Silicon detector processing and technology: Part I

Manuel Lozano CNM (CSIC) Barcelona, Spain

Birth of Microelectronics

considered the born of Microelectronics

> W.Shockley J.Bardeen W. Brattain

discovered the transistor effect in Germanium

Manuel Lozano

First transistor

Original device

- Bipolar transistor
- Germanium N
- 3 electrodes
- 2 contacts metalsemiconductor like the used for rectifiers and another large area at the base

Junction transistor development

- Impurity diffusion techniques
 - Reduce cost
 - Increase reliability
 - Improve frequency response

Manuel Lozano

Integrated circuit

- Planar technology development (1958)
- Processes to produce a large number of devices simultaneously on a wafer
 - Difusion, oxidation, deposition, photolithography
- Reduced cost

Silicon Valley birth

- 1957 Fairchild Semiconductors
- 1970 INTEL

••••

Manuel Lozano

Integrated circuit: 1958

- **J. Kilby**, Texas Instruments
- made a circuit with transistors joined by metallic wires

- **<u>R. N. Noyce</u>**, Fairchild Semicond.
- first monolithic integrated circuit with devices isolated by reverse biased PN junctions and interconnected with aluminum tracks

Manuel Lozano

Particle detectors

- The same devices (and some new others) used in microelectronic industry can be used to detect charged particles and photons
- In 1980 J. Kemmer proposed the use of silicon devices for HEP experiments.
 - * J. Kemmer: "Fabrication of a low-noise silicon radiation detector by the planar process", NIM A169, pp499, 1980
- **The basic detecting device is a diode**
- **In 1990 pixel detectors were developed**

Manuel Lozano

Radiation Sensor – the concept

Radiation detection:

- Reverse biased PN diode
- Fully depleted so that the electric field extends to the full detector bulk
- Maximize detection volume (~300 μm)
- Need of very low doped Si for a reasonable depletion voltage (VD) and a low "dark current" (IR)
- Radiation generates electron-hole pairs in the semiconductor
- Charges drift to the electrodes under the electric field
- Need to minimize recombination
- Current pulse at the terminal

Manuel Lozano

Fabrication processes

Clean Rooms

Substrates

- Silicon wafers
- SOI substrates
- Epitaxial growing

Junction formation

- Thermal impurity diffusion
- Thermal oxidation
- Ion implant

Dielectric and conductive layer formation

- CVD layer deposition
- PVD metal layer deposition

Image transfer

- Photolithography
- Chemical wet etching
- Chemical dry etching

Manuel Lozano

Clean Rooms

Control

- cleanliness: dust particles
- temperature: 21 ± 1 °C
- humidity: 40 ± 10 %

Special clothings

Services

- Air conditioning
- Compressed air
- Vacuum
- De-ionized water
- Ultrapure gases
- Waste treatment

Manuel Lozano

Clean Room class

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

Manuel Lozano

Silicon substrates

Silicon wafers

CSIC

- Monocrystalline silicon
- Orientation: (100), (111)
- Type (doping): P, N
- Size: 10 (4"), 15 (6"), 20, 25, 30 cm

Fabrication method

- CZ (Czochralski)
 - Res: 0.002 50 ohm*cm
 - Dop.: 1e14 1e19 cm-3
- FZ (Floating Zone)
 - Res: 20 10,000 ohm*cm
 - Dop.: 5e13 1e15 cm-3

Problems

- Impurities
 - oxygen < 1e14 cm-3</p>
 - **Carbon: 1e12 1e14 cm-3**
 - Heavy metals
- Doping variation
 - Wafer to wafaer
 - axial inside wafers
- **Gettering:**
 - Impurities and defect deactivation

Manuel Lozano

Wafer fabrication

Manuel Lozano

Wafer fabrication: Czrochralsky Method

- **D** Pure silicon is melt in a crucible
- Pull Si crystal seed from the melt, as Si solidifies, the crystalline orientation is kept.

Manuel Lozano

Wafer fabrication: Czrochralsky Method

- Fused silicon is in contact with crucible: Dissolves oxygen from silica and also other impurities.
- CZ-Silicon is not suitable for very low doping (<10¹³ cm⁻²), or conversely, for very high resistivities, as needed for particle detectors
- CZ is the most common method used by IC industry, and therefore cheap (10 cm wafer < 50 €)
- Use of magnetic fields can help in containing impurities far from solidifying surface. Since few years there are CZ available in sufficiently high purity (resistivity) to allow for use as particle detector. The technology is named Magnetic Czochrlasky (MCZ).

Manuel Lozano

Wafer fabrication: Float-zone Method

- Silicon ingot is passed through a ringshaped furnace. Silicon melts locally, impurities are segregated to the melted zone, and is purified.
- Several passes are possible, achieving ultra high purity.

Manuel Lozano

Epitaxial growth

Monocrystalline silicon growth over Si wafer.

- Growth rate about 1mm/min
- excellent homogeneity of resistivity

Main application:

- High resistivity silicon over low resistivity substrate
- Highly doped buried layers (same or different type)
- High temp. process
 - 950 1250 °C
- □ CZ silicon substrate used ⇒ indiffusion of oxygen
- up to 150 mm thick layers produced
- price depending on thickness of epilayer but not exceeding 3 × price of FZ wafer

Manuel Lozano

Images of wafer fabrication

Manuel Lozano

Silicon crystal lattice

Manuel Lozano

Wafer orientation

Manuel Lozano

Doping-resistivity relationship (Thurber curves)

Resistivity (Ω cm)

Manuel Lozano

Resistivity variation

From wafer to wafer 1400 Intra wafer (m²mhc) 1200 1000 1000 800 **Example: Surface resistiviy** mapping of a MCZ wafer measured by 4-point probe method. -40 -20 0 20 20

Manuel Lozano

Ljubljana, Slovenia, September 2010

-20

y Inn

Oxygen in silicon

 It is known that high concentrations of interstitial oxygen (>10¹⁷ cm⁻³) in silcon wafers increases radiation hardness of detectors

There is no the perfect wafer available

- CZ silicon has [O][↑] but low resistivity
- FZ is the opposite
- Magnetic CZ allows high resistivity keeping high oxygen
- It is also posible to diffuse oxigen in FZ wafers

Substrate	Resistivity	[O] (cm ⁻³)
Float Zone (FZ)	High	< 10 ¹⁶
Czochralski (CZ)	Low	10¹⁷-10¹⁸
Diffusion Oxygenated FZ (DOFZ)	High	Up to 10 ¹⁷
Magnetic CZ (MCZ)	High	10¹⁷-10¹⁸

Manuel Lozano

Oxygen content

Oxygen content profile obtained by SIMS (half wafer, the other half is equal)

Manuel Lozano

SOI substrates

- SOI (silicon on insulator): Silicon active layer is over an insulating layer.
- Usually used the sandwich Si-SiO₂-Si

Fabrication techniques

- SIMOX: deep O₂ implant and anneal
- BESOI: oxidation, bonding, polishing
- Soitech: H₂ implant, bonding, anneal, separation

Manuel Lozano

SOI wafers

Can be tailored to the needs:

- Thickness of each wafer
- Thickness of intermediate layer

Implanted wafers can be used

- **Even with more complex** processing
- It is also possible to de-bond wafers

Wafer 1		Wafer 1	
Wafer 2		Wafer 2 with implanted layer	
Oxidize wafer 2		Oxidize wafer 2	
Bond wafers		Bond wafers	
Grind and polish wafers downto desired thikness		Grind and polish wafers downto desired thikness	
	Manuel Lozano	Ljubljana, Slov	enia, September 2010

Dopant thermal diffusion

- Atom movement within a solid at high temperatures.
- Used to introduce dopants into semiconductor substrates (n+ and p+ regions)
- Parameters:
 - Diffusion coefficient of each dopant into silicon
 - Dopant Concentration, Temperature and Time
- Dopant types
 - Acceptor (N-type): Boron
 - Donor (N-type): Phosphorus, Arsenic

Dopant sources: gas, liquid, solid

(b)

Manuel Lozano

Ljubljana, Slovenia, September 2010

(a)

Dopant thermal diffusion

- **A SiO2 mask can be used to limit dopant area**
- Reproduce the mask on the wafer surface (SiO2 resistant to high T and dopants diffusion)
- Apply the right concentration, temperature and time
- Two possibilities:
 - Dopants in ambient in constant concentration: Predeposition + diffusion
 - Dopant introduced in silicon: Implant + Drive-in

Manuel Lozano

Dopant thermal diffusion model

Analytical solution for the two cases presented

Predeposition

Constant surface concentration

Ion implant

Constant total charge

$$C(0,t) = C_s \implies C(x,t) = C_s \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

$$\int C(x,t) \, dx = Q \quad \Rightarrow \quad C(x,t) = \frac{Q}{\sqrt{\pi Dt}} \exp\left(\frac{-x^2}{4Dt}\right)$$

Manuel Lozano

Lateral diffusion

Dopants diffuse below masks

lateral diffusion = 0.8 vertical diffusion

Manuel Lozano

Diffusion coefficients

- **Contamination concern:**
 - Na, Au.
- Example: length diffused during 1 hour at 1000 °C:

В	0.039 µm
Ρ	0.065 μm
As	0.029 µm
0	2.4 µm
Au	300 µm
Na	> 1,000 µm

Manuel Lozano

Furnace layout

Tube material:

- Quartz
- Polysilicon
- SiC

Wall

- Single
- Double

Manuel Lozano

Furnace wall material comparison

Tube type	Advantages	Disadvantages	
Quartz SW	Cheap (4,000 €)	Quartz transparent for most contaminants Sag, creep Devitrification (brittleness) at HT < 1100°C Thick wall < 1200°C unusable	
Quartz DW	Low pollution	Expensive Large gas consumption	
Poly	Contaminant barrier Process up to 1400°C	Expensive High Cu diffusivity	
SiC	High durability (infinite lifetime) Process up to 1350°C	Very expensive (25,000 €)	

•Summary:

•Up to 1100°C \rightarrow Quartz

•Higher → SiC

Manuel Lozano

Furnace images

Manuel Lozano

Thermal oxidation

- SiO₂ growing from silicon on the silicon
- SiO₂ is an amorphous material and very good insulator
- High temperature process
 - 950 1150 °C
- Used for:
 - Mask for further thermal steps
 - Insulating layer
 - Gate dielectric oxide in MOS devices
- SiO₂ characterization
 - Density, porosity
 - Pinholes
 - Dielectric breakdown
 - Trapped charge
 - SiO₂-Si interface states

Manuel Lozano

Thermal oxidation process

- Same furnaces as for thermal diffusion
- Dry thermal oxidation
 - O₂ atmosphere
 - Slow growth
 - High oxide quality

Wet thermal oxidation

- H₂O atmosphere
 - H₂O bubbler
 - $H_2 + O_2$ combustion
- Fast growing
- Worse quality

 $Si + O_2 \rightarrow SiO_2$ $Si + 2H_2O \rightarrow SiO_2 + 2H_2$

Manuel Lozano

Thermal oxidation model

Deal & Grove model

$$\frac{1}{B}d_{ox}^{2} + \frac{A}{B}d_{ox} = t + \tau$$

 $B = B_0 \exp(-E_B / kT)$

 $\tau = \frac{d_i^2 + Ad_i}{B}$

 $B / A = (B / A)_0 \exp(-E_{B/A} / kT)$

Manuel Lozano

Silicon thermal oxidation

SiO2 grows consuming silicon substrate

As opposite to deposition

Manuel Lozano

Relationship between diffusion and oxidation

Manuel Lozano

Ion implant

- Impurity introduction in substrates
- Very well dose control
 - Masking (SiO₂ for instance) can be used to delimit doping regions
- Method:
 - Ion (isotope) acceleration in an electric field
- Parameters:
 - Energy: 50 -250 keV (even 1MeV)
 - Dose: 10¹¹ 10¹⁴ ions/cm²
 - (= current × time)
- Impurities
 - N-type: As, P
 - P-type: B
 - Other elements: O, F, N, Ar

Manuel Lozano

Ion implant effect to be considered

- <u>Amorphization</u>: After implant, crystal structure of Si is damaged.
- □ ⇒ Annealing is necessary (minimum 950°C, 20 min)
- <u>Channeling</u>: If implanting perpendicular to crystal structure, ions enter very deep without control
- Wafer rotated and tilted
- Uses:
 - Junction formation
 - Polysilicon doping
 - Threshold voltage adjustment

Ion implanter schematic

Manuel Lozano

Ion implant

Manuel Lozano

- **CVD: Chemical Vapor Deposition**
- Layer deposition by chemical reaction in vapor phase
- Mainly used for dielectric,s, but also for Poly
- Main deposited materials: Polysilicon, SiO₂, Si₂N₃, BSG, PSG, BPSG (SiO₂ doped with B or P)

- HTCVD: High Temperature
- **LTCVD: Low Temperature**
- **D PECVD: Plasma Enhanced**
- **LPCVD: Low Pressure**
- APCVD: Atmospheric Pressure

Manuel Lozano

- **The substrate does not participate in the process**
- Reaction of gas molecules on the surface
 - Reactions in the gas to be avoided
- Linear growth: there is no diffusion through a layer of increasing thickness

Deposit velocity limited by:

- At high T, reactant concentration (APCVD)
- At low P, surface reaction velocity (LPCVD, PECVD)
- As it is a surface reaction, layers offer good step coverage (conformal deposition)

Manuel Lozano

	APCVD	LPCVD	PECVD
Simplicity	+	-	
Temperature	low	medium	low
Coverage	-	++	+
Speed	+	-	+

Gas	Туре	Pressure	Temp	Layer
$SiH_2Cl_2 + NH_3$	LPCVD	~160mTorr	800°C	Nitride
SiH ₄	LPCVD	~130mTorr	580 - 630°C	Polysilicon
N ₂ O, SiH ₄ , NH ₃	PECVD	~1Torr	380°C	Oxide, nitride passivation
SiH ₄ , PH ₃ /SiH ₄ , B ₂ H ₆ , O ₂	A	PCVD	400°C	Interlevel oxide, PSG, BPSG

Manuel Lozano

LPCVD poly deposition furnace

Manuel Lozano

PECVD poly deposition furnace

Manuel Lozano

1.5 µm BPSG deposited Planarization effect

1 μm Poly deposited in holes See the good wall coverage

Manuel Lozano

PVD metal layer deposition

- Metal deposition
- Techniques
 - Evaporation
 - Sputtering

Multicomponent

- Co-sputtering
- Co-evaporation

Problems with metals:

- Spiking
- Electromigration

Metal used:

- Al, Al/Si, Al/Cu, Al/Si/Cu, Au, Pt, W, Pd, Ti, Ta, Ni
- Multilayer metallization possible

Manuel Lozano

Sputtering: Ion or electron bombardment of target to extract atoms

Manuel Lozano

- <u>Evaporation</u>: target heating to evaporate (actually sublimate) the metal and re-deposition on wafer surface (colder than target)
 - Difficult thickness control, contamination by crucible and coil metals, hard to deposit alloys
- Sputtering: Ion or electron bombardment of target to extract atoms
 - Good thickness control and good layer quality

Manuel Lozano

Metal problems

Spiking: Al penetration in substrate and eventually shorting the junction Al

Spiking is due to dissolution of Si into Al and Al into Si and is related to the phase diagram.

Minimized by using Al/Si alloy and adjusting sintering temperature

- <u>Electromigration</u>: material movement due to kinetic energy of charge carriers. Eventually can open circuit a metallic track
 - Probability is proportional to current density, temperature and time
 - Minimized by using Al/Cu alloy

Manuel Lozano

Photolithography

- Image transfer from a glass mask to the wafer
- **Employs**
 - UV light
 - Masks or reticles
 - Photoresist
- **Types**
 - Contact/proximity
 - Resolution: 2um
 - Projection
 - Resolution: 1 um

Better resolution

- Deep UV
- X rays
- Electron beam

Manuel Lozano

Photolithography types

Manuel Lozano

Photolithography masks

- Layout: final geometrical drawings resulting from a design process for a target technology
- Layers: all the different basic drawing levels to design ICs for a target technology
- Masks: clear and opaque areas over a glass obtained from layers to transfer over and process the wafers.
- Mask material
 - Quartz and Chromium (with ARC)

Manuel Lozano

Photolithography process

- Coating wafer with thin film photoresist
- Mask-Wafer Alignment
- UV Exposure

CSIC

- Photoresist Development
- **Etching/implant/etc.**
- Photoresist removal

Negative process

Manuel Lozano

Photolithography process: Other key points

- Negative vs. positive photoresists
- **Relationship between virtual layout and phisical mask**
 - Dark field, light field
 - Right reading, wrong reading

layout

Light field

Dark field

For masks to be used in the back side of the wafer.

Two side processing

Right reading

Wrong reading

Manuel Lozano

Photolithography process: Other key points

Projection lithography (Step and repeat)

- Better resolution
- Limited chip surface (25×25 mm maximum)

Alignment marks

- Very important
- Clear chips: Critical in layers "all dark" as contact opening

Manuel Lozano

Bottom layer (mark in wafer) Light Field Dark Field ᠿ Field Top layer (mask being aligned) ight Field Dark

Etching

- Selectively remove of previously deposited material from top of wafers.
- Parameters:
 - Selectivity(For example: SiO₂ should be attacked but not photoresist and silicon)
 - Degree of Anisotropy (attack direction)
- Process:
 - Purely chemical vs. P. Physical (Selectivity vs. Anisotropy)
 - Wet Etching: wafers are exposed to liquid chemicals
 - Dry Etching: wafers are chemically etched in a gas at reduced pressure

Manuel Lozano

Wet etching

- Etching with wet chemical agents
- **Used: to:**
 - Surface cleaning
 - Complete removal of layers
 - Selective etching of layers

Examples:

- Cleaning: H2SO4, H2O, HCl
- SiO2: HF + NH4F
- Polysilicon: HF + HNO3
- Al: H3PO4
- Needed:
 - High selectivity
 - High etching rate
- Characteristics:
 - Isotrope profile
 - Easy control
 - Dimension losses
 - No end point detection

Manuel Lozano

- Different degrees of anisotropy can be obtained modifying gas concentrations, pressure, RF power
- Some degree of re-deposition in the sidewalls which act as passivation allow finer control of etching profiles
- **End point control possible by monitoring gas reactions**

Manuel Lozano

Anisotropic Si etching

- Etching through preferential crystalline planes
 - V(110)>V(100)>V(111)
- Wet etching with alcalis
 - KOH
 - TMAH (Tetra Metil Hydroxi Ammonia)

Manuel Lozano

Anisotropic Si etching

Difficulty: Etch stop at the required depth

- **Stopping techniques:**
 - Time
 - Inner layer
 - Highly doped P+ layer
 - Electrochemical: requires complex setup

Manuel Lozano