Research supported by the High Luminosity LHC project
HiLumi LHC:
Impact of MCBXF Field Quality on DA and Possible Mitigation Strategies

F.F. Van der Veken and M. Giovannozzi
Outline

1. Introduction
2. Large Impact of MCBXF
3. Possible Mitigation
4. Conclusions and Outlook
Aim

- Magnetic field imperfections can deteriorate beam quality
- Essential to understand which type of errors, in which magnetic families, are dominant
- Well-known that e.g. IT has huge impact
 - mitigated with non-linear corrector package
- MCBXF also has large impact...
 - which orders are dominant?
 - which sub-families?
 - other contributing factors (reference field, ...)?
 - how to improve the situation?
Dynamic Aperture

- DA is a tool to estimate beam quality
- Smallest connected volume in phase space that is stable for at least N turns (100 000)
- Tracking in 6D, initial conditions in 2D (11 angles)
- Repeated over 60 random machine realisations (‘seeds’)
Setup of Studies

- Very CPU-intensive (300k+ jobs)
 ⇒ submission to BOINC

Many thanks to A. Mereghetti for maintaining the scripts, and to the numerous LHC@Home volunteers

Studies are performed:

- using HL-LHC v1.4 round collision optics
- for minimum β^* (15/1000/15/150 cm)
- without octupoles and with low chromaticity
- with nominal settings for all other values
- nominal errors are assigned from 3rd to 15th order for LHC, and HL-LHC (IT, D1, D2, MCBRD, and MBH)
Outline

1. Introduction
2. Large Impact of MCBXF
3. Possible Mitigation
4. Conclusions and Outlook
MCBXF

- Two sub-families:
 - MCBXFA in corrector package
 - MCBXFB around Q2
- Two main functions:
 - create orbit bumps
 - correct triplet misalignments
- Power setting in optics file is for bumps, triplet correction is set during operation (orbit correction phase)
 \Rightarrow exact setting not known in advance
Impact on DA of MCBXF Errors

(assuming maximum strength for the reference field)
Impact on DA of MCBXF Errors

- Drop of $\sim 2.5\sigma$ on DA_{av} in Beam 1
- Drop of $\sim 4\sigma$ on DA_{min} in Beam 1
- Drop of $\sim 3.5\sigma$ on DA_{av} in Beam 2
- Drop of $\sim 3\sigma$ on DA_{min} in Beam 2

\Rightarrow is there a dominant sub-family?
\Rightarrow is there a dominant multipole order?
Comparing MCBXFA with MCBXFB

Beam 1

Beam 2

F.F. Van der Veken

Impact of MCBXF on DA 6/13
Comparing MCBXFA with MCBXFB

- Adding MCBXFB errors does not influence DA much
- Adding MCBXFA errors alone has the same impact as adding both

⇒ MCBXFA is the culprit

(not entirely unexpectedly, as MCBXFA has double the integrated strength compared to MCBXFB)
Comparing Multipole Errors

Beam 1

nominal (no MCBXF) nominal + MCBXF nominal + MCBXF (only b_3/a_3)

Beam 2

nominal (no MCBXF) nominal + MCBXF nominal + MCBXF (only b_3/a_3)
Comparing Multipole Errors

- Adding only 3rd order multipole errors to MCBXF has the same impact as adding errors at all orders

⇒ loss in DA comes from large b_3/a_3
Outline

1 Introduction

2 Large Impact of MCBXF

3 Possible Mitigation

4 Conclusions and Outlook
Possible Mitigation

- DA drop from large b_3/a_3 can be due to
 - Pure multipole error
 - Beta-beating via feed-down

- Studies have shown drop is due to pure error
 ⇒ can these be corrected by non-linear CP?
Effectiveness of MCBXF Correction

Beam 1

Beam 2

nominal (no MCBXF) nominal + MCBXF nominal + MCBXF (corr)

nominal (no MCBXF) nominal + MCBXF nominal + MCBXF (corr)
Effectiveness of MCBXF Correction

- DA with correction same as baseline
 ⇒ correction algorithm works for MCBXF

- But is this realistic?
 ⇒ size of errors is relative to reference field,
 which is related to actual powering
 (unknown due to triplets misalignment)
Alternatives

- Track dependence on powering (difficult: hysteresis)
 Depending on powering, clear compensation effects exist

- Keep operation close to nominal powering cycle:
 Full Remote Alignment System might be mitigation measure
 ⇒ MCBXF does not need to correct IT misalignments
 ⇒ setting only defined by optics!
Full Remote Alignment System

Beam 1

Beam 2

nominal (no MCBXF) nominal + MCBXF nominal + MCBXF (fras)

nominal (no MCBXF) nominal + MCBXF nominal + MCBXF (fras)

F.F. Van der Veken

Impact of MCBXF on DA 11/13
Full Remote Alignment System

- Assuming Full Remote Alignment System is implemented, the drop in DA for Beam 1 is almost completely recovered.
- However, for Beam 2, around 50% of the drop remains

 \(-2\sigma \text{ on } D_A^{av} \text{ and } -1.5\sigma \text{ on } D_A^{min}\)

 ⇒ difference might stem from compensation effects in IRs
 ⇒ still some optimisation possible (i.e. phase advance)

- Is there a dependence on crossing angle?
 (important for luminosity levelling via crossing angle)
Dependence on Crossing Angle

Beam 1

Beam 2

$\frac{\theta_x}{2} [\mu rad]$ vs $DA [\sigma]$ for different crossing angle vs $DA [\sigma]$ for different crossing angle across MCBXF configurations.
Dependence on Crossing Angle

- Indeed, for Beam 1 the impact of the MCBXF errors on the DA is acceptable
- However for Beam 2, and especially for larger crossing angles, the drop in DA is still big

⇒ this might potentially be solved by correcting the errors (justified in case FRAS is implemented)
⇒ difference appears at first point \(\frac{\theta_c}{2} = 50 \)
can be investigated further
Outline

1. Introduction
2. Large Impact of MCBXF
3. Possible Mitigation
4. Conclusions and Outlook
Conclusions and Outlook

- Beam quality very sensitive to size of b_3/a_3 multipole error in MCBXFA.
- DA can be recovered in simulations by using the CP to correct MCBXF.
- Assuming the FRAS will be in place, the reference field of the MCBXF becomes deterministic:
 - almost no remaining impact for Beam 1.
 - still a large drop in DA persists for Beam 2 but without beam-beam, DA is still acceptable.
Conclusions and Outlook

- TODO
 - can the drop in Beam 2 be recovered by using the CP to correct MCBXF?
 - correct with middle value of $\frac{\theta_c}{2}$ but apply to all $\frac{\theta_c}{2}$ in levelling
 - check impact of MCBXF for $\beta^* = 30$cm: do we need correction during first years of HL-LHC?
Thank you for your attention!
Example Polar DA Plot

- Absolute maximum
- One-seed average
- DA average
- Absolute minimum

F.F. Van der Veken

Impact of MCBXF on DA
Example DA Plot

- Absolute maximum (maximum angle over all seeds)
- Individual seed lines (average over angles per seed)
- Average DA (average over angles and over seeds)
- Absolute minimum (minimum angle over all seeds)