
Presentation Subtitle

Creating an infrastructure for a
CUDA backend for Awkward Arrays

Anish Biswas
Google Summer Of Code Participant

Manipal Institute Of Technology

Jim Pivarski
Google Summer Of Code Mentor

Princeton University

Pratyush(Reik) Das
IRIS - HEP Fellow

Institute Of Engineering and Management

1

AwCCCkward1
Presentation Subtitle

● Although GPU support was planned from the
beginning, when I started there were many
assumptions about arrays being on main
memory.

● How do we manage a potentially direct CUDA
dependency? We can’t require everyone to have
CUDA to use Awkward Arrays.

● The need to integrate a NumPy counterpart for
CUDA, CuPy, to handle the higher level functions.

CUDA Integration : The Challenges

2

AwCCCkward1
Presentation Subtitle

● The planned 3 layer architecture of
Awkward Arrays. This helped in introducing an
indirection as we move from the upper
layers to the lower layers.

● Because of the indirection and the
symmetry between cpu-kernels and
cuda-kernels, a lot of the work could be
automated by parsers and simple find and
replace macros.

CUDA Integration : The Basic Idea

3

AwCCCkward1

Transferring Buffers onto the GPU

Let’s define an Awkward Array!

CUDA is not good with complex Data Structures
like this, but it is excellent for linear buffers!

With Awkward Arrays, this transfer becomes very
simple and efficient!

4

AwCCCkward1

Transferring Buffers onto the GPU

Here’s the internal representation of the Awkward Array, while it’s still in main memory!

<ListOffsetArray64>

 <offsets><Index64 i="[0 3 3 4]" offset="0" length="4"/></offsets>

 <content><RecordArray>

 <field index="0" key="x">

 <NumpyArray format="l" shape="4" data="1 4 9 16"/>

 </field>

 <field index="1" key="y">

 <ListOffsetArray64>

 <offsets><Index64 i="[0 1 3 6 10]" offset="0" length="5"/></offsets>

 <content><NumpyArray format="l" shape="10" data="11 12 22 13 23 33 14 24 34 44"/></content>

 </ListOffsetArray64>

 </field>

 </RecordArray></content>

</ListOffsetArray64>

ak.to_kernels(array, "cuda")

5

AwCCCkward1

Transferring Buffers onto the GPU

This is what you get after a transfer to GPU! Notice the lib, under certain nodes! That’s what makes the entire
transfer easy and efficient!

<ListOffsetArray64>

 <offsets><Index64 i="[0 3 3 4]" offset="0" length="4">

 <Kernels lib="cuda" device="0" device_name="GeForce 940MX"/>

 </Index64></offsets>

 <content><RecordArray>

 <field index="0" key="x">

 <NumpyArray format="l" shape="4" data="1 4 9 16">

 <Kernels lib="cuda" device="0" device_name="GeForce 940MX"/>

 </NumpyArray>

 </field>

 <field index="1" key="y">

 <ListOffsetArray64>

 <offsets><Index64 i="[0 1 3 6 10]" offset="0" length="5">

 <Kernels lib="cuda" device="0" device_name="GeForce 940MX"/>

 </Index64></offsets>

 <content><NumpyArray format="l" shape="10" data="11 12 22 13 23 33 14 24 34 44">

 <Kernels lib="cuda" device="0" device_name="GeForce 940MX"/>

 </NumpyArray></content>

 </ListOffsetArray64>

 </field>

 </RecordArray></content>

</ListOffsetArray64>

The leaf nodes here, Index Class and
NumpyArray Class are the only linear buffers,
we take care of.

This turns the transfer to GPU problem, into
a simple recursive walk down the complex
Data Structure where the `base` case is
transferring the leaf nodes, onto the GPU!

6

AwCCCkward1
Presentation Subtitle

How do we know where the Array Buffers exist?

● We keep track of the leaf nodes of Awkward
Arrays by giving them an enum class type which
signifies which kernel, should that Array use when
we are doing operations on them.

● This enum can later be expanded to include other
kernel library like opencl and so on.

●

enum lib {
 cpu,
 cuda
}

7

AwCCCkward1
Presentation Subtitle

Awkward Arrays and CUDA Dependency

pip install awkward1[cuda]

● This new information is an enum struct named `lib`, which
currently contains two libraries i.e cpu and cuda.

● This has helped us to make a distinction between arrays
residing in the main memory(cpu) and arrays residing in the
GPU memory(cuda).

● This distinction comes in the form of indirection while
choosing the appropriate Kernel library for the function. The C
Kernels are no longer being called directly.

● Instead, they are all contained in a new file named
`kernel_dispatch` which takes in `lib` type as an argument for
each of the kernel functions and dispatches the correct kernel
depending on the value of the `lib` type.

<type> <Kernel Name>(
 kernel::lib ptr_lib,
 __varargs__) {
 if (ptr_lib == kernel::lib::cpu) {
 return awkward_<Kernel Name>(__varargs__);
 }
 else if (ptr_lib == kernel::lib::cuda) {
 CREATE_KERNEL(awkward_<Kernel Name>, ptr_lib);
 return (*awkward_<Kernel Name>_fcn)(__varargs__);
 }
 else {
 throw std::runtime_error();
 }
}

● That’s it. Awkward Arrays has no direct dependency on CUDA. The awkward1-cuda-kernels are
just an extension to Awkward Arrays.

● The pip package consists of:
○ __init__.py
○ libawkward-cuda-kernels.so

● The shared library, helps the awkward1-cuda-kernels pip package to be accessible
across all Linux systems and makes the package itself extremely portable.

8

AwCCCkward1
Presentation Subtitle

What about the CUDA dependency?

How is Awkward Array able to access the shared library?
● dlopen - To open the library
● dlsym - To access all the symbols / functions in it

One potential disadvantage of having such system calls!
● The function calls are largely similar across all kernels, it

would be very difficult to write and maintain more than 100
such calls for the 100+ kernels!

#define CREATE_KERNEL(libFnName, ptr_lib) \

 auto handle = acquire_handle(ptr_lib); \

 typedef decltype(libFnName) functor_type; \

 auto* libFnName##_fcn = \

 reinterpret_cast<functor_type*>(acquire_symbol(handle, #libFnName));

Let the preprocessor do the work
for us! We define a Macro to
automate the process of writing the
system calls!

9

AwCCCkward1
Presentation Subtitle

Finally, we can introduce the Indirection!

● We can finally distinguish between Arrays on main memory and arrays on GPU!
● The next step would be to introduce a dispatch mechanism that actually calls the right

library according to where the buffer resides!
● Here’s an generalized example of how every function in the kernel-dispatch file looks like!

Error Struct <Kernel Name>(
 kernel::lib ptr_lib,
 <more arguments>) {

 if (ptr_lib == kernel::lib::cpu) {
 return awkward_<Kernel Name>(<more arguments>);
 }

 else if (ptr_lib == kernel::lib::cuda) {

 CREATE_KERNEL(awkward_<Kernel Name>, ptr_lib);
 return (*awkward_<Kernel Name>_fcn)(<more arguments>);

 }
}

10

AwCCCkward1
PresentA bunch ation Subtitle

Time for some examples!

● Let’s consider a Record Array!

array = ak.Array([
 [{"x": 1, "y": [11]},
 {"x": 4, "y": [12, 22]},
 {"x": 9, "y": [13, 23, 33]}],
 [],
 [{"x": 16, "y": [14, 24, 34, 44]}]], kernels = "cuda")

● We can now perform non-trivial things with this array!

Let’s do a ak.num(array), by default the axis is 1, so you’ll get:

<Array:cuda [3, 0, 1] type='3 * int64'>

What if we want to find the number of elements in the list corresponding to a list,
ak.num(array[“y”], axis = 2), should give us:

<Array:cuda [[1, 2, 3], [], [4]] type='3 * var * int64'>

11

AwCCCkward1
PresentA bunch ation Subtitle

Just ak.num()? What about other functions?

I worked on two kernels, awkward_ListArray_num and awkward_RegularArray_num. The rest of
the functions will be incorporated into Awkward Array by Reik’s parser which automates much of this

manual work with the help of a parser.

12

AwCCCkward1
Presentation Subtitle

CuPy Integration

13

AwCCCkward1
Presentation Subtitle

CuPy Integration

● Awkward Arrays already had a strong integration with NumPy, now it can support CuPy operations too!

From CuPy To Awkward Array

ak.Array(cp.array([[1, 2], [3, 4],[5, 6]]))

<Array:cuda [[1, 2], [3, 4], [5, 6]] type='3 * 2 * int64'>

From Awkward Array to Cupy

array = ak.Array([[1, 2], [3, 4],[5, 6]], kernels=”cuda”)

cp.asarray(array)

 array([[1, 2],

 [3, 4],

 [5, 6]])

14

AwCCCkward1
Presentation Subtitle

Concluding my Summer of Code!

● Nearly met all the deliverables

○ Track “memory location” through Awkward Array classes(#262, #276)

○ Operations involving a CPU array and a GPU array should be handled intelligently(#293, #299)

○ Develop a deployment strategy for users with GPUs and users without GPUs(#345, #357)

○ Integrate CuPy with Awkward Arrays(#362, #372)

15

https://github.com/scikit-hep/awkward-1.0/pull/262
https://github.com/scikit-hep/awkward-1.0/pull/276
https://github.com/scikit-hep/awkward-1.0/pull/293
https://github.com/scikit-hep/awkward-1.0/pull/299
https://github.com/scikit-hep/awkward-1.0/pull/345
https://github.com/scikit-hep/awkward-1.0/pull/357
https://github.com/scikit-hep/awkward-1.0/pull/362
https://github.com/scikit-hep/awkward-1.0/pull/372

AwCCCkward1
Presentation Subtitle

THANK YOU!

trickarcher

anishbiswas271@gmail.com 16

https://github.com/trickarcher
mailto:anishbiswas271@gmail.com

