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Foreword: GEN workloads and GPUs in WLCG

 MC event generators are essential for HEP physics analyses
—First step in the GEN-SIM-DIGI-RECO chain for simulated data
—MadGraph5 aMC@NLO (MGaMC) is one of the main generators at the LHC

» Growing interest (and concerns) about the software aspects of generators
—GEN workloads are a sizeable (and growing) fraction of WLCG CPU budgets
* Currently ~12% for ATLAS (mainly Sherpa) and ~5% for CMS (mainly MGaMC)

—Paper for the HL-LHC LHCC review: https://arxiv.org/abs/2004.13687 E
» See also the recent LHCC talk: https://doi.org/10.5281/zenodo.4028834

— Code modernization and speedup, faster algorithms, port to new architectures...

« WLCG does not provide/account GPUs yet, but it will one day
—Example: HPCs (and the experiments already have access to these resources)
—Only few workloads could make sizable use of GPUs today (e.g. CMS patatrack)

—Porting generators to GPUs would open up new ways of using GPUs in WLCG
» And generators are natural candidates for exploiting parallelism on GPUs (see later...)

— Generators are a natural fit for preparing a HEP-workload GPU benchmark
—Bonus: in principle one can run exactly the same algorithm on CPUs and GPUs
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MGaMC on GPU - overview

 Why choose MadGraph and not another MC generator for a GPU port?

—Earlier efforts at KEK in 2010-2013, which were never released for production
» Touched both matrix element (ME) and MC integration — see summary at HOW2019
* We are ~not leveraging on this work (based on old version of MadGraph’s ME library)

—Main reason: active involvement of core MadGraph developer (Olivier Mattelaer)

* Project is maintained on https://github.com/madgraph5/madgraph4gpu

—Overall coordination: Stefan Roiser

— Composite effort: physicists & engineers (CERN, Louvain, Argonne, Bangalore)
« Core CUDA development: AV, OM, SR, Taran Singhania
* Abstraction layers, profiling, MC integration: David Smith, Laurence Field, Smita

Darmora, Taylor Childers, Tyler Burch, Walter Hopkins

« Just joined: Josh McFayden, Stephan Hageboek

—Meetings every two weeks
* Plus more frequent discussions of core CUDA developers

—The collaboration is largely a spin-off of the activities in the HSF generator WG
» https://hepsoftwarefoundation.org/workinggroups/generators.htmil
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The core of MGaMC Is a code-generating code

* The heart of a MC generator is the software that calculates the “matrix

element” (ME) for a given process — an element of the “scattering matrix”

—This is the sum of many contributions, one for each relevant Feynman diagram
» Simple example: LEP process, e+e- to utu-, only two diagrams

» LHC processes (e.g. gg to ttgg) are much more complex, many more diagrams

» For every different physics process, MadGraph does two things
— It identifies which are the relevant Feynman diagrams
— It generates the code to compute the ME from those Feynman diagrams

—=The core of MadGraph is code-generating code (ALOHA, written in Python)
—The generated code can be Fortran (default!), C++, Python... or CUDA (new!)

» There are also other (hardcoded) components, the same for all processes
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MGaMC on GPU - development process

PRODUCE
FIRST

« MadGraph being a code-generating code ,

- ¥\\‘\\\\ \\\“‘*\&

complicates the development process Mk HrH D
—We eventually must deliver CUDA-generating code —_
—We start from the C++-generating code ONTOP

o I - - ENGINEERED
We start from a simple process, e+e- to p+p
—Few diagrams = Few lines of code to manually port

to CUDA, and manually optimize...
—Then the code-generating code must be adapted

—And we start another iteration
 Potentially on a complex process with more diagrams

« Eventually: not only CUDA/Nvidia, also Intel, AMD? "
— Either natively or using abstraction layers: oneAPI,
SYCL, HIP/ROCm, Alpaka, Kokkos, OpenCL...
— Code-generating code would be needed for these too

S. Roiser, madgraph4gpu meeting, Oct 2020

%

start new INTEGRATE
UPSTREAM

“epoch”
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I:IJDA![Z++ CODE
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MC gen erators - Pseudo-random numbers
. = o Uniform distribution in [0,1]
S | m p | |f| ed One event i: vector 7 (dimension d)
t . | Draw d X Ny, 4, numbers r (N,, 4. weighted events)
computationa I
an O my Phase space sampling

For each event i, map #; to physical phase space X; = H(#;)

Phase space sampling optimization The resulting %; are distributed according to a known p.d.f. g(¥) | s Not sho_wn_ eXP”Cit'y he_|'G3
Compute w,,,, over the phase space Compute the value of g(¥;) . parton distribution functions
Optimize phase space sampling H (%) : ‘ ,(initial state parton flavors
EITHER minimize the variance of | . ) ./ and momenta are not fixed)
OR maximize the unweighting efficiency Matrix element (ME) calculation ’

For each event i, compute the differential cross-section f(¥;)
Compute the weight w;=f (X;)/g(%;)

Monte Carlo integration Monte Carlo unweighting

For each event i, draw r; in [0,1]
Accept if ; < w;/Wpqx, Feject otherwise
— Output: N,,,,, unweighted events

Average of weights
— Output: I (estiprator of [ x dx)

v
Parton showers (PS)
v
Hadronisation and decay
v
For LHC processes, the ME calculation is Particle-level filtering
the most computationally-intensive part
of the whole application workflow Cetector ;imulation
(but this is not true in a simpler e+e- to pu+u-)

v
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The ME calculation is where CPU Is spent at LHC

» E.g. real world CMS example:pp—>1+1-jjjj/h @0

» Madgraph/MadEvent (Fortran), 105 events

Reset Search

Flame Graph

Phase space sampling optimization
Unweighted event generation

(“integration”)

| |
| I : I [ | 0

I i ONINN  fvio_ f. GG G| E80° | 811N @ I

I 1 © marixi_  matrix2_  matr. mat.  mat. R

| [ © smatixl_  smatrix2_  smat. sma.  sm.. Ig g

| [ __. | |§Em § dsigl_ dsig2_  dsig3_ dsi.. |0 dsi. TR

" | | “.dsigproc_ T . e

Il [ 881 dsia_ "l

I Tl

sample_full_
| madevent

» Matrix element calculations use majority of CPU time MATRIX ELEMENT CALCULATION

S. Roiser, madgraph4gpu meeting, Oct 2020

Benchmarking meeting — 05 Nov 2020

EE/*‘W A. Valassi — MadGraph on GPU

~7 -



https://indico.cern.ch/event/946566

MGaMC on GPU: event-level data-parallel approach

* One main reason why generators are excellent candidates for a GPU port:
—The compute-intensive ME calculation is exactly the same function for all events
—This reduces the risk of “thread divergence” on GPUs (unlike detector simulation)

* We use an event-level
data-parallel approach

_ ExeCUte the same Operations One event i: vector #; (dimension d)

on multiple data in parallel
—0On GPUs: SPMD (Single

Program Multiple Data)
—On CPUs: SIMD (Single

Instruction Multiple Data)?

 Aka vectorization: eventually, Matrix element* calculation
we will also try to Speed up For each event i, compute the differential cross-section f (¥;)
the C++ code this way Compute the weight w;=f (¥;)/9 (%)

ﬁw A. Valassi — MadGraph on GPU
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(no input data)

Pseudo-random numbers

Uniform distribution in [0,1]

Draw d X Ny, numbers r (N,, 4. Weighted events)
00000000

Phase spacevsvampling

For each event i, map 7; to physical phase space ¥; = H (%)
The resulting X; are distributed according to a known p.d.f. g(X)
Compute the value of g(X;)

Monte Carlo integration Monte Carlo unweighting

For each event i, draw r; in [0,1]
Accept if r; < w; /Wiy, reject otherwise
— Output: N,,,, unweighted events

Average of weights I = %Z w;
— Output: I (estimator of [ x dx)
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Status: where are we now?
On GPU:

1 PSEUDO RANDOM
- NUMBERS cuRAND

I I I I I N 00000000
[ )

PHASE SPACE On GPU: Basic (uniform)
SAMPLING  §

: d RAMBO kernel “democratic” sampler,
PHASE SPACE .
OPTIMISATION NI f DISTRIBUTION
: R — ME for simple (LEP)

no optimization
¥ MATRIX ELEMENT E e+e- to p+y- process
\\ CALCULATION SIGMAKIN kernel to p+p- proce
e

MONTECARLO W  MONTE CARLO NotoDA implemenatin
INTEGRATION UNWEIGHTING to code-generating code

w Single source code for C++ and CUDA
(using #ifdef's): same algorithms
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Status: which are we the (main) ingredients
that we are missing for LHC processes?

(3) More efficient
sampler/integrator
on GPU:'MadEvent

PSEUDO RANDOM |}
4 NUMBERS

PHASE SPACE

(4) PDFs on GPU

SAMPLING

PHASE SPACE
OPTIMISATION

: PARTON
K DISTRIBUTION

FUNCTIONS

MONTE CARLO
UNWEIGHTING
rere

(1) More complete workflow
NB: this is needed also to extract more
realistic benchmark results for a possible
BMK container based on e+e-to utu-

MONTE CARLO
INTEGRATION
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On GPU:
cuRAND

00000000

On GPU:
RAMBO kernel

SIGMAKIN kernel

Basic (uniform)

“‘democratic” sampler,

no optimization

ME for simple (LEP)
e+e- to u+u- process

(2) gg to ttgg ME
Complete the code-

generating code

Not yet fully ported upstream
to code-generating code

Single source code for C++ and CUDA

(using #ifdef's): same algorithms
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Benchmarking based on (our current) e+e- to p+u-?

PROFILING e e i

4096 blocks / grid ;‘:*’"'7 [ —r— -
256 threads / block . o :

10 iterations :“-,-"-'""""'; '

.......

e+e- —> mu+mu, 4096 blocks / grld 256 threads / block 1 iteration
1sw/BZms  +33ms Rkl 15 94.363ms |
v CPU(4)

——————

.......

0S runtime libraries

cccccc

nnnnnnnnnn en. _—
~ CUDA (Tesla v1005-PCIE-32GB, e —
» 12.2% Kernels _
87.8% Memary -
o ﬁl#%ﬂ m_wﬂ 2 cor
/7 \ l /
Random Copy Weights ) Matrix Element Copy MEs
Numbers Device —> Host Copy 4-Momenta Device —>Host Calculation Device —> Host
Phase Space
Sampling

S. Roiser, madgra9h4g9u meeting, Oct 2020

« Benchmarking GPUs today based on MG is possible, but VERY preliminary!

—1. Even for eeupu, we need at least a realistic integration/unweighting workflow
—2. In any case, it would not be representative of more complex LHC processes
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Hardware benchmarking, Software benchmarking

* In the HEPiX BMK WG we mainly deal with hardware benchmarking

—Run the same frozen software on different CPUs/GPUs and compare them
» Goals: accounting/pledging and procurement of compute resources (a la HS06)

—Reproducible applications, pre-built and containerized as docker images

* In the madgraph4gpu effort we do a whole lot of software benchmarking
—Change the software (or change build options) and compare old/new versions

—We do more, but we also compare software performance on different GPUs
« Software optimizations depend on hardware (professional/FP64 vs consumer/FP32)
 Software languages and abstraction layers depend on hardware (Nvidia, AMD, Intel)

* There is a lot in common, but also some important differences
—Main similarity: we both need reproducible application workloads
—Main difference: prebuilt library/executables vs source code to rebuild
—It makes sense to keep these two efforts well synchronized
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How do we benchmark our own code today? WIP!!!

.Jgcheck.exe -p 16384 32 12

kkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkkkkhkkkkkkx

Numlterations =12 CU DA/G P U
NumThreadsPerBlock =32

NumBlocksPerGrid = 16384 FU” Vloo
TotalEventsComputed =6291456

MatrixElemEventsPerSec

= 6.703134e+08 sec”-1

kkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkk

MeanMatrixElemValue

00 CudaFree : 0.928572 sec
Oa Proclnit : 0.000625 sec

Ob MemAlloc : 0.062333 sec
Oc GenCreat : 0.010851 sec
la GenSeed : 0.000015 sec
1b GenRnGen : 0.007457 sec
2a Rambolni : 0.000108 sec
2b RamboFin : 0.000049 sec
2c CpDTHwgt : 0.006603 sec
2d CpDTHmMom : 0.070621 sec
3a SGoodHel : 0.001733 sec
3b SigmakKin : 0.000081 sec
3c CpDTHmes : 0.009305 sec
4a DumpLoop : 0.022506 sec
8a CompStat : 0.031386 sec
9a GenDestr : 0.000064 sec
9b MemFree :0.013876 sec
9c CudReset : 0.027250 sec
9d DumpScrn : 0.000217 sec
9e DumpJson : 0.000003 sec
TOTAL 1 1.193654 sec
TOTAL(123) : 0.095971 sec
TOTAL(23) :0.088500 sec
TOTAL(3) :0.011118 sec

=1.372152e-02 GeV™0

kkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkkk

Exactly the same calculation,
exactly the same result

Throughput adding Rambo —i.e. ME, plus:
- add random-to-momenta mapping

- (CUDA only) add copy momenta to host
- (CUDA only) add copy weight to host
GPU: 6M in 0.09 sec ~ 7E7/sec

CPU: 6M in 18 sec ~ 3E5/sec

GPU is ~x200 a single CPU thread

MEPerSec throughput:

- ME calculation

- (CUDA only) copy MEs to host
GPU: 6M in 0.011 sec ~ 7E8/sec
CPU: 6Min 16 sec ~ 4E5/sec

GPU is ~x1500 a single CPU thread

.Jcheck.exe -p 16384 32 12

AAAAAAAAAAAAAAAAAA *kkk

Numiterations =12 C++/CPU
NumThreadsPerBlock =32

NumBlocksPerGrid = 16384 SiNgle thread

TotalEventsComputed = 6291456

MatrixElemEventsPerSec = 3.962151e+05 sec”-1

kkkkkkkkkkkkkkkkkhkkhkkkkkhkkkkkkkkkhkkk

MeanMatrixElemValue = 1.372152e-02 GeV"0
khkkkkkkkkkhhhhkkkhhhhrkrkhhhhhrrhhhhriis
Oa Proclnit : 0.000467 sec

Ob MemAlloc : 0.055191 sec

Oc GenCreat : 0.000923 sec

la GenSeed :0.000032 sec

1b GenRnGen: 0.321630 sec

2a Rambolni : 0.082014 sec

2b RamboFin : 1.857938 sec

3b SigmakKin : 15.878891 sec
4a DumpLoop : 0.019507 sec

8a CompStat : 0.028952 sec

9a GenDestr : 0.000104 sec

9b MemFree :0.001440 sec

9d DumpScrn : 0.000248 sec

9e DumpJson : 0.000002 sec
TOTAL : 18.247335 sec
TOTAL(123) : 18.140505 sec
TOTAL(23) :17.818844 sec
TOTAL(3) :15.878891 sec

*kkkkkkkkkhhhkkkhkhhhhkrkkkkhhhhhhikxkxkx

This is WIP!II https://github.com/madgraph5/madgraph4qgpu/issues/22

Device-to-host copies dominate because e+e- to p+u- MEs are too simple!

*hkkkkkkkkkkkkkhhkhkkkkkkhhhhhkhkkkkkkhik
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Nvidia GPUs — hackathons and profiling tools

« Some of us attended the http://gpuhackathons.org Sheffield event in July
— Extremely beneficial for us, | highly recommend it for any CUDA developer!
—Many thanks to our mentors at this specific event! https://gpuhack.shef.ac.uk

* This was useful also to understand performance in a benchmarking context
—Which features of the GPU hardware are relevant (e.g. registers, FP32/64...)
— Application profiling using two Nvidia tools, Nsight Systems and Nsight Compute

» Most plots in these slides are from tools/concepts learnt at the hackathon
—Some detailed studies in https://github.com/madgraph5/madgraph4gpu/issues
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C
\

One example relevant to GPU benchmarking:
float vs. double (consumer vs. professional cards)

» By default MGaMC uses double-precision complex number arithmetic
—This is required for physics precision... but it is worth checking this again!

« Moving from double to single precision (V100): gain a factor 2.4! (issue #5)
— Intuitively, being able to use FP32 cores and not only FP64 cores gains a factor 2
—In addition, single-precision reduces register pressure and increases occupancy

w A. Valassi — MadGraph on GPU
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single is 2.4 faster than double (sigmakin = ME kernel)

EEE |
Y O i |
Single Occupancy — Registers: 80 :
Active Warps per SM: ~22

--H

Double Occupancy - Registers: 172 ot ot varyg s
Active Warps per SM: ~8

=7h
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Outlook: a BMK container for MGaMC on GPU?

« Creating a container for e+e- to u+u- should be relatively easy and fast
—But first, we need a realistic unweighting workflow and its throughput metric!
—This can be interesting to compare GPUs, but is of little relevance to WLCG...

» Creating an LHC-type container needs more development progress first
— At least a more complete backport of ME calculations to code-generating code
— A more realistic sampler is also needed for complex processes like gg to ttgg

—LHC proton collisions also need a port of PDFs to CUDA
 But one could also prepare a simpler benchmark before for a gg to ttgg process

* We do not use /cvmfs at all for the moment (no released/installed version)
—We would need to build CUDA executables in the Cl and embed those in docker
—There is no input data, this is essentially a pure “GEN” type of workload

» There is a synergy between the MG and BMK projects, let’s stay in touch!
—Example: we both need to get hold and test AMD and Intel GPUs at some point!
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Backup slides
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MC generators and HL-LHC software and computing

* One of the main issues (not the only one!): HL-LHC computing resource gap
— Generator performance must also keep up with higher physics precision

! CPU cost of generators as a
Run 4 extrapolatlons. CPU 24 || fraction of WLCG CPU resources:
- I ~-icfy e Bt for ATLAS, ballpark of 10%-20%
- P i MC-Full(Sim) . .
3 100 ATLAS Preliminary h MC-Full (Rec) (for CMS, this is lower)
é | CPU resource needs MC-Fast (Sim) oo
é 80/ 2018 estimates: e Analyss ATLAS considers an overall
E - 7 MCfast calo sim + standard reco K 1 werasreo generator speedup by a factor
2 e MC fast calo sim + fast reco b U HI
8 g0l [ Generators speed up x2 ] FE N x2 as an R&D goal for HL-LHC
] - ; ® o
& +— Flat budget model R .-
Tg 40_— (+20%/year) ,,V ,"'"‘“\.; g _| ATLAS Preliminary. 2028 CPlliasauismaad
E | Run2 Run 3 ‘,"7.’,";:(un4 p Run 5 o MC-FuIISim)
. 'A
201 ' . \ Side note: the higher the fraction
i g i . B of negative-weight events from
rErE ETI R BN R RS S RS R
0™""3018 2020 2022 2024 2026 2028 2030 2032 | | ’ ?:/'gugenera]fcl’wré’ the hl'ghe”:\‘/l%
: HeTesEm costo simulation,
ATLAS computing and software update Year MC-Fast (Rec) : d vsi
ames Catmore (Oslo/CERN), Alessandro Di Girolamo (CERN) reconStrUCtlon and ana ySIS
WLCG meeting with LHCC referees, Feb. 2020 (need more MC events)

« Many other challenges, including:
—WLCG software workloads on non-traditional resources (HPCs, GPUs...)
—Funding and careers (especially at the theory/experiment/computing interface)

C{E/}‘W A. Valassi — MadGraph on GPU Benchmarking meeting — 05 Nov 2020 18
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A few performance comparisons

A few studies from August 2020 (essentially the same code as today)
—Measurements on Ixbatch: sensitive to external load, reproducible within ~10%
— Extensive discussion of numbers and Nsight Compute profiler plots on
https://github.com/madgraph5/madgraph4gpu/issues

— General approach: change a #define switch to a non-default value in the code
* Now kept cuComplex and float switches, but hardcoded AOSOA and “local” memory

From double precision to single precision: gain a factor 2.4! (issue #5)
—FMA (FP32) used instead of FP64 pipe; fewer registers hence higher occupancy

Memory layout for 4-momenta (issue #16): study “requests” vs “sectors”

—Default: AOSOA with 4 events per array (four 8-byte doubles: 32-byte cache line)
* AOS ~7% slower: memory not coalesced, #sectors (transactions) factor 4 higher
* SOA ~2% slower: slightly higher number of registers

— Side result of this study: improve helicity filtering to reduce #requests (issue #24)

Memory for wavefunctions in ixxx/oxxx/FV_xx (issue #7): default is “local”
—Lose 70% with “global” (become memory-bound!), also lose 35% with “shared”

From thrust::complex to cuComplex: lose ~5% (issue #6)
—Require execution of higher number of instructions (something to fix?)

(,‘;E?W A. Valassi — MadGraph on GPU Benchmarking meeting — 05 Nov 2020 19
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ep % #h eemumuAV_cu_0819_1730_b16384_t32_i2_FLOAT nauep X

.
: [Detals  ~ | Lanch: 6~ 519-sigmakin ~ V|~ [AddBasclne |~ | Apply Rukes Copy as Image ~ u
Current 519 -signakn (16384, 1, Dx(32, 1, ) Time: 152.32usecond Cycles: 182,509 Regs: 80 GPU: Tesa VI00-PCIE-3268 SM Frequency: 1,13 cydefnsecond CC: 7,0 Process: [506] gcheck.exe @ o e -

DOUBLE 519 -sigmakin (16384, 1, )x(32, 1, 1) Time: 430.62usecond Cycles: 525,585 Regs: 172 GPU: Tesla V100-PCIE-32G8 SM Frequency: 1.22 cydefnsecond CC: 7.0 Process: [32747] acheck.exe

~ Compute Workload Analysis A o

[] [ []
Detalled analysis of the the strasming (SM), including th dlock (IPC) and the utiizaton of each 3
Executed Ipc Elapsed [inst/cycle] 2.11 (+114.15%) | s Busy [x] 95.58 (+29.02%)
Executed Ipc Active [inst/cycle] 2.1 (+114.64%) | Tssue slots susy [¥] 53.72 (+112.64%)

Issued Ipc Active [inst/cycle] 2.15 (+114.64%)
Pipe Utilization
I

FMA pipe (single) * Two main effects
— Exploit the FP32 units
(unused otherwise!)

B 6/ pipe (double) —Fewer registers hence
e higher warp occupanc

[Warning] FMAis (95.69%). It executes 32-bit loating point (FADD, FMLL, FMAD, ...) and integer (IVLL, IMAD) operations. The pipeline is over-utized and lily 2 performance bottieneck.

—
—

—
=m
:'__I

=

ep % #h eemumuAv_cu_DB19_1730_b16384_t32_i2_FLOAT.nau1ep X

single is 2.4 faster than double o e T e oyt -
g . Current )| Time: 152.32usecond CyHles: 182,509 Regs: 80 GPU: Tesia V100-PCIE-32G8 SM Frequency: 1.19 cycefnsecond CC: 7.0 Process: [508] geheck.exe ®

519 - sigmakin (16384, 1, (32, 1, 1)

DOUBLE 519 - sigmakin (16384, 1, )x(32, 1, 1)} Time: 430.62usecond €Y 25,585 Regs: 172 GPU: Tesla V100 PCIE-32GB SM Frequency: 1.22 cyclejnsecond CC: 7.0 Process: [32747] grheck.exe

(sigmakin = ME kernel) o

~ Occupancy

Ocaupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possble active warps. Another way to view occupancy is the percentage of the hardware's ability to pracess warps that is actively in use. Higher occupancy does not always result in higher
o [ i ey T e 2 L B e ot ooy T e ey St P e e T o T e A Tt ot e o o g 1 T Bl E e

Theoretical occupancy [X] 37.50 (+200.00%) | Elock Limit Registers [block] 24 (+200.00%)
Theoretical Active Warps per M [warp] 24 (+200.00%) | Block Linit shared Men [block] 32 (+0.00%)
Achieved occupancy [%] 34.80 (+186.76%) | Block Limit werps [block] 64 (+0.00%)
Achieved Active Warps Per s [warp] 22.27 (+186.76%) | Block Limit s [block] 32 (+0.00%)

Impact of Varying Register Count Per Thread

Single Occupancy
Registers: 80 ‘
Active Warps per SM: ~22 N I

Registers Per Thread
Impact of Varying Block Size

Warp Occupancy

Warp Occupancy

Double Occupancy
Registers: 172 T
Active Warps per SM: ~8

Warp Occupancy
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https://github.com/madgraph5/madgraph4gpu/issues/5

4-momenta memory: AOSOA vs AOS (issue #16)

Number of “requests”: Number of “sectors” (transactions):

- It is the same for AOSOA or AOS (the same - It is a factor 4 higher for AOS than for AOSOA
information needs to be retrieved...) - One roundtrip (AOSOA, coalesced) vs four

- Later on, the number show here was dramatically roundtrips (AOS, not coalesced) to retrieve four
decreased by improving helicity filtering (issue #24) 8-byte doubles from a 32-byte cache line

x  #h eemumuAvV_cu_0814_1721_b16384_t32_i12_AOS.ncu-ep X

Current n (1638 » 1x( ) T . 3 : 152 3 00 SM Frequency: f CC: 7.0 Process:

BASELINE ASA . 1) ) Ti .90 3 = 152 5 SM Frequency: CC: 7.0 Process:

1su_mem_global_op_ld.sum [request] 1,527 . S ors_pipe_lsu_mem_global_op_ld.sum [sector]

b GPU Speed OF Light 4k

w of the utilization for compute and memory resources of the GPU. For each unit, the Speed Of Light (SOL) reports the ad ilization w ct to the theoretical maximum. High-evel overview of the utilization for compute and memory resources of the GPU p

5 of the streaming multiprocessol

A few useful links:

- https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/

- https://docs.nvidia.com/nsight-compute/2019.5/NsightComputeCli/index.html#nvprof-metric-comparison

- https://stackoverflow.com/questions/60535867/what-is-a-transaction-and-a-request-in-the-gld-transactions-per-request-metric
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https://github.com/madgraph5/madgraph4gpu/issues/16
https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/
https://stackoverflow.com/questions/60535867/what-is-a-transaction-and-a-request-in-the-gld-transactions-per-request-metric
https://stackoverflow.com/questions/60535867/what-is-a-transaction-and-a-request-in-the-gld-transactions-per-request-metric
https://github.com/madgraph5/madgraph4gpu/issues/24

Wavefunction memory: “local” vs “global” (issue #7)

% fh eemumuAV_cu_0818_1419_b16384_t32 2 GLOBAL.ncu-rep X

Page: Details T  Launch: 8- 524 -sigmakin % ~ | AddBaseline ~  Apply Rules Copy as Image ™

Current 524 - sigmakin (16384, 1, 1)x(32, 1, 1) Time: 2.71 msecond Cycles: 3,335,585 Regs: 156 GPU: Tesla V100-PCIE-32GB  SM Frequency: 1.23 cydefnsecond C€C: 7.0 Process: [22197] geheck.exe

LOCAL 523 - sigmakin (16384, 1, 1)x(32, 1, 1) Time: 432,33 usecond Cycles: 523,255  Regs: 176 GPU: Tesla V100-PCIE-32GB SM Frequency: 1.22 cyde/nsecond CC 7.0 Process: [22731] gcheck.exe

Floating Point Operations Roofline

Roofline: “local”
iIs compute-bound

Roofline: “global”
IS memory-bound

Perform ance [FLOP/s]
(1 = 100,000,000,000)

10

10,000
Arithmetic Intensity [FLOP/byte]

Recommendations

@ Bottleneck The kernel is utlizing greater than 80.0% of the available compute or memary performance of the device. To further improve performance, work will likely need to be shifted from the most utilized to another unit. Start by analyzing workloads in the
section.

® Roofline Analysis  The ratio of peak float (fp32) to double (fp&4) performance on this device is 2: 1. The kernel achieved dose to 0% of this device's fp32 peak performance and 13% of its fp&4 peak performance.

~ Compute Workload Analysis £\ o
Detailed analysis of the compute resources of the streaming multiprocessors (SM), induding the achieved instructions per dock (IPC) and the utilization of each available pipeline. Pipelines with very high utilization might limit the overall performance.

Executed Ipc Elapsed [inst/cycle]
Executed Ipc Active [inst/cycle]
Issued Ipc Active [inst/cycle]

8.38 (-69.65%) | SM Busy [%]
8.38 (-69.91%) | Issue Slots Busy [%]
8.38 (-69.91%)

17.48 (-76.45%)
7.57 (-69.91%)

Pipe Utilization

—
e
—
E—
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https://github.com/madgraph5/madgraph4gpu/issues/7

4. Sampling

-
NVIDIA Nsight Compute supports periodic sampling of the warp program counter and warp scheduler state on desktop devices of compute capability N O e V I d e n C e f O r
6.1 and above.

At a fixed interval of cycles, the sampler in each streaming multiprocessor selects an active warp and outputs the program counter and the warp
scheduler state. The tool selects the minimum interval for the device. On small devices, this can be every 32 cycles. On larger chips with more
multiprocessors, this may be 2048 cycles. The sampler selects a random active warp. On the same cycle the scheduler may select a different warp to

T “thread divergence”

Table 2. Warp Scheduler States

e e (issue #25)

Allocation 5.2-6.1 Warp was stalled waiting for a branch to resolve, waiting for all memory operations
to retire, or waiting to be allocated to the micro-scheduler.

Barrier 5.2+ Warp was stalled waiting for sibling warps at a CTA barrier. A high number of warps
waiting at a barrier is commonly caused by diverging code paths before a barrier.
This causes some warps to wait a long time until other warps reach the
synchronization point. Whenever possible, try to divide up the work into blocks of
uniform workloads. Also, try to identify which barrier instruction causes the most
stalls, and optimize the code executed before that synchronization point first.

https://d OCS . nVI d I a. Com/nS|q ht_ LAY LAY i eemumuAv_c_0818_1003_b16384 32 i1_ASAO4.ncu-ep X
compute/ProfilingGuide/index.html o 11 SRR
#Statlstl Cal _Sam pler H Asaos 510 il 1) Ti : 529,705 Regs: 176 GPU: SM Frequency: 1d CG 7.0 Process: [:

~ Warp State Statistics £k

‘Warp State (All Cycles)

Stall Math Pipe Throttie

Stall L

* Nsight Compute:
—Stall Barrier =0

Stall MC

Warp States

ll Drain

Stall LG Throttle

 Similarly, no indication
for thread divergence
from Nsight System

ping

Stall Tex Throttle

0.0 20
Cycles per Instruction
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https://github.com/madgraph5/madgraph4gpu/issues/25
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#statistical-sampler

