Investigation of radiation defects

Ioana Pintilie

National Institute of Materials Physics, Bucharest, Romania

Outline

- Motivation
- Point defects
- Clasification of electrically active point defects
- Electrical properties in the space charge region
- Methods of Detection
- Radiation induced defects in Si diodes
- Summary&Conclusions

Motivation

-To understand the radiation damage

- To improve the detectors radiation tolerance by "Defect engineering"

3rd MC-PAD Network Training Event, Ljubljana, 2010

Complexes can form between different kinds of defects

- Local distortion of the crystalline structure
- Some defects may introduce energy levels in the band-gap of the material (electrically active defects)

Clasification of electrically active point defects

Electrical properties of Point Defects

The occupancy of a defect state with an electron (hole) is determined by the competing emission and capture processes (Schockley-Read-Hall statistics).

Electrical properties of Point Defects - in the Space Charge Region (SCR)

Methods of Detection – there is no experimental method to provide all the defects characteristics

Technique	Based on/ measures	Provided defect parameters	Limitations	
Deep Level Transient Spectroscopy	Charge capture-emission / Capacitance transients	$E_{t}, \sigma_{n,p}, N_{t}$	-low density of defects (<10 ¹² cm ⁻³) -Chemical nature (indirect)	
Thermally Stimulated Current	Charge capture-emission / Current	$E_{t}, \sigma_{n,p}, N_{t}$	-medium density of defects (10 ¹² -10 ¹⁵ cm ⁻³) -Chemical nature (indirect)	
Photoluminescence	Photon Absorption followed by Photon Emission / Luminescence	PL bands (Ε _t , τ)	-Only for radiative recombination centers - Chemical nature (indirect) - $\sigma_{n,p}$, N _t	
Infrared Spectroscopy	Excitation of vibrational modes of molecules by IR absorption / Absorption of IR energy	-N _t (acc. 20-30%) - Defect structure	-Large density of defects (> 10^{15} cm ⁻³) -E _t , $\sigma_{n,p}$,	
Electron Paramagnetic resonance	Zeeman effect and Spins resonance / microwave photons absorption	- Chemical nature and vecinity - N _t	-Large density of defects (> 10^{15} cm ⁻³) - Only paramagnetic centers - E_t , $\sigma_{n,p}$,	

Deep Level Transient Spectroscopy (multiple shot technique)

3rd MC-PAD Network Training Event, Ljubljana, 2010

9

Thermally Stimulated Currents Method (single shot technique)

- Filling process -injection of carriers

- <u>Recording</u> – the Reverse Biased Diode is heated with constant rate and the *Current* due to the charge emission from the filled traps is recorded

10

Radiation induced defects in Si diodes

Si diodes - typical DLTS spectra (low irradiation fluence)

None of these defects accounts for the macroscopic effects seen at room temperature

Radiation induced defects in Si diodes

Goals

- Search for still undetected defects responsible for the radiation damage, as seen at operating temperatures
 - Point defects, predominant after gamma and electron irradiation
 - Extended defects (clusters), responsible for hadron damage
- Understand their formation and find ways to optimize the device performance

Charge state of electrically active defects at room temperature

Donors (+/0)

 E_{V}

- traps for electrons
- show Poole-Frenkel effect
- Contribute with (+) to N_{eff} at RT
- traps for holes
- show no Poole-Frenkel effect
- do not contribute to N_{eff} at RT unless are near the midgap

Charge state of electrically active defects at room temperature

Acceptors (0/-)

- traps for electrons
- show no Poole-Frenkel effect
- do not contribute to N_{eff} at RT unless are near the midgap
- traps for holes
- show Poole-Frenkel effect
- contribute with (-) to N_{eff} at RT

Material

- Float zone- Silicon wafers: <111>, 300 μ m, 3-4 k Ω cm, N_d~10¹² cm⁻³
 - standard Oxidation (STFZ) N_d~8x10¹¹ cm⁻³
 - difussion oxygenated (72 h at 1150 C) (DOFZ) N_d~1.2x10¹² cm⁻³
- MCz-Silicon wafers: <100>, 300 μ m, 870 Ω cm, N_d = 4.94x10¹² cm⁻³
- EPI-Silicon wafers: <111>
 - 25 and 50 μ m on 300 μ m Cz-substrate, 50 Ω cm, N_d~7.2x10¹³ cm⁻³
 - 75 μm on 300 μm Cz-substrate, 169 Ωcm
 - standard Oxidation (EPI-ST), $N_d = 2.66 \times 10^{13} \text{ cm}^{-3}$
 - diffusion oxygenated for 24 h/1100°C (EPI-DO) N_d = 2.48x10¹³ cm⁻³

Irradiations

- **Co**⁶⁰ γ -source at BNL, dose range 1 to 500 Mrad
- 6 -15 MeV electrons: irradiation facility at KTH Stockhom, Sweden
- **23 GeV protons**: irradiation facility at CERN
- **1 MeV neutrons**: TRIGA reactor in Ljubljana/Slovenia

Results – Point Defects

<u>Co⁶⁰- γ irradiation</u> – only point defects are generated

Very pronounced beneficial effect of oxygen on both I and V_{dep}

The change in Neff suggests the existence of a close to midgap acceptor (-/0) in O lean material and of a shallow donor in O rich silicon - Low irradiation γ doses (but already high for DLTS)

I_p center

- deep acceptor (-/0)
- Ea = Ec 0.545 eV

•
$$\sigma_n = (1.7 \pm 0.2) \times 10^{-15} \text{ cm}^2$$

- direct measurement

~ 90% occupied with (-) at RT

- Higher irradiation γ doses (TSC)

<u>I_p centers</u>

- Two levels in the gap: - a donor E_v +0.23eV (+/0) & an acceptor E_c -0.545 eV (0/-)

- Supressed in Oxygen rich material and Quadratic dose dependence
- \Rightarrow generated via a 2nd order process (V_2O?) 1) V+O \rightarrow VO

2) V+VO \rightarrow V₂O

<u>BD center</u> – bistability and donor activity

 $E_i^{BD(98K)} = E_c^{-0.225 \text{ eV}}(0/++); E_i^{BD(50K)} = E_c^{-0.15 \text{ eV}}(+/++)$

<u>BD center</u> – donor in the upper part of the gap (+ at RT)

- generated in oxygen rich material
- after C0⁶⁰- γ irradiation, can even overcompensate the effect of deep acceptors!

The bistability, donor activity and energy levels associate the BD centers with TDD2 \Rightarrow oxygen dimers are part of the defect structure

Impact of I_p and BD defects on detector properties

$$\Delta N_{eff}(T) = -n_T(T)$$

 $\Delta I(T) = q_0 \cdot e_n(T) \cdot n_T(T) \cdot Vol$

change of N_{eff} and leakage current well described

⇒ first breakthrough in understanding the damage effects

<u> Results – Extended Defects (clusters)</u>

After irradiation with 1 MeV neutrons, Φ= 5x10¹³ cm⁻²

H(116K), H(140K) and H(152K) traps for holes
E(30K) trap for electrons

Independent on the material

- H(116K) was detected previously
- H(152K) ~ was atributed so far to C_iO_i

23 GeV protons

EPI-DO, 75 μ m, Φ_{eq} = 2.33x10¹⁴ cm⁻²

E(30K) center:

- Compared to neutron irradiation its generation is much enhanced relative to of the H centers!
- 20% less generated in EPI-ST than in EPI-DO

H(116K), H(140K), H(152K) and E(30K) - cluster related traps with enhanced field emission

•The 3D-Poole Frenkel effect formalism describes the experiments

Are acceptors in the lower part of the gap and contribute with (-) space charge at RT

Are donors in the upper part of the gap and contribute with (+) space charge at RT

The impact of BD, E(30K), H(116K), H(140K) and H(152K) on N_{eff}

EPI-ST: $N_d = 2.66 \times 10^{13} \text{ cm}^{-3}$; EPI-DO: $N_d = 2.48 \times 10^{13} \text{ cm}^{-3}$; MCz: $N_d = 4.94 \times 10^{12} \text{ cm}^{-3}$

Differences between materials given by the initial doping (N_d) and [BD], only!

 \Rightarrow These are the defects responsible for the annealing of N_{eff} at RT!

EPI-DO 75 μ m: N_d = 2.48x10¹³ cm⁻³

1 MeV neutrons, $\Phi = 5 \times 10^{13} \text{ cm}^{-2}$

23GeV protons, Φ_{eq} = 2.33x10¹⁴ cm⁻²

Larger donor generation (E(30K) and BD) after 23GeV protons than after 1 MeV neutrons (~4.5 times) !

Defects due to electron irradiation (6 and 15 MeV)

- E(30K), H(116K), H(140K) and H(152K) defects not seen after irradiation with gammas up to 500 Mrad dose \Rightarrow they are extended defects
- I_p , E(30K) defects decrease in concentration with increasing the electron energy \Rightarrow E(30K) may be a complex but not extended defect (~ I_3)

 \Rightarrow Clusters of defects (H(116K), H(140K) and H(152K)) start to form already for electron energies of 6 MeV

Summary

Identified point defects induced by irradiation

Defect	$E_{V,C} \pm E_t [eV]$	σ _{n,p} [cm²]	T _{anneal} [°C]	g [cm⁻¹] N _t /Φ _{eq}	Material
IO ₂ (-/0)	-0.143	3.8×10 ⁻¹⁴	≈100	≈ 0.21	MCz, EPI-DO
C _i (-/0)	-0.114	5.9×10 ⁻¹⁵	≈80		FZ, EPI-ST
$C_{i}C_{s}^{A}(-/0)$	-0.171	1.4×10 ⁻¹⁴	≈260		FZ, EPI-ST
VO _i (-/0)	-0.176	1.4×10 ⁻¹⁴	≈300 / >300	0.73	MCz, EPI / FZ
X(=/-) V ₂ O(=/-)	-0.241	1.1×10 ⁻¹⁴	≈260 in		MCz, EPI
V ₂ (=/-)	-0.224	7×10 ⁻¹⁶	≈260 / 340	0.37	MCz,, EPI / Fz
L, V ₃ O(=/-)	-0.328	1.23×10 ⁻¹⁵	≈240 in		MCz, EPI
E4, V ₃ (=/-)	-0.36	4×10 ⁻¹⁵	≈240	0.19	MCz, EPI / FZ
E(205a)	-0.393	1.3×10 ⁻¹⁵	≈180		MCz, EPI / FZ
V ₂ (-/0)	-0.424	2.1×10 ⁻¹⁵	≈260 / 340	0.37	MCz, EPI / FZ
X(-/0), V ₂ O(-/0)	-0.467	1.1×10 ⁻¹⁴	≈260 in		MCz, EPI
E5, V ₃ (-/0)	-0.456	5×10 ⁻¹⁵	≈240	0.19	MCz,, EPI / FZ
$C_{i}O_{i}(+/0)$	+0.360	2,45×10 ⁻¹⁵	≈380	1.3	MCz, EPI / FZ

Summary

not identified defects but with strong impact on the device properties at operating temperature

Point defects

- $E_{i}^{BD} = E_{c} 0.225 \text{ eV}$
- $\sigma_n^{BD} = 2.3 \cdot 10^{-14} \text{ cm}^2$
- $E_{i}^{\dagger} = E_{c} 0.545 \text{ eV}$ $\Box \sigma_n^{-1} = 1.7 \cdot 10^{-15} \text{ cm}^2$ $\Box \sigma p^{I} = 9.10^{-14} \text{ cm}^{2}$

Cluster related centers

- E_i^{116K} = E_v + 0.33eV
- $\sigma_p^{116K} = 4.10^{-14} \text{ cm}^2$
- $E_i^{140K} = E_v + 0.36eV$ $\sigma_p^{140K} = 2.5 \cdot 10^{-15} \text{ cm}^2$
- $E_i^{152K} = E_v + 0.42eV$
- $\sigma_{p}^{152K} = 2.3 \cdot 10^{-14} \text{ cm}^{2}$
- E_i^{30K} = E_c 0.1eV
- $\sigma_n^{30K} = 2.3 \cdot 10^{-14} \text{ cm}^2$

Conclusions

- Direct correlation between defect investigations and device properties can be achieved!
- Point defects dependent on the material ⇒ defect engineering does work
- <u>Cluster related defects</u> independent on the material ⇒ Possibility of compensation with point defects via defect engineering
- Still missing the identification of the chemical nature of the defects that deteriorates the device characteristics