
A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 1

Towards a HEP-workload
GEN GPU benchmark:

MadGraph5_aMC@NLO

Andrea Valassi (CERN IT-SC-RD)

HEPiX Benchmarking WG meeting, 5th November 2020 - https://indico.cern.ch/event/946409

https://indico.cern.ch/event/946409

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 2

Foreword: GEN workloads and GPUs in WLCG

• MC event generators are essential for HEP physics analyses
– First step in the GEN-SIM-DIGI-RECO chain for simulated data

– MadGraph5_aMC@NLO (MGaMC) is one of the main generators at the LHC

• Growing interest (and concerns) about the software aspects of generators
– GEN workloads are a sizeable (and growing) fraction of WLCG CPU budgets

• Currently ~12% for ATLAS (mainly Sherpa) and ~5% for CMS (mainly MGaMC)

– Paper for the HL-LHC LHCC review: https://arxiv.org/abs/2004.13687
• See also the recent LHCC talk: https://doi.org/10.5281/zenodo.4028834

– Code modernization and speedup, faster algorithms, port to new architectures…

• WLCG does not provide/account GPUs yet, but it will one day
– Example: HPCs (and the experiments already have access to these resources)

– Only few workloads could make sizable use of GPUs today (e.g. CMS patatrack)

– Porting generators to GPUs would open up new ways of using GPUs in WLCG
• And generators are natural candidates for exploiting parallelism on GPUs (see later…)

 Generators are a natural fit for preparing a HEP-workload GPU benchmark
– Bonus: in principle one can run exactly the same algorithm on CPUs and GPUs

https://arxiv.org/abs/2004.13687
https://doi.org/10.5281/zenodo.4028834

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 3

MGaMC on GPU – overview

• Why choose MadGraph and not another MC generator for a GPU port?
– Earlier efforts at KEK in 2010-2013, which were never released for production

• Touched both matrix element (ME) and MC integration – see summary at HOW2019

• We are ~not leveraging on this work (based on old version of MadGraph’s ME library)

– Main reason: active involvement of core MadGraph developer (Olivier Mattelaer)

• Project is maintained on https://github.com/madgraph5/madgraph4gpu
– Overall coordination: Stefan Roiser

– Composite effort: physicists & engineers (CERN, Louvain, Argonne, Bangalore)
• Core CUDA development: AV, OM, SR, Taran Singhania

• Abstraction layers, profiling, MC integration: David Smith, Laurence Field, Smita

Darmora, Taylor Childers, Tyler Burch, Walter Hopkins

• Just joined: Josh McFayden, Stephan Hageboek

– Meetings every two weeks
• Plus more frequent discussions of core CUDA developers

– The collaboration is largely a spin-off of the activities in the HSF generator WG
• https://hepsoftwarefoundation.org/workinggroups/generators.html

https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.1140/epjc/s10052-011-1559-8
https://indico.cern.ch/event/759388/contributions/3303060/
https://github.com/madgraph5/madgraph4gpu
https://indico.cern.ch/category/12586
https://hepsoftwarefoundation.org/workinggroups/generators.html

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 4

The core of MGaMC is a code-generating code

• The heart of a MC generator is the software that calculates the “matrix

element” (ME) for a given process – an element of the “scattering matrix”
– This is the sum of many contributions, one for each relevant Feynman diagram

• Simple example: LEP process, e+e- to +-, only two diagrams

• LHC processes (e.g. 𝑔𝑔 to 𝑡 ҧ𝑡𝑔𝑔) are much more complex, many more diagrams

• For every different physics process, MadGraph does two things
– It identifies which are the relevant Feynman diagrams

– It generates the code to compute the ME from those Feynman diagrams

The core of MadGraph is code-generating code (ALOHA, written in Python)
– The generated code can be Fortran (default!), C++, Python… or CUDA (new!)

• There are also other (hardcoded) components, the same for all processes

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 5

MGaMC on GPU – development process

• MadGraph being a code-generating code

complicates the development process
– We eventually must deliver CUDA-generating code

– We start from the C++-generating code

• We start from a simple process, e+e- to +-
– Few diagrams = Few lines of code to manually port

to CUDA, and manually optimize…

– Then the code-generating code must be adapted

– And we start another iteration
• Potentially on a complex process with more diagrams

• Eventually: not only CUDA/Nvidia, also Intel, AMD?
– Either natively or using abstraction layers: oneAPI,

SYCL, HIP/ROCm, Alpaka, Kokkos, OpenCL…

– Code-generating code would be needed for these too

S. Roiser, madgraph4gpu meeting, Oct 2020

https://indico.cern.ch/event/946566

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 6

MC generators:

simplified

computational

anatomy

Pseudo-random numbers

Uniform distribution in [0,1]

One event 𝑖: vector Ԧ𝑟𝑖 (dimension 𝑑)

Draw 𝑑 × 𝑁𝑤𝑔𝑡 numbers 𝑟 (𝑁𝑤𝑔𝑡 weighted events)

Phase space sampling

For each event 𝑖, map Ԧ𝑟𝑖 to physical phase space Ԧ𝑥𝑖 = 𝐻(Ԧ𝑟𝑖)
The resulting Ԧ𝑥𝑖 are distributed according to a known p.d.f. 𝑔(Ԧ𝑥)

Compute the value of 𝑔(Ԧ𝑥𝑖)

Matrix element (ME) calculation

For each event 𝑖, compute the differential cross-section 𝑓(Ԧ𝑥𝑖)
Compute the weight 𝑤𝑖=𝑓(Ԧ𝑥𝑖)/𝑔(Ԧ𝑥𝑖)

Parton showers (PS)

Monte Carlo integration

Average of weights I =
1

𝑁
σ𝑤𝑖

 Output: 𝐈 (estimator of 𝒙 𝒅𝒙)

Monte Carlo unweighting

For each event 𝑖, draw 𝑟𝑖 in [0,1]

Accept if 𝑟𝑖 < 𝑤𝑖/𝑤𝑚𝑎𝑥, reject otherwise

 Output: 𝑵𝒖𝒏𝒘 unweighted events

Hadronisation and decay

Particle-level filtering

Detector simulation

Phase space sampling optimization

Compute 𝑤𝑚𝑎𝑥 over the phase space

Optimize phase space sampling 𝐻(Ԧ𝑟𝑖) :

EITHER minimize the variance of I

OR maximize the unweighting efficiency

Not shown explicitly here:

parton distribution functions

(initial state parton flavors

and momenta are not fixed)

For LHC processes, the ME calculation is

the most computationally-intensive part

of the whole application workflow
(but this is not true in a simpler e+e- to +-)

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 7

S. Roiser, madgraph4gpu meeting, Oct 2020

The ME calculation is where CPU is spent at LHC

Phase space sampling optimization

(“integration”) Unweighted event generation

https://indico.cern.ch/event/946566

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 8

MGaMC on GPU: event-level data-parallel approach

• One main reason why generators are excellent candidates for a GPU port:
– The compute-intensive ME calculation is exactly the same function for all events

– This reduces the risk of “thread divergence” on GPUs (unlike detector simulation)

Pseudo-random numbers

Uniform distribution in [0,1]

One event 𝑖: vector Ԧ𝑟𝑖 (dimension 𝑑)

Draw 𝑑 × 𝑁𝑤𝑔𝑡 numbers 𝑟 (𝑁𝑤𝑔𝑡 weighted events)

Phase space sampling

For each event 𝑖, map Ԧ𝑟𝑖 to physical phase space Ԧ𝑥𝑖 = 𝐻(Ԧ𝑟𝑖)
The resulting Ԧ𝑥𝑖 are distributed according to a known p.d.f. 𝑔(Ԧ𝑥)

Compute the value of 𝑔(Ԧ𝑥𝑖)

Matrix element* calculation

For each event 𝑖, compute the differential cross-section 𝑓(Ԧ𝑥𝑖)
Compute the weight 𝑤𝑖=𝑓(Ԧ𝑥𝑖)/𝑔(Ԧ𝑥𝑖)

Monte Carlo integration

Average of weights I =
1

𝑁
σ𝑤𝑖

 Output: 𝐈 (estimator of 𝒙 𝒅𝒙)

Monte Carlo unweighting

For each event 𝑖, draw 𝑟𝑖 in [0,1]

Accept if 𝑟𝑖 < 𝑤𝑖/𝑤𝑚𝑎𝑥, reject otherwise

 Output: 𝑵𝒖𝒏𝒘 unweighted events

(no input data)

• We use an event-level

data-parallel approach
– Execute the same operations

on multiple data in parallel

– On GPUs: SPMD (Single

Program Multiple Data)

– On CPUs: SIMD (Single

Instruction Multiple Data)?
• Aka vectorization: eventually,

we will also try to speed up

the C++ code this way

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 9

Status: where are we now?

PARTON
DISTRIBUTION

FUNCTIONS

On GPU:

cuRAND

On GPU:

RAMBO kernel

On GPU:

SIGMAKIN kernel

Basic (uniform)

“democratic” sampler,

no optimization

ME for simple (LEP)

e+e- to +- process

CUDA implementation

Not yet fully ported upstream

to code-generating code

Single source code for C++ and CUDA

(using #ifdef’s): same algorithms

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 10

CUDA implementation

Not yet fully ported upstream

to code-generating code

Single source code for C++ and CUDA

(using #ifdef’s): same algorithms

Status: which are we the (main) ingredients

that we are missing for LHC processes?

PARTON
DISTRIBUTION

FUNCTIONS

On GPU:

cuRAND

On GPU:

RAMBO kernel

On GPU:

SIGMAKIN kernel

Basic (uniform)

“democratic” sampler,

no optimization

ME for simple (LEP)

e+e- to +- process

(2) 𝒈𝒈 to 𝒕 ҧ𝒕𝒈𝒈 ME

Complete the code-

generating code

(1) More complete workflow
NB: this is needed also to extract more

realistic benchmark results for a possible

BMK container based on e+e- to +-

(3) More efficient

sampler/integrator

on GPU: MadEvent

(4) PDFs on GPU

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 11

Benchmarking based on (our current) e+e- to +-?

• Benchmarking GPUs today based on MG is possible, but VERY preliminary!
– 1. Even for ee, we need at least a realistic integration/unweighting workflow

– 2. In any case, it would not be representative of more complex LHC processes

S. Roiser, madgraph4gpu meeting, Oct 2020

https://indico.cern.ch/event/946566

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 12

Hardware benchmarking, Software benchmarking

• In the HEPiX BMK WG we mainly deal with hardware benchmarking
– Run the same frozen software on different CPUs/GPUs and compare them

• Goals: accounting/pledging and procurement of compute resources (à la HS06)

– Reproducible applications, pre-built and containerized as docker images

• In the madgraph4gpu effort we do a whole lot of software benchmarking
– Change the software (or change build options) and compare old/new versions

– We do more, but we also compare software performance on different GPUs
• Software optimizations depend on hardware (professional/FP64 vs consumer/FP32)

• Software languages and abstraction layers depend on hardware (Nvidia, AMD, Intel)

• There is a lot in common, but also some important differences
– Main similarity: we both need reproducible application workloads

– Main difference: prebuilt library/executables vs source code to rebuild

– It makes sense to keep these two efforts well synchronized

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 13

./gcheck.exe -p 16384 32 12

NumIterations = 12

NumThreadsPerBlock = 32

NumBlocksPerGrid = 16384

TotalEventsComputed = 6291456

RamboEventsPerSec = 8.130406e+07 sec^-1

MatrixElemEventsPerSec = 6.703134e+08 sec^-1

MeanMatrixElemValue = 1.372152e-02 GeV^0

00 CudaFree : 0.928572 sec

0a ProcInit : 0.000625 sec

0b MemAlloc : 0.062333 sec

0c GenCreat : 0.010851 sec

1a GenSeed : 0.000015 sec

1b GenRnGen : 0.007457 sec

2a RamboIni : 0.000108 sec

2b RamboFin : 0.000049 sec

2c CpDTHwgt : 0.006603 sec

2d CpDTHmom : 0.070621 sec

3a SGoodHel : 0.001733 sec

3b SigmaKin : 0.000081 sec

3c CpDTHmes : 0.009305 sec

4a DumpLoop : 0.022506 sec

8a CompStat : 0.031386 sec

9a GenDestr : 0.000064 sec

9b MemFree : 0.013876 sec

9c CudReset : 0.027250 sec

9d DumpScrn : 0.000217 sec

9e DumpJson : 0.000003 sec

TOTAL : 1.193654 sec

TOTAL(123) : 0.095971 sec

TOTAL(23) : 0.088500 sec

TOTAL(3) : 0.011118 sec

./check.exe -p 16384 32 12

NumIterations = 12

NumThreadsPerBlock = 32

NumBlocksPerGrid = 16384

TotalEventsComputed = 6291456

RamboEventsPerSec = 3.243099e+06 sec^-1

MatrixElemEventsPerSec = 3.962151e+05 sec^-1

MeanMatrixElemValue = 1.372152e-02 GeV^0

0a ProcInit : 0.000467 sec

0b MemAlloc : 0.055191 sec

0c GenCreat : 0.000923 sec

1a GenSeed : 0.000032 sec

1b GenRnGen : 0.321630 sec

2a RamboIni : 0.082014 sec

2b RamboFin : 1.857938 sec

3b SigmaKin : 15.878891 sec

4a DumpLoop : 0.019507 sec

8a CompStat : 0.028952 sec

9a GenDestr : 0.000104 sec

9b MemFree : 0.001440 sec

9d DumpScrn : 0.000248 sec

9e DumpJson : 0.000002 sec

TOTAL : 18.247335 sec

TOTAL(123) : 18.140505 sec

TOTAL(23) : 17.818844 sec

TOTAL(3) : 15.878891 sec

How do we benchmark our own code today? WIP!!!

CUDA/GPU

Full V100

C++/CPU

Single thread

Exactly the same calculation,

exactly the same result

Throughput adding Rambo – i.e. ME, plus:

- add random-to-momenta mapping

- (CUDA only) add copy momenta to host

- (CUDA only) add copy weight to host

GPU: 6M in 0.09 sec ~ 7E7/sec

CPU: 6M in 18 sec ~ 3E5/sec

GPU is ~x200 a single CPU thread

MEPerSec throughput:

- ME calculation

- (CUDA only) copy MEs to host

GPU: 6M in 0.011 sec ~ 7E8/sec

CPU: 6M in 16 sec ~ 4E5/sec

GPU is ~x1500 a single CPU thread

RamboPerSec

No longer sure this

makes sense… bug?

This is WIP!!! https://github.com/madgraph5/madgraph4gpu/issues/22

Device-to-host copies dominate because e+e- to +- MEs are too simple!

https://github.com/madgraph5/madgraph4gpu/issues/22

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 14

Nvidia GPUs – hackathons and profiling tools

• Some of us attended the http://gpuhackathons.org Sheffield event in July
– Extremely beneficial for us, I highly recommend it for any CUDA developer!

– Many thanks to our mentors at this specific event! https://gpuhack.shef.ac.uk

• This was useful also to understand performance in a benchmarking context
– Which features of the GPU hardware are relevant (e.g. registers, FP32/64…)

– Application profiling using two Nvidia tools, Nsight Systems and Nsight Compute

• Most plots in these slides are from tools/concepts learnt at the hackathon
– Some detailed studies in https://github.com/madgraph5/madgraph4gpu/issues

http://gpuhackathons.org/
https://gpuhack.shef.ac.uk/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://github.com/madgraph5/madgraph4gpu/issues

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 15

One example relevant to GPU benchmarking:

float vs. double (consumer vs. professional cards)

• By default MGaMC uses double-precision complex number arithmetic
– This is required for physics precision… but it is worth checking this again!

• Moving from double to single precision (V100): gain a factor 2.4! (issue #5)
– Intuitively, being able to use FP32 cores and not only FP64 cores gains a factor 2

– In addition, single-precision reduces register pressure and increases occupancy

FP64 pipe (double)

FMA pipe (single)

Single Occupancy – Registers: 80

Active Warps per SM: ~22

Double Occupancy – Registers: 172

Active Warps per SM: ~8

single is 2.4 faster than double (sigmakin = ME kernel)

https://github.com/madgraph5/madgraph4gpu/issues/5

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 16

Outlook: a BMK container for MGaMC on GPU?

• Creating a container for e+e- to +- should be relatively easy and fast
– But first, we need a realistic unweighting workflow and its throughput metric!

– This can be interesting to compare GPUs, but is of little relevance to WLCG…

• Creating an LHC-type container needs more development progress first
– At least a more complete backport of ME calculations to code-generating code

– A more realistic sampler is also needed for complex processes like 𝑔𝑔 to 𝑡 ҧ𝑡𝑔𝑔
– LHC proton collisions also need a port of PDFs to CUDA

• But one could also prepare a simpler benchmark before for a 𝑔𝑔 to 𝑡 ҧ𝑡𝑔𝑔 process

• We do not use /cvmfs at all for the moment (no released/installed version)
– We would need to build CUDA executables in the CI and embed those in docker

– There is no input data, this is essentially a pure “GEN” type of workload

• There is a synergy between the MG and BMK projects, let’s stay in touch!
– Example: we both need to get hold and test AMD and Intel GPUs at some point!

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 17

Backup slides

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 18

MC generators and HL-LHC software and computing

• One of the main issues (not the only one!): HL-LHC computing resource gap

– Generator performance must also keep up with higher physics precision

• Many other challenges, including:

– WLCG software workloads on non-traditional resources (HPCs, GPUs…)

– Funding and careers (especially at the theory/experiment/computing interface)

CPU cost of generators as a

fraction of WLCG CPU resources:

for ATLAS, ballpark of 10%-20%

(for CMS, this is lower)

ATLAS considers an overall

generator speedup by a factor

x2 as an R&D goal for HL-LHC

WLCG meeting with LHCC referees, Feb. 2020

Side note: the higher the fraction

of negative-weight events from

MC generators, the higher the

CPU cost of MC simulation, MC

reconstruction and analysis

(need more MC events)

https://indico.cern.ch/event/877840/contributions/3698881/subcontributions/296412

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 19

A few performance comparisons
• A few studies from August 2020 (essentially the same code as today)

– Measurements on lxbatch: sensitive to external load, reproducible within ~10%

– Extensive discussion of numbers and Nsight Compute profiler plots on

https://github.com/madgraph5/madgraph4gpu/issues

– General approach: change a #define switch to a non-default value in the code
• Now kept cuComplex and float switches, but hardcoded AOSOA and “local” memory

• From double precision to single precision: gain a factor 2.4! (issue #5)
– FMA (FP32) used instead of FP64 pipe; fewer registers hence higher occupancy

• Memory layout for 4-momenta (issue #16): study “requests” vs “sectors”
– Default: AOSOA with 4 events per array (four 8-byte doubles: 32-byte cache line)

• AOS ~7% slower: memory not coalesced, #sectors (transactions) factor 4 higher

• SOA ~2% slower: slightly higher number of registers

– Side result of this study: improve helicity filtering to reduce #requests (issue #24)

• Memory for wavefunctions in ixxx/oxxx/FV_xx (issue #7): default is “local”
– Lose 70% with “global” (become memory-bound!), also lose 35% with “shared”

• From thrust::complex to cuComplex: lose ~5% (issue #6)
– Require execution of higher number of instructions (something to fix?)

https://github.com/madgraph5/madgraph4gpu/issues
https://github.com/madgraph5/madgraph4gpu/issues/5
https://github.com/madgraph5/madgraph4gpu/issues/16
https://github.com/madgraph5/madgraph4gpu/issues/24
https://github.com/madgraph5/madgraph4gpu/issues/7
https://github.com/madgraph5/madgraph4gpu/issues/6

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 20

FP: double vs single

precision (issue #5)

Single Occupancy

Registers: 80

Active Warps per SM: ~22

FP64 pipe (double)

Double Occupancy

Registers: 172

Active Warps per SM: ~8

FMA pipe (single) • Two main effects

– Exploit the FP32 units

(unused otherwise!)

– Fewer registers hence

higher warp occupancy

single is 2.4 faster than double

(sigmakin = ME kernel)

https://github.com/madgraph5/madgraph4gpu/issues/5

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 21

4-momenta memory: AOSOA vs AOS (issue #16)

A few useful links:
- https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/

- https://docs.nvidia.com/nsight-compute/2019.5/NsightComputeCli/index.html#nvprof-metric-comparison

- https://stackoverflow.com/questions/60535867/what-is-a-transaction-and-a-request-in-the-gld-transactions-per-request-metric

Number of “requests”:

- It is the same for AOSOA or AOS (the same

information needs to be retrieved…)

- Later on, the number show here was dramatically

decreased by improving helicity filtering (issue #24)

Number of “sectors” (transactions):

- It is a factor 4 higher for AOS than for AOSOA

- One roundtrip (AOSOA, coalesced) vs four

roundtrips (AOS, not coalesced) to retrieve four

8-byte doubles from a 32-byte cache line

https://github.com/madgraph5/madgraph4gpu/issues/16
https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/
https://stackoverflow.com/questions/60535867/what-is-a-transaction-and-a-request-in-the-gld-transactions-per-request-metric
https://stackoverflow.com/questions/60535867/what-is-a-transaction-and-a-request-in-the-gld-transactions-per-request-metric
https://github.com/madgraph5/madgraph4gpu/issues/24

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 22

Wavefunction memory: “local” vs “global” (issue #7)

Roofline: “local”

is compute-bound

Roofline: “global”

is memory-bound

FP64

FP32

https://github.com/madgraph5/madgraph4gpu/issues/7

A. Valassi – MadGraph on GPU Benchmarking meeting – 05 Nov 2020 23

No evidence for

“thread divergence”

(issue #25)

• Nsight Compute:

– Stall Barrier = 0

• Similarly, no indication

for thread divergence

from Nsight System

https://docs.nvidia.com/nsight-

compute/ProfilingGuide/index.html

#statistical-sampler

https://github.com/madgraph5/madgraph4gpu/issues/25
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#statistical-sampler

