

1.

2.

3.

4.

5.

1.

2.

3.

Sun

Mary Tsagri Home Country: Greece

MC ***** PAD ****

Physics Degree September 2008 – University of Patras, Greece esis on Astroparticle Physics:

hysical Signatures For Axion or Axion-like Particles – A

mer Student, June - September 2008

udent at Max-Planck-Institut für Plasmaphysik (IPP), 2008

iment at CERN since July 2007

December 2008 Ite: CERN oject: P12 (ESR) on of Monte Carlo Tools and Comparison with Benchmark

Review Midterm 2010 MC-PAD I September

Introduction: Geant4 / Garfield: An Interface

- Simulation of neutrons (Geant4) and the deposit of secondary γ's and charged particles (Garfield)
- Significant neutron background in many LHC and sLHC detector experiments
- Need to model the impact of neutrons on the performance of gaseous detectors

Review

Midterm 2010

Technical Progress

A. Validation of neutron cross sections in noble gases

- Aim: Improve the performance and reliability of Geant
- Comparison of Geant4 and established databases
- B. Validation of Low Energy EM physics models

Midterm Review 2010 MC-PAD | September

Technical Progress

- A. Validation of neutron cross sections in noble gases
- B. Validation of Low Energy EM Physics Models in gaseous detectors (Geant4, HEED & FLUKA)

• Non Elastic Scattering of neutrons emits γ 's and charged particles.

- Standard EM in Geant4 emits no secondaries < ~1 keV
- Low energy EM in Geant4 include: atomic/molecular quantum effects

(inner shell ionization, emission of Auger e- and fluorescence γ , etc.)

Review Midterm 2010 MC-PAD | September 5

Ionization Energy

 \succ Livermore model should not be used in the energy range 1 MeV - 5 GeV, due to lack of data

6

Equad a chaulder in Coast 4 and we are investigating it together with experte

Comparison between Geant4, HEED and

General features: rather similar making the identification of the "shoulder" mandatory

> In search of beam data (a micromegas detector with appropriate thickness and good

Attended Trainings / Meetings:

etector Simulation and Data Analysis, DESY

nt on **Processing and Radiation Hardness of** Ibljana - September 2010

ng, CERN - January 2

MC-PAD Midterm Review September 2010 8

Meetings:

cy, France, November 2008

emokritos, Athens, Greece, March 2009

SUSY models, Nikhef, Amsterdam, December

On Introduction, CERN, October 2009

ject-Oriented & Generic Programming, CERN,

l on Instrumentation, CERN, May 2009

onal French Courses, Geneva

Norkshop, Madrid, Spain, May 2009

ebruary 2010

MC-PAD Midterm Review September 2010 9

Dissemination:

Internal note for university of Amsterdam, December 2009

~ 20 reports/updates in team meetings

□ Presentation in RD51 Mini Week at CERN, February 2010

Posters (Uploaded in Activity Log):

1. 1st Training Event on Electronics, AGH Cracow – September 2009

2. Marie Curie Poster Exhibition "Training for Europe", CERN, September 2010

Review Midterm 2010 MC-PAD R September 10

Milestones/deliverables:

MC-PAD Midterm Review September 2010

11

no.	Milestone name	W P no	Lead beneficiar y	Delivery Date	Comment
P12-M1	First version of generic MC code application(s) for neutrons on calorimeters with Geant4/Fluka	12	INFN	m22	Software
P12-M2	Initial version of coupled MC application for simulation of neutrons in gas detectors	12	INFN	m27	Software
P12-M3	Results of comparisons of MC application against available data for electrons in calorimeter setup and for neutrons in calorimeter and gas setups	12	CERN	m24	Report
P12-M4	Improved Geant4/Garfield application for gas detector simulation	12	CERN	m36	Software

MC-PAD Midterm Review September 2010 12

Thank you

MC-PAD Midterm Review September 2010 13

Backup Slides

. . .

Interaction of neutrons with matter

A. Elastic Scattering

• Energy of recoiling nucleus absorbed by medium.

B. Non Elastic Scattering

• Energy of recoiling nucleus absorbed by medium.

Review Midterm I 2010 MC-PAD R September 14

MC-PAD Midterm Review September 2010 15

Α.

 \succ

MC *****

28-37, 41-42, 102-116

residual. e MT=50-91.

eus in the ground state.

ther MT number.

continuum reactions and

ıal

18