Evidence For Higgs Boson Decay to Muons

Adish Vartak

University of California San Diego On behalf of the CMS Collaboration

- Measurements of $m_{\text{H}},\,\Gamma_{\text{H}},\,J^{\text{CP}}$
 - $m_{H} = 125.38 \pm 0.14 \; GeV$ PLB 805 (2020) 135425

- Measurements of $m_{\text{H}},\,\Gamma_{\text{H}},\,J^{\text{CP}}$
 - $m_H = 125.38 \pm 0.14 \text{ GeV}$ PLB 805 (2020) 135425
- Interactions of H with W, Z, γ and 3rd generation fermions (t,b,τ)
 - Found to be consistent with SM HIG-19-005

The H→µµ Search

- Look for a narrow dimuon mass peak at the Higgs mass
- Search hampered by:
 - → Small signal rate : BR(H→ $\mu\mu$) = 2.1 x 10⁻⁴
 - Large background : Dominant Drell-Yan background ~10³ times larger than signal
- We maximize sensitivity by individually targeting the 4 main Higgs production modes
- 4 analyses tailored to exploit the unique topologies of gluon fusion, VBF, VH, ttH

- 87% of total H cross section
- Low signal purity : 0.2-2%
- Large DY background

- 87% of total H cross section
- Low signal purity : 0.2-2%
- Large DY background

7% of total H cross section

- Two jets with large η-gap, m_{ji}
- Main backgrounds : DY, EWK Z+jj

- 87% of total H cross section
- Low signal purity : 0.2-2%
- Large DY background

• 7% of total H cross section

- Two jets with large η-gap, m_{jj}
- Main backgrounds : DY, EWK Z+jj

• 4% of total H cross section

- Additional e, µ in the event from leptonic decays of W, Z
- Main backgrounds : ZZ, WZ

- 87% of total H cross section
- Low signal purity : 0.2-2%
- Large DY background

• 7% of total H cross section

- Two jets with large η-gap, m_{jj}
- Main backgrounds : DY, EWK Z+jj

• 4% of total H cross section

- Additional e, µ in the event from leptonic decays of W, Z
- Main backgrounds : ZZ, WZ
- 1% of total H cross section
- Additional jets, b-jets, leptons in the event from top decays
- Main backgrounds : tt, ttZ

Higgs Production Modes: Purity

Higgs Production Modes: Sensitivity

ggH-cat1 ggH-cat2 ggg# ggH-cat4

ggH-cat5

DNN-bin 1-5

DNN-bin 6-9

NN-bi**vBF**1

NN-bin 12-13 WH-cat1 WH-cat2 WH-cat3

Z₩₩t1 ZH-cat2

ttHhad-cat1

ttHhad-cat2

ttHhad-cat3

ttHleppert1 ttHlep-cat2

S/(S+B) (%)

subcategories 1.4 13 S/VB

ggH

subcategories

VBF

subcategories-

WH, ZH

subcategories_

ttH

1.2

1

H→µµ Decay

Signal characterized by a sharp dimuon mass peak at 125 GeV $m_{\mu\mu}$ resolution plays a defining role in determining analysis sensitivity

Inclusive Preselection

WH Event

ZH Event

ZH Event

Divide-n-Fit

Use the divide-n-fit strategy to enhance analysis performance

Train signal v/s bkg. multivariate (BDT) classifier

- Exploit full kinematic information of the event
- Input variables chosen to be uncorrelated with H candidate mass
- Signal events weighted by $1/\sigma_m$ to give high resolution events more signal-like MVA score

Divide events into categories based on the classifier output

• Several subcategories with varying signal purity

Divide-n-Fit

Use the divide-n-fit strategy to enhance analysis performance

Train signal v/s bkg. multivariate (BDT) classifier

- Exploit full kinematic information of the event
- Input variables chosen to be uncorrelated with H candidate mass
- Signal events weighted by $1/\sigma_m$ to give high resolution events more signal-like MVA score

Divide events into categories based on the classifier output

• Several subcategories with varying signal purity

Fit the dimuon mass distribution in each subcategory to extract the signal

- Signal and background modeled using parametric functions
- Completely data-driven background prediction

VH Analysis

Inputs to WH and ZH BDT classifiers

- H candidate kinematics : Dimuon p_T , η , $\Delta \phi(\mu \mu)$, ...
- WH kinematics : $p_T(\ell_W)$, $\Delta \eta(\ell_W, H)$, $\Delta \varphi(\ell_W, H)$, $M_T(\ell_W, MHT)$, ...
- ZH kinematics : Z p_T, η , m_Z, $\Delta\eta$ (Z,H), $\Delta\phi$ (Z,H), cos θ^{*} (Z,H), ...

VH Analysis

Inputs to WH and ZH BDT classifiers

- H candidate kinematics : Dimuon p_T , η , $\Delta \phi(\mu \mu)$, ...
- WH kinematics : $p_T(\ell_W)$, $\Delta \eta(\ell_W, H)$, $\Delta \varphi(\ell_W, H)$, $M_T(\ell_W, MHT)$, ...
- ZH kinematics : Z p_T , η , m_Z , $\Delta \eta$ (Z,H), $\Delta \phi$ (Z,H), $\cos \theta^*$ (Z,H), ...

ttH Analysis

ttH (Hadronic)

ttH (Hadronic)

ttH (Hadronic)

ttH (Leptonic)

ttH (Leptonic)

35

ttH (Leptonic)

ttH (Leptonic)

ttH BDT Classifiers

Adopt the divide-n-fit strategy

- **Common inputs to BDT classifiers:**
 - Dimuon p_T & rapidity, decay angles ϕ_{CS} , cos θ_{CS} ,
 - \rightarrow MET, H_T, numbers of jets
- Inputs specific to ttH (hadronic)
 - p_{T} , η of the three leading jets
 - Top candidate (T): Jet triplet having max. Resolved Hadronic Top Tagger (RHTT) score
 - T p_T, RHTT, p_T balance(H, T) ...
- Inputs specific to ttH (leptonic)
 - \rightarrow ℓ^{T} : Highest p_T additional lepton
 - → $\Delta \phi(H, \ell^T)$, mass(b, ℓ^T), transverse mass (MET, ℓ^T)

ttH leptonic BDT output

137 fb⁻¹ (13 TeV)

ttH Results

 $m_{\mu\mu}$ distributions in the highest purity ttH(had) & ttH(lep) subcategories

ggH Analysis

Gluon Fusion Category

- Higgs candidate:
 - Exactly two opposite-sign muons in the event
 - → $\mu^+\mu^-$ pair with 110 < $m_{\mu\mu}$ < 150 GeV
- ttH veto : No event with 1 medium or 2 loosely tagged b jets
- VH veto : No additional e, µ in the event
- For events with 2 or more jets ($p_T > 25$ GeV)
 - m_{jj} < 400 GeV or |Δη_{jj}| < 2.5 or leading jet p_T < 35 GeV

Dominant background : Drell-Yan

ggH BDT Classifier

• BDT inputs related to H candidate kinematics

- → Dimuon p_T & rapidity, decay angles ϕ_{CS} , $\cos\theta_{CS}$,
- ¬ η(μ), p_T(μ)/m_{µµ}

BDT inputs related to ISR jet activity

- → p_T, η of the leading jet
- → For events with one jet : $\Delta \eta$ (H, j) , $\Delta \varphi$ (H, j)
- For events with 2 or more jets :
 - min- $\Delta\eta(H, j)$, min- $\Delta\varphi(H, j)$, m_{jj}, $\Delta\eta_{jj}$, $\Delta\varphi_{jj}$

• Events with high $m_{\mu\mu}$ resolution pushed to high score

→ Due to $1/\sigma_m$ weight applied to signal during training

-	
Event	HWHM
category	(GeV)
ggH-cat1	2.12
ggH-cat2	1.75
ggH-cat3	1.60
ggH-cat4	1.47
ggH-cat5	1.50

Adopt the divide-n-fit strategy

5 ggH subcategories

- Typical approach is to fit $m_{\mu\mu}$ distribution in each subcategory independently
- Fit in one subcategory not influenced by shape of background in other subcategories

Background shape parameters uncorrelated across subcategories

- Background shape in each subcategory driven by the tail of the Z peak
- Background shape expected to be similar across various subcategories
- Minor variations due to differences in dimuon kinematics

- Background shape in each subcategory driven by the tail of the Z peak
- Background shape expected to be similar across various subcategories
- Minor variations due to differences in dimuon kinematics

Bkg. model in a subcategory

Correlated "Core" shape

Common shape for all categories

Shape parameters correlated across categories

Shape parameters constrained by data in all categories

- Background shape in each subcategory driven by the tail of the Z peak
- Background shape expected to be similar across various subcategories
- Minor variations due to differences in dimuon kinematics

Per-category shape modulation

Common shape for all categories

Shape parameters correlated across categories

Shape parameters constrained by data in all categories 2nd or 3rd order Chebyshev polynomial

Parameters uncorrelated across subcategories

Account for variations across categories

- Background shape in each subcategory driven by the tail of the Z peak
- Background shape expected to be similar across various subcategories
- Minor variations due to differences in dimuon kinematics

Common shape for all categories

Shape parameters correlated across categories

Shape parameters constrained by data in all categories 2nd or 3rd order Chebyshev polynomial

Per-category

shape modulation

Parameters uncorrelated across subcategories

Account for variations across categories

Nbkg (Bkg. yield)

Uncorrelated across subcategories

- Background shape in each subcategory driven by the tail of the Z peak
- Background shape expected to be similar across various subcategories
- Minor variations due to differences in dimuon kinematics

Χ

Fewer background shape parameters; ~10% improvement

w.r.t. keeping all subcategories uncorrelated

Per-category shape modulation K N_{bkg} (Bkg. yield)

Common shape for all categories

Shape parameters correlated across categories

Shape parameters constrained by data in all categories 2nd or 3rd order Chebyshev polynomial

Parameters uncorrelated across subcategories

Account for variations across categories

Uncorrelated across subcategories

48

ggH Results

 $m_{\mu\mu}$ distributions in the 2 most sensitive subcategories

Combined ggH results

Obs (exp) significance : 1.0 (1.6) σ Signal Strength $\mu = 0.63^{+0.65}_{-0.64}$

VBF Analysis

VBF Signal

VBF Signal

VBF Signal

Dominant bkg: DY+jets, EWK Z+jets

Lets recap the divide-n-fit strategy

- Possible to get 30-40% purity in certain VBF search regions
- Few events (10 or less) in the Higgs mass sidebands (SB) to constrain background with a parametric fit
- Statistical uncertainty in SB translates to ~30-50% uncertainty on the predicted background under the Higgs peak

- Possible to get 30-40% purity in certain VBF search regions
- Few events (10 or less) in the Higgs mass sidebands (SB) to constrain background with a parametric fit
- Statistical uncertainty in SB translates to ~30-50% uncertainty on the predicted background under the Higgs peak

Parametric fit :

- Bkg. prediction is entirely data-driven
- But a significant cost in terms of bkg. uncertainty limits sensitivity

- Possible to get 30-40% purity in certain VBF search regions
- Few events (10 or less) in the Higgs mass sidebands (SB) to constrain background with a parametric fit
- Statistical uncertainty in SB translates to ~30-50% uncertainty on the predicted background under the Higgs peak

Parametric fit :

- Bkg. prediction is entirely data-driven
- But a significant cost in terms of bkg. uncertainty limits sensitivity

Try a different approach :

- Include the m_{µµ} directly in the MVA classifier
- Perform a binned fit of the MVA classifier output
- Take background estimate from simulation

- Possible to get 30-40% purity in certain VBF search regions
- Few events (10 or less) in the Higgs mass sidebands (SB) to constrain background with a parametric fit
- Statistical uncertainty in SB translates to ~30-50% uncertainty on the predicted background under the Higgs peak

Parametric fit :

- Bkg. prediction is entirely data-driven
- But a significant cost in terms of bkg. uncertainty limits sensitivity

Try a different approach :

- Include the m_{µµ} directly in the MVA classifier
- Perform a binned fit of the MVA classifier output
- Take background estimate from simulation
- * CMS has performed detailed measurements of DY and EWK Z+jets processes EPJC 78 (2018) 589
- * We can rely on simulation to predict bkg. with **better precision compared to parametric fit**
- * Use data in the Higgs SB [110-115], [135-150] GeV to validate, constrain bkg. prediction
- * About 20% improvement in expected significance w.r.t. divide-n-fit strategy

VBF Analysis : DNN Classifier

- Inputs (H kinematics)
 - \Rightarrow m_{µµ}, dimuon p_T & rapidity, decay angles ϕ_{CS} , cos θ_{CS} , ...
- Inputs (VBF jet kinematics)
 - \Rightarrow m_{jj}, $\Delta \eta_{jj}$, $\Delta \varphi_{jj}$, min- $\Delta \eta$ (H, j), min- $\Delta \varphi$ (H, j), Zeppenfeld variable, p_T-balance(H, jj)
- Low hadronic activity in η-gap
 - → Soft jets ($p_T > 5$ GeV) : Reconstructed from tracks associated with the PV
 - ➡ Number & H_T of soft jets used as DNN inputs

12

VBF Analysis : Systematics

Main sources of background systematics

- Parton shower modeling : HERWIG (nominal choice) v/s PYTHIA (dipole-shower) difference \bullet
- Jet energy scale and resolution
- DY bkg. contribution due VBF jets unmatched at ME-level (e.g. jets from pileup) : Constrained from data ullet
- MC statistical uncertainty ullet
- Theory uncertainty : Missing higher order corrections, choice of PDFs, etc. •
- **Overall impact of the systematic uncertainties is small (less than 5%)** •

137 fb⁻¹ (13 TeV)

H→μμ

Diboson

DY

-ggH

Data

Zji-EW

- VBF

6

8

10

VBF DNN bin

12

Top Quark

VBF Analysis : Results

p-value of Excess

p-value of Excess

p-value of Excess

Combination with Run-1 H \rightarrow µµ analysis improves significance by ~1%

H→µµ Signal

Signal strength in 4 analysis categories

Observed signal is compatible with the standard model prediction

Summary

- H→µµ measurement performed with the full Run-2 data set
- Observed (expected) significance : 3.0 (2.5)σ
- First evidence of H→µµ signal
- First evidence of Higgs interaction with a 2nd generation fermion
- Measured signal strength $\hat{\mu} = 1.19^{+0.44}_{-0.42}$
- Remarkable success of the standard model continues!!

WH & ZH Analysis

Selection	WH le	eptonic	ZH leptonic		
	μμμ	μμε	4μ	2µ2e	
Number of loose (medium) b-tagged jets	$\leq 1 \; (0)$	$\leq 1 \; (0)$	$\leq 1 \ (0)$	$\leq 1 (0)$	
$N(\mu)$ passing id.+iso.	3	2	4	2	
N(e) passing id.+iso.	0	1	0	2	
Lepton charge	$\sum q(\ell)$	$=\pm1$	$\sum q(\ell$	() = 0	
Low mass resonance veto		$m_{\ell\ell} >$	12 GeV		
$N(\mu^+\mu^-)$ pairs with $110 < m_{\mu\mu} < 150 \text{ GeV}$	≥ 1	1	≥ 1	1	
$N(\mu^+\mu^-)$ pairs with $ m_{\mu\mu} - m_Z < 10 \text{ GeV} $	0	0	1	0	
$N(e^+e^-)$ pairs with $ m_{ee}^{\prime\prime} - m_Z < 20 \text{GeV} $	0	0	0	1	

 $m_{\mu\mu}$ (GeV)

5 130 135 140 145 150

 $m_{\mu\mu}$ (GeV)

ttH Analysis Details

Event Selection

Selection	ttH hadronic	ttH leptonic		
Number of b quark jets	> 0 medium or > 1 loose b-tagged jets			
Number of leptons	2	3 or 4		
Lepton charge	$\sum q(\ell) = 0$	$N(\ell) = 3 (4) \to \sum q(\ell) = \pm 1 (0)$		
Jet multiplicity ($p_{\rm T} > 25 \text{GeV}$, $ \eta < 4.7$)	\geq 3	≥ 2		
Leading jet $p_{\rm T}$	$> 50 \mathrm{GeV}$	$> 35 \mathrm{GeV}$		
Jet triplet mass	$100 < m_{jjj} < 300 \text{GeV}$			
Z mass veto		$ m_{\ell\ell} - m_Z > 10 \mathrm{GeV}$		
Low mass resonance veto	—	$m_{\ell\ell} > 12 \mathrm{GeV}$		

Summary of various subcategories

Category	Sig.	tīH	ggH	VH	tΗ	VBF+bbH	HWHM	Bkg.	S/(S+B) (%)	S/\sqrt{B}	Data
		(%)	(%)	(%)	(%)	(%)	(GeV)	in HWHM	in HWHM	in HWHM	in HWHM
ttHhad-cat1	6.87	32.3	40.3	17.2	6.2	4.0	1.85	4298	1.07	0.07	4251
ttHhad-cat2	1.62	84.3	3.8	5.6	6.2		1.81	82.0	1.32	0.12	89
ttHhad-cat3	1.33	94.0	0.3	1.3	4.2	0.2	1.80	12.3	6.87	0.26	12
ttHlep-cat1	1.06	85.8		4.7	9.5		1.92	9.00	7.09	0.22	13
ttHlep-cat2	0.99	94.7		1.0	4.3		1.75	2.08	24.5	0.47	4

ttH Mass Distributions

ggH Analysis

Summary of various subcategories

Category	Sig.	ggH	VBF	$VH + t\bar{t}H$	HWHM	Bkg.	S/(S+B) (%)	S/\sqrt{B}	Data
		(%)	(%)	(%)	(GeV)	in HWHM	in HWHM	in HWHM	in HWHM
ggH-cat1	267.6	93.7	2.9	3.4	2.12	86359	0.20	0.60	86632
ggH-cat2	311.5	93.5	3.4	3.1	1.75	46347	0.46	0.98	46393
ggH-cat3	131.4	93.2	4.0	2.8	1.60	12655	0.70	0.80	12738
ggH-cat4	125.6	91.5	5.5	3.0	1.47	8259	1.03	0.96	8377
ggH-cat5	53.8	83.5	14.3	2.2	1.50	1678	2.16	0.91	1711

ggH Mass Distributions

S/(S+B) Weighted Mass Distributions

S/(S+B) Weighted Mass Distributions

VBF Analysis

All 4 channels combined

Events weighted by S/(S+B) of the corresponding bin for a mass-decorrelated DNN ($m_{\mu\mu}$ fixed to 125 GeV)

Run-1 + Run-2 Combination

H→µµ Signal

$$\hat{\mu}$$
 = 1.19^{+0.44}_{-0.42}

Uncertainty source	$\Delta \mu$		
Total uncertainty	+0.44	-0.42	
Statistical uncertainty	+0.41	-0.39	
Total systematic uncertainty	+0.17	-0.16	
Size of simulated samples	+0.07	-0.06	
Total experimental uncertainty	+0.12	-0.10	
Total theoretical uncertainty	+0.10	-0.11	

