G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Surface Effects and Breakdown Voltage

Gian-Franco Dalla Betta

INFN and DISI - University of Trento Via Sommarive, 14 I-38123 Povo di Trento (TN), Italy dallabe@disi.unitn.it

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

- Introduction
- Basic mechanisms
- Main parameters:
 - how to measure them
 - experimental results
- Consequences for detectors:
 - Main focus on breakdown
- Conclusion

- Silicon detectors are mainly "volume" devices, hence particularly sensitive to bulk defects, induced by processing or radiation damage - Non Ionizing Energy Loss (NIEL)
- But Si crystal periodicity ends at the surface, this resulting in a high defect density: surface requires passivation with SiO₂ layer
- Yet some residual defects still remain within the SiO₂ layer and at the Si/SiO₂ interface, and can be enhanced by ionizing radiation (IEL)
- This affects detector properties ...

S.M. Sze, Semiconductor Devices: Physics and Technology, Wiley, 1985

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Effect of oxide charge sheet

G.-F. Dalla Betta

Positive oxide charge induces negative charge in silicon, this effect is weighted by the charge position
Shift in flat band voltage (V_{FB}) can be expressed as:

$$\Delta V_{FB} = -\frac{1}{C_{ox}} \cdot \left[\frac{1}{d} \cdot \int_{0}^{d} x \cdot \rho(x) \cdot dx \right]$$

- Charge close to interface is the most effective
- For Q_f, the distance from the Si-SiO₂ interface is much smaller than typical passivation oxide thickness:
- Similar equation for Q_{it} (but voltage dependent, so C-V curves are streched):

S.M. Sze, Semiconductor Devices: Physics and Technology, Wiley, 1985

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Surface radiation damage

T.R. Oldham, Ionizing radiation effects in MOS oxides, World Scientific, 1999

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

 Surface damage is due to Ionizing Energy Loss, normally expressed as a "Dose":

 a) 1 rad: 100erg per gram
 1erg=

b) 1 gray (Gy): 1 joule per kilogram

1erg=10⁻⁷ J 1 Gy=100 rad

A.Holmes-Siedle, L. Adams, Handbook of radiation effects, Oxford Univ. Press, 2002

- Ionizing radiations with energies above threshold ~17eV (e.g., UV light, X and γ -rays, charged particles) can produce surface damage
- Since the number of traps is limited, saturation effects are expected (and observed) for Q_f , Q_{it} and s_0 after irradiation
- Values reported in literature are not very uniform due to strong process dependence

MC-PAD Training Event, Ljubljana, Sept. 27, 2010 G.-F. Dalla Betta **TS1: MOS capacitor** di Trento

From HF C-V curves

- C_{ox} from C value at accumulation
- N_{sub} from C value at inversion $\rightarrow C_{FB}$
- V_{FB} from $C_{FB} \rightarrow Q_f$ from V_{FB}

 $V_{FB}(Q_f) \cong \phi_{MS}$

gate-to-bulk voltage, V_{gb} (V)

-10

-8

-16

E.H. Nicollian, J.R. Brews, MOS – Physics and Technology, Wiley, 1982

G. Verzellesi, et al., IEEE TED 46(4) (1999) 817

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Experimental data

Irradiations with 20keV SEM electrons and ⁶⁰Co gammas

- Charge density: can increase up to a few 10¹² cm⁻²
- Surface generation velocity: can increase up to a few 10³ cm/s
- As expected, strong influence of bias on measured values

R. Wunstorf et al., NIMA 377 (1996) 296

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Annealing effects

Surface damage can be partially recovered (annealed), even at RT. Thermal treatments at temperatures ~150 C produce larger annealing effects.

A.Holmes-Siedle, L. Adams, Handbook of radiation effects, Oxford Univ. Press, 2002

Example: 2Mrad(Si) X-ray irradiation and annealing in 3 steps: 1) 13days@RT; 2) +20min@120 C; 3) +30min@120°C

M. Boscardin et al., IEEE TNS 50(4) (2003) 1001

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Consequences for detectors

- 1. Positive fixed oxide charge density induces a negative charge at the Si-SiO₂ interface, which affects:
 - a) isolation between n⁺ regions;
 - b) parasitic capacitance between adjacent regions
 (→ noise);
 - a) electric fields at surface: breakdown;
 - b) punch-through voltage between adjacent regions;
 - c) to a lower extent, substrate depletion voltage.

2. Surface generation/recombination leads to:

- a) Increased surface leakage current;
- b) Increased surface charge recombination (can affect charge collection properties in case of radiation absorbed near the surface, e.g., low energy electrons)

Radiation effects may vary with detector structure ...

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

With reference to strip detectors

P-on-N

N-on-P (N-on-N)

- Strips are "self-isolated"
- Increase of oxide charge density further improves isolation, but:
- reduces breakdown voltage
- increases interstrip capacitance

- Strips are connected by electrons
- Need for isolation structures
- Impact of increased oxide charge density on breakdown voltage and interstrip capacitance depends on isolation structures

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

P-on-N: surface current

Tokio Institute of Technology, 1MeV ⁶⁰Co gamma irradiation, 100 krad/h

- Leakage current increases with dose
- Effects are more severe for small width (larger surface)

G.-F. Dalla Betta MC-PAD Training Event, Ljubljana, Sept. 27, 2010

P-on-N: interstrip capacitance

Irradiation at UCSC, ⁶⁰Co gamma source, 70krad steps

 Interstrip capacitance increases after irradiation, due to higher concentration of electrons in the accumulation layer, and is partially recovered with annealing

G.-F. Dalla Betta MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Irradiation: CNR Bologna, ⁶⁰Co gamma source, 200krad(Si)

• Breakdown voltage decreases after irradiation, and is slightly recovered with room temperature annealing

M. Da Rold, et al., IEEE TNS 44(3) (1997) 721

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

TCAD explanation

di Trento

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Simulated electric field

INFN

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Multiple rings with field plates

- Guard ring potential scales according to punch-through spreading
 The potential (field) can be evenly distributed enhancing the breakdown voltage, at the expense of dead area at the edges
- Main design parameters: ring spacing, FP size, oxide thickness

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

di Trento

N-side: surface isolation

p-spray/p-stop

R. Richter et al., NIMA 377 (1996) 412

- 3 isolation techniques available to interrupt electron layer
- doping concentrations are critical
- isolation technique affects breakdown voltage and interstrip capacitance

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Irradiation at UCSC, ⁶⁰Co gamma source, 70krad steps

H. Sadrozinski et al., NIMA 579 (2007) 769

After irradiation:

- Breakdown voltage increases
- Interstrip capacitance decreases because oxide charge compensates p-spray (annealing is detrimental in this case)

MC-PAD Training Event, Ljubljana, Sept. 27, 2010 G.-F. Dalla Betta **TCAD** analysis: breakdown (1) di Trento strip 1 strip 2 strip 1 strip 2 Three p-spray peak oxide oxide n+ n+ n+ n+ concentrations: - N_{D1}=4e16cm⁻³ - N_{p2}=8e16cm⁻³ - N_{p3}=12e16cm⁻³ 120 <u>4016cm⁻³</u> oxide 100 V_{JBR} = potential difference n+ n+ between p-spray and strip o-spray potential (V) V_{JBR} 80 h which causes breakdown V_{BR} = bias voltage for which 60 $Np = 8e16cm^{-3}$ we reach V_{IBR} 40 $Np = 12e16cm^{-3}$

20

0

200

 V_{BR}

600

800

400

Bias Voltage (V)

High Np => Low V_{JBR} = Low V_{BR}

C. Piemonte, IEEE TNS 53(3) (2006) 1694

- third solution is to combine the previous two using:
 - medium dose p-spray (to have sufficiently high initial V_{BR})
 - 20/30 μ m wide p-stop (to have low capacitance for high Q_{ox})

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Conclusion

- Surface effects can strongly impact on detector performance and should be carefully considered
- Design/processing choices are normally the result of compromises between different parameters, among them breakdown voltage and parasitic capacitance play a major role
- Of course, optimal solutions vary with application and irradiation scenario
- TCAD tools allow for a quantitative analysis and prediction of detector performance

G.-F. Dalla Betta

MC-PAD Training Event, Ljubljana, Sept. 27, 2010

Acknowledgement

- I am indebted with the following colleagues for providing me with some useful material for this presentation:
 - Dr. Claudio Piemonte (FBK, Trento)
 - Dr. Nicola Zorzi (FBK, Trento)
 - Dr. Marco Povoli (University of Trento)

