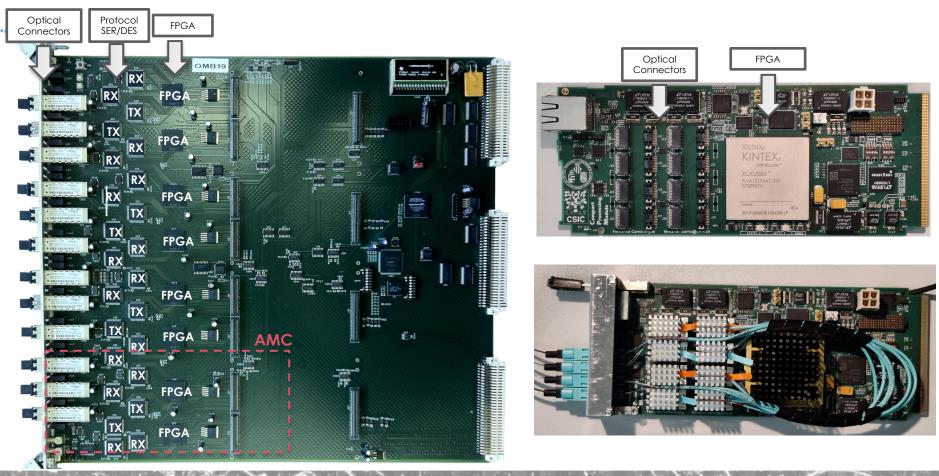

▲ **✓** Data packing

- * Dataformat is detector specific should permit flexibility
- * Protocol for data encoding: DC balancing, error detection and correction (FEC) , comma words (alignment)
 - Overhead
 - Standard IP cores (8b/10b) or custom (GBT)
- ▲▼ Serialization/Deserialization
 - * Now included in the same device (ASIC or FPGA)

▲▼ Optical Transceivers

10 Feb, 2021

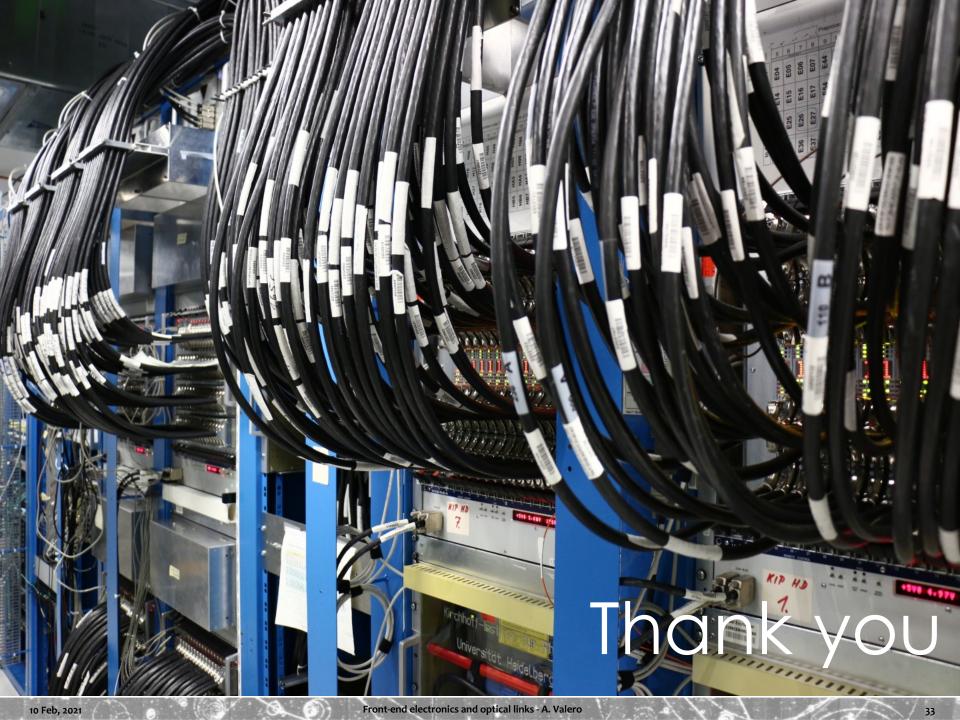
- * Radiation tolerant in the front-end
- * Same or different assembly: breakout cables: 12 x LC \rightarrow 1 MTP


10 Feb, 2021

Evolution of data acquisition systems

Huge increase in aggregated data rates not only due to individual line speeds

OMB (2005): VME9U ~ 34 x 36 cm Throughput (max 1Gb/s x line): TX: 8 Gb/s ; RX: 16 Gb/s **12 SFP optical transceivers, 24 G-Link ser/des, 8 FPGAs** CPM (2020): AMC ~ 7.4 x 18 cm (x4 OMB) Throughput (16 Gb/s line): TX: 512 Gb/s; RX: 512 Gb/s **8 Firefly , 1 FPGA**



Evolution of DAQ systems

- ▲ The high data rates provided by optical links permit "simpler" readout architectures
 - * Triggerless readouts : (LHCb, ALICE, DUNE) : Aggregated data rate O(10 Tb/s)
- ▲ Higher channel density allow system <u>upgrades</u> without expanding counting rooms
 - * Re-structure the readout blocks ightarrow move front-end functions to "back-end"
 - Lower radiation levels
 - Improve operability and accessibility
 - * FRONT-END does not mean INSIDE the detector anymore
 - Continuous digitization and readout with data processing, data flow control and buffers "off-detector"

