
https://root.cern

ROOT
Data Analysis Framework

Optimized workflow for analyses with
multiple RDataFrames

Enrico Guiraud, Stefan Wunsch

https://root.cern

The example analysis

● All (realistic) analyses have to use multiple RDFs
● At least one RDF per process
● Typically each process is described with multiple

datasets (W+1jet, W+2jet, …)

● This example:
● 4.8 GB in total

● Compressed size
● About 10% of the total dataset size
● 2.3 GB read (measured with TTreePerfStats)

● 65 files (4 data + 61 simulation)
● 25 M events in total with 81 columns each
● Data + 5 simulated processes
● Setup requires 65 RDFs because each dataset requires

different event weights

https://root.cern/doc/master/df105__WBosonAnalysis_8py.html

2

https://root.cern.ch/doc/master/classTTreePerfStats.html
https://root.cern/doc/master/df105__WBosonAnalysis_8py.html

The core of the analysis

ROOT.EnableImplicitMT(12)

histos = {} # histograms
df = {...} # 65 RDFs
for s in samples:
 histos[s] = df[s].Filter(...)\
 .Define(...)\
 .Histo1D(...)

Trigger the event loops
for s in samples: h[s].Draw()

● Run very similar computation graphs for all dataset, but no
TChain is possible
(differences between data/MC, different weights per MC
sample, …)

● Event loops are multi threaded (on very few TTree
clusters), but RDFs run sequential
→ Results in an inefficient CPU usage!

3

How could we improve the workflow?

● Using TChains?
Often not possible due to small
differences in the computation graphs
→Tree or file based Define and Filter
nodes?

● Setup of the computation graphs is
declarative, in principle as we want the
user to use RDF

● Can we parallelize the sequential
execution of multiple RDFs?

ROOT.EnableImplicitMT(12)

histos = {} # histograms
df = {...} # 65 RDFs
for s in samples:
 histos[s] = df[s].Filter(...)\
 .Define(...)\
 .Histo1D(...)

Trigger the event loops
for s in samples: h[s].Draw()

4

Run RDFs in parallel!
void RLoopManager::Run()
 {
- ThrowIfPoolSizeChanged(GetNSlots());
+ {
+ R__LOCKGUARD(gInterpreterMutex);
+ ThrowIfPoolSizeChanged(GetNSlots());

- Jit();
+ Jit();

- InitNodes();
+ InitNodes();
+ }

 switch (fLoopType) {
 case ELoopType::kNoFilesMT: RunEmptySourceMT(); break;
 ...
 case ELoopType::kDataSource: RunDataSource(); break;
 }

- CleanUpNodes();
+ {
+ R__LOCKGUARD(gInterpreterMutex);
+
+ CleanUpNodes();

- fNRuns++;
+ fNRuns++;
+ }
 }

Hacked in thread safety for a proof of concept to
enable running multiple RDataFrames in parallel!

5

Trigger the event loops, in parallel!

All RDFs share the same thread pool!

ROOT.EnableImplicitMT(12)

histos = {} # histograms
df = {...} # 65 RDFs
for s in samples:
 histos[s] = df[s].Filter(...)\
 .Define(...)\
 .Histo1D(...)

Trigger the event loops, all in parallel!
ROOT.gInterpreter.ProcessLine('std::vector<ROOT::RDF::RResultPtr<TH1D>> ptrs;')
for s in samples: ROOT.ptrs.push_back(histos[s])

ROOT.gInterpreter.ProcessLine('''
ROOT::TThreadExecutor pool;
pool.Map([](ROOT::RDF::RResultPtr<TH1D> ptr) { *ptr; }, ptrs);
''')

6

Is it worth it?
● Multi threading on 12 (physical?) cores (running on almost empty machine with 24/48

physical/logical cores)
● Read data from storage server with

SSDs and 20 GBit connection

● Sequential execution of RDFs
● 90s wall time
● 300s CPU time
● 330% CPU usage
● 1.3 GB max resident size

● Parallel execution of RDFs
● 36s wall time → 90/36 = 2.5x faster runtime!
● 310s CPU time → slightly increased, due to higher contention?
● 870% CPU usage → 870/330 = 2.5x higher CPU usage!
● 2 GB max resident size → concurrent event loops? 7

Does it matter with big data?

● Let’s try again with the full dataset of 66 GB (see
plot on the bottom for # of clusters)

● In realistic settings, files with <12 clusters are still
common!

● Issue amplifies when using more cores
(machines with >48 cores are already typical for
larger university groups)

● Scaling up to 100
cores in a realistic
analysis?
In practise, easily
blocked by this!

8

● Sequential execution of RDFs (MT=12)
● 470s wall time
● 4500s CPU time
● 970% CPU usage
● 2.1 GB max resident size

● Parallel execution of RDFs (MT=12)
● 380s wall time→1.2x faster!
● 4300s CPU time
● 1140% CPU usage→1.2x higher!
● 3.2 GB max resident size

● Sequential execution of RDFs (MT=24)
● 203s wall time
● 3200s CPU time
● 1610% CPU usage
● 3.6 GB max resident size

● Parallel execution of RDFs (MT=24)
● 127s wall time→1.6x faster!
● 2800s CPU time
● 2210% CPU usage→1.4x higher!
● 6.1 GB max resident size

Scaling is back!

● Full dataset with 66 GB
● Compressed size
● 23.8 GB read (measured with TTreePerfStats)

● Machine with 64/128 physical/logical cores
● Data read from storage server with SSDs and 20 GBit

connection
● iperf: 5.2 GBit/s to the storage server
● rsync: ~220MB/s (copy to local SSD)

● Limited for >32 cores again by number of clusters?
● Limited by network/IO?

● With 32 cores:
23.8 GB / 105 s = 230 MB/s = 1.8 Gbit/s

● Beyond capabilities of HDDs
● Beyond capabilities of most network connections
● Saturates the connection to the storage server?

9

Scaling is back, reloaded!

10

● cgroups limited my share to 32 cores!
● Moved the dataset to a local SSD with NVMe

interface

● With 64 cores:
23.8 GB / 75 s = 325 MB/s

● Scaling saturates at
● 28x with parallel RDFs
● 11x with sequential RDFs

Proposal: Reference benchmark suite

● Set up a benchmark suite which scaling we know in optimal conditions

● Most important: Simple to run and to reproduce

● Allows to “calibrate” results on new systems and can identify bottlenecks, which are
not related to our software

● Make it part of rootbench?

11

Final thoughts

● Multiprocessing + RDF
● Works!
● But suffers heavily with imbalanced datasets because you have to wait for the slowest process (see

Massimilliano’s and Vincenzo’s studies!)

● Multithreading + RDF
● Allows to use all your resources efficiently
● Speeds up complex analyses and restores scaling using many cores
● Important for efficient usage of N cores batch jobs (without manual file splitting to tackle the

imbalance)
● Can we make it work with Python’s ThreadPoolExecutor?

● Alternative solution: Tree/file based Define and Filter transformations
● Solves the same issue with a different programming model
● Less problems with implicit dependencies between RDFs
● Goes well with the implicit parallelism model in ROOT

● You can think of other solutions?
● What is the strategy for PyRDF, naturally using many cores/nodes?

12

https://docs.python.org/dev/library/concurrent.futures.html#threadpoolexecutor

