

Marie Curie Initial Training Networks Radiation Damage in Silicon Particle Detectors

Institute for Experimental Physics, Hamburg University, Germany Supervisor: Robert Klanner, Eckhart Fretwurst

M.Sc. Physics, University of Bucharest, June 2009 ESR at University of Hamburg Sept. 2009

Cristina Pirvutoiu, Hamburg University

MC-PAD Midterm Review on P3 2010-9-27

Project Overview Results in the first year Outlook Benefits from MC-PAD

Project goal:

- LHC upgrade: silicon sensors need improvement to resist in the harsh radiation environment
- Correlation of microscopic defects parameters with macroscopic sensor properties

Overview of the short-term objectives:

- Learn and earn experience in experimental techniques: Deep Level Transient Spectroscopy (DLTS), Thermally Stimulated Current (TSC), measurements of semiconductor parameters (C/V, I/V)
- Characteristics of radiation induced defects and their annealing behaviour
- > Correlation of parameters defects with sensor performances

Radiation damage effects in Si

> Non Ionizing Energy Loss produces **>** point defects and clusters

Change in the properties:

> Change of effective doping concentration Neff (Electric field, full depletion voltage)

> <u>Increase of leakage current</u> (increase of shot noise, thermal runaway)

> Increase of charge carrier trapping (reduced charge collection efficiency (CCE))

Development radiation hard Si detectors:

- Correlation of microscopic with macroscopic properties of the detector
- >Knowledge of defect kinetics

Fig1: Schematic representation of additional levels introduced by different defects in the band gap

Capacitance Deep Level Transient Spectroscopy

Cristina Pirvutoiu, Hamburg University

Microscopic investigation of Epi-DO and Epi-ST

Fig2: Obtaining DLTS Spectrum

Fig3: DLTS spectrum after irradiation

- > Defect concentration \rightarrow from amplitude of the capacitance transient ΔC
- \succ Activation energy \rightarrow from the slope of an Arrhenius plot
- > Cross section \rightarrow from the intercept of Arrhenius plot

Annealing of clusters

Annealing of E5 and E205 defect correlated with decrease of leakage current \rightarrow dedicated study of correlation

Correlation between leakage current and concentration

> Break through in understanding the origins of leakage current

Density of individual defects correlate with the leakage current with different efficiencies (E5 > E205)

Cristina Pirvutoiu, Hamburg University

MC-PAD Midterm Review on P3 2010-9-27

Outlook: Understand electric field in irradiated detectors

- > Non-irradiated sensors \rightarrow uniform doping $1/C^2 \sim V$
- ➤ Damaged sensors → non-uniform doping
- > Method: C/V and I/V measurements versus frequency
 - model calculation using microscopic defect properties from Thermally Stimulated Current (TSC) measurements

Trainings:

- > MC-PAD training event on "Readout electronics" in Krakow (Sep.'09)
- MC-PAD training event on "Detector Simulation and Data Analysis" (Geant4 and Root) in Hamburg (Jan.'10)
- MC-PAD training event on "Radiation Hardness of Semiconductor Detectors and Detector Processing" in Ljubljana (Sep.'10)
- Deep Level Transient Spectroscopy technique (local training)
 Other activities:
- > German language courses at Desy
- > Joint Instrumentation Seminar organized by Desy and UHH
- Presentation in Spring Meeting of Deutsche Physikalische Gesellschaft – Annealing studies on 23GeV proton irradiated epitaxial diodes (Mar '10)
- Participation in Workshop on Defect Analysis in Silicon Detectors in Bucharest (May '10)
- PSI Zuoz summer school on high energy physics Gearing up for LHC physics (Aug '10)

Thank you for your attention!

Backup slides

Reconstruction of the concentration of E5 and E205

Capacitance Deep Level Transient Spectroscopy (DLTS)

> Trap concentration << Doping concentration $\rightarrow \Phi_{max} < 10^{12} \text{ cm}^{-2}$

> Principle of operation: capacitance transients measurements as function of temperature

