Optimized workflow for analyses with
multiple RDataFrames

Enrico Guiraud, Stefan Wunsch

ROOT

Data Analysis Framework

https://root.cern

https://root.cern

The example analysis

e All (realistic) analyses have to use multiple RDFs
e Atleast one RDF per process

(2]
e Typically each process is described with multiple 5 'F aras OpenData gy o
datasets (W+1jet, W+2jet, ...) UL E-13Tev,0011" [z
[it
e This example: 167 —
e 48GBintotal 10*
e Compressed size)
e About 10% of the total dataset size i
e 2.3 GBread (measured with TTreePerfStats) 102
65 files (4 data + 61 simulation) =

25 M events in total with 81 columns each

Data + 5 simulated processes

Setup requires 65 RDFs because each dataset requires
different event weights

1 1 I
120

1 1 1 1 1 [1 1 1
140 160 180
M=~ [GeV]

1 1 1 I 1 1
60 80 100

https://root.cern/doc/master/df105 WBosonAnalysis 8py.html

https://root.cern.ch/doc/master/classTTreePerfStats.html
https://root.cern/doc/master/df105__WBosonAnalysis_8py.html

The core of the analysis

ROOT.EnableImplicitMT(12)

histos = {} # histograms
df = {...} # 65 RDFs
for s in samples:
histos[s] = df[s].Filter(...)\
.Define(...)\
.Histo1D(...)

Trigger the event loops
for s in samples: h[s].Draw()

50

40

30 A

20 A

10 1

0 T I— T T T
0 5 10 15 20 25
Number of clusters

Run very similar computation graphs for all dataset, but no
TChain is possible

(differences between data/MC, different weights per MC
sample, ...)

Event loops are multi threaded (on very few TTree
clusters), but RDFs run sequential
— Results in an inefficient CPU usage!

How could we improve the workflow?

e Using TChains?
Often not possible due to small

ROOT.EnableImplicitMT(12) . . .
differences in the computation graphs

histos = {} # histograms —Tree or file based Define and Filter
df = {...} # 65 RDFs
for s in samples: nodes?
histos[s] = df[s].Filter(...)\
.Define(...)\ . .
.Hismg(_ _?) e Setup of the computation graphs is
declarative, in principle as we want the
Trigger the event loops user to use RDF

for s in samples: h[s].Draw()

e (Can we parallelize the sequential
execution of multiple RDFs?

void RLoopManager::Run()

+ 4+ o+ 1

+ o+ o+ +

+

{

}

ThrowIfPoolSizeChanged(GetNSlots());

{
R__LOCKGUARD(gInterpreterMutex);
ThrowIfPoolSizeChanged(GetNSlots());

Jit();
Jit();

InitNodes();
InitNodes();

}

switch (fLoopType)

case ELoopType::kNoFilesMT: RunEmptySourceMT(); break;

case ELoopType::kDataSource: RunDataSource(); break;

}

CleanUpNodes();

{
R__LOCKGUARD(gInterpreterMutex);

CleanUpNodes();
fNRuns++;

fNRuns++;

}

Run RDFs in parallel!

WHAT|DOWEWANT .

-
[
|

@o

IWHEN DO WEWANT(IT2

Y

Hacked in thread safety for a proof of concept to
enable running multiple RDataFrames in parallel!

Trigger the event loops, in parallel!

ROOT.EnableImplicitMT(12)

histos = {} # histograms
df = {...} # 65 RDFs
for s in samples:
histos[s] = df[s].Filter(...)\
.Define(...)\
.Histo1D(...)

Trigger the event loops, all in parallel!
ROOT.gInterpreter.ProcessLine('std::vector<ROOT: :RDF::RResultPtr<TH1D>> ptrs;")
for s in samples: ROOT.ptrs.push_back(histos[s])

ROOT.gInterpreter.ProcessLine(' "'

ROOT: :TThreadExecutor pool;

pool.Map([](ROOT: :RDF::RResultPtr<TH1D> ptr) { *ptr; }, ptrs);
III)

All RDFs share the same thread pool!

Is it worth it?

e Multi threading on 12 (physical?) cores (running on almost empty machine with 24/48

physical/logical cores)
e Read data from storage server with

SSDs and 20 GBit connection WE CAN MAKE IT 2.5X $ | Ao Cunban e
FASTER! - E Dibosoﬁ
e Sequential execution of RDFs u@ ; o
e 90s wall time @,
e 300s CPU time |
e 330% CPU usage @ 3)
e 1.3 GB max resident size 1 ST |
mi-¥ [GeV]
e Parallel execution of RDFs
e 36s wall time — 90/36 = 2.5x faster runtime!
e 310s CPUtime — slightly increased, due to higher contention?
e 870% CPU usage — 870/330 = 2.5x higher CPU usage!
e 2 GB maxresidentsize — concurrent event loops? 5

° Sequential execution of RDFs (MT=12)
° 470s wall time

e Let's try again with the full dataset of 66 GB (see

° 4500s CPU time
plot on the bottom for # of clusters) e 970% CPU usage
° 2.1 GB max resident size
e Inrealistic settings, files with <12 clusters are still e Parallel execution of RDFs (MT=12)
common! e 380s wall time—1.2x faster!

e 4300s CPU time
e 1140% CPU usage—1.2x higher!
[]

e Issue amplifies when using more cores 3.2 GB max resident size
(machines with >48 cores are already typical for

larger university groups)

16] ° Sequential execution of RDFs (MT=24)
. ° 203s wall time
e Scaling up to 100 e 3200s CPU time
cores in a realistic 12 1 ° 1610% CPU usage
analysis? 101 ° 3.6 GB max resident size
In practise, eqsny ° e Parallel execution of RDFs (MT=24)
blocked by this!] e 127s wall time—1.6x faster!
a ° 2800s CPU time
. e 2210% CPU usage—1.4x higher!
. 11 I I I ° 6.1 GB max resident size

T
0 50 100 150 200 250 300 350 400 8
Number of clusters

Scaling is back!

Full dataset with 66 GB
e Compressed size
e 23.8 GBread (measured with TTreePerfStats)

Machine with 64/128 physical/logical cores
Data read from storage server with SSDs and 20 GBit
connection

e iperf: 5.2 GBit/s to the storage server

e rsync: ~220MB/s (copy to local SSD)

Limited for >32 cores again by number of clusters?
Limited by network/IO?
e With 32 cores:
23.8 GB /105 s =230 MB/s = 1.8 Gbit/s
e Beyond capabilities of HDDs
Beyond capabilities of most network connections
e Saturates the connection to the storage server?

40

36

32 A

28 A

Scale w.r.t. single core

12 A

—== Optimal Pd
—&— Sequential | 7
—#— Parallel #

24

20 A

16

8 12 16 20 24 28 32 36 40
Number of cores

Scaling is back, reloaded!

32

28 A
cgroups limited my share to 32 cores! -
Moved the dataset to a local SSD with NVMe i
interface S 50
With 64 cores: f’ .4
23.8 GB/75s =325 MB/s %

312
Scaling saturates at
e 28x with parallel RDFs g -

e 11xwith sequential RDFs

—== Optimal

!
/

—&— Sequential 7
, {

—— Parallel

16

32

48
Number of cores

64

80

96

10

Proposal: Reference benchmark suite

e Setup a benchmark suite which scaling we know in optimal conditions
e Mostimportant: Simple to run and to reproduce

e Allows to “calibrate” results on new systems and can identify bottlenecks, which are
not related to our software

e Make it part of rootbench?

11

Final thoughts

e Multiprocessing + RDF
e Works!
e But suffers heavily with imbalanced datasets because you have to wait for the slowest process (see
Massimilliano’s and Vincenzo's studies!)

e Multithreading + RDF
e Allows to use all your resources efficiently
e Speeds up complex analyses and restores scaling using many cores
e Important for efficient usage of N cores batch jobs (without manual file splitting to tackle the
imbalance)
e Can we make it work with Python's ThreadPoolExecutor?

e Alternative solution: Tree/file based Define and Filter transformations
e Solves the same issue with a different programming model
e Less problems with implicit dependencies between RDFs
e Goes well with the implicit parallelism model in ROOT

e You can think of other solutions?

e What is the strategy for PyRDF, naturally using many cores/nodes? "

https://docs.python.org/dev/library/concurrent.futures.html#threadpoolexecutor

