$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment

Giacomo Artoni
on behalf of the ATLAS Collaboration

LHC Seminar – CERN, 8/9/2020
Introduction
In the Standard Model, all known elementary particles acquire mass through the BEH mechanism responsible for the Electroweak Symmetry Breaking.

- Fermions, in particular, acquire mass through Yukawa interactions with the Higgs boson.
 - EWSB does not provide any explanation of the flavour hierarchy!
- The “Yukawa sector”: unlike any other term probed so far.
 - not covered by electroweak precision tests
 - very intriguing sector, with a broad programme of measurements at the LHC.
Higgs couplings to fermions

• Thanks to LHC’s Run 2 data, ATLAS and CMS directly probed Higgs boson couplings to *third generation* fermions
Higgs couplings to fermions

• Thanks to LHC’s Run 2 data, ATLAS and CMS directly probed Higgs boson couplings to *third generation* fermions

\[H \rightarrow \tau \tau \]

Observation at 6.4 standard deviations

Higgs couplings to fermions

- Thanks to LHC’s Run 2 data, ATLAS and CMS directly probed Higgs boson couplings to *third generation* fermions

\[H \rightarrow \tau \tau \]
Observation at 6.4 standard deviations

\[ttH \]
Observation at 5.8 standard deviations
Higgs couplings to fermions

- Thanks to LHC’s Run 2 data, ATLAS and CMS directly probed Higgs boson couplings to third generation fermions.

\[H \rightarrow \tau \tau \]
Observation at 6.4 standard deviations

\[ttH \]
Observation at 5.8 standard deviations

\[VH, H \rightarrow bb \]
Observation at 6.7 standard deviations
Higgs couplings to fermions

Thanks to LHC’s Run 2 data, ATLAS and CMS directly probed Higgs boson couplings to *third generation* fermions

\[H \rightarrow \tau \tau \]
Observation at 6.4 standard deviations

\[ttH \]
Observation at 5.8 standard deviations

\[VH, H \rightarrow bb \]
Observation at 6.7 standard deviations

...and established agreement with the Standard Model predictions at a level of 30%, see the most up-to-date results on our Higgs results public page

\[H \rightarrow \mu^{+}\mu^{-} \] search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Higgs couplings to fermions

Thanks to LHC’s Run 2 data, ATLAS and CMS directly probed Higgs boson couplings to third generation fermions.

Next milestone: establish couplings to second generation fermions.

$H \rightarrow \mu^+ \mu^-$ offers the best opportunity to accomplish this at the LHC!

$H \rightarrow \tau \tau$ observation at 6.4 standard deviations

ttH observation at 5.8 standard deviations

$VH, H \rightarrow bb$ observation at 6.7 standard deviations

$H \rightarrow \mu^+ \mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Main experimental challenges

- Rare process: branching ratio of $(2.17 \pm 0.04) \times 10^{-4}$
 - If compared to the third generation:
 \[\text{BR}_{H \rightarrow \mu\mu}/\text{BR}_{H \rightarrow \tau\tau} \sim (m_\mu/m_\tau)^2 = 0.35\% \]
- Large background from Drell-Yan $\mu^+\mu^-$ production
- Signal-to-background ratio of $\sim 0.2\%$ in signal region (120-130 GeV)
Main experimental challenges

- Rare process: branching ratio of
 \((2.17 \pm 0.04) \times 10^{-4}\)

- If compared to the third generation:
 \(\text{BR}_{H\rightarrow \mu\mu}/\text{BR}_{H\rightarrow \tau\tau} \sim (m_\mu/m_\tau)^2 = 0.35\%\)

- Large background from Drell-Yan \(\mu^+\mu^-\) production

- Signal-to-background ratio of \(\sim 0.2\%\) in signal region (120-130 GeV)

Key search ingredients

- Large dataset, thanks to the LHC!

- Excellent reconstruction performance, especially for muons
Dataset: Run 2 of the LHC (2015-2018)

- Large dataset delivered by the LHC
 - Peak instantaneous luminosity reaching twice the design luminosity in 2018
 impressive result, thanks LHC!

- Great operation of the ATLAS detector:
 - Delivered by the LHC: 156 fb\(^{-1}\)
 - Recorded by ATLAS: 147 fb\(^{-1}\)
 (Data taking efficiency 94.2%)
 - Good for Physics: 139 fb\(^{-1}\)
 (Efficiency 94.6%, high data quality)
Reconstruction performance: muons

• Muon reconstruction during Run 2: excellent performance and stability!

 • High efficiency for identification (top), isolation (bottom), and association to the primary vertex

 • Small impact from high rates and large pile-up interactions
 • also, well modelled by simulation

 • Extensive set of results available in ATLAS-CONF-2020-030

• Good dimuon mass resolution (1.7-2.3%)
Reconstruction performance: muons

- Muon reconstruction during Run 2: excellent performance and stability!
 - High efficiency for identification (top), isolation (bottom) and association to the primary vertex
 - Small impact from high rates and large pile-up interactions
 - also, well modelled by simulation
 - Extensive set of results available in ATLAS-CONF-2020-030
- Good dimuon mass resolution (1.7-2.3%)
Reconstruction performance: muons

- Muon reconstruction during Run 2: excellent performance and stability!
 - High efficiency for identification (top), isolation (bottom) and association to the primary vertex
 - Small impact from high rates and large pile-up interactions
 - also, well modelled by simulation
 - Extensive set of results available in ATLAS-CONF-2020-030
- Good dimuon mass resolution (1.7-2.3%)

$H \rightarrow \mu^+\mu^-$ ATLAS search

Analysis strategy

- Maximise signal acceptance by employing the most efficient selection available
 - combination of single-muon triggers ($p_T > 26$ GeV and isolated, otherwise $p_T > 50$ GeV), with signal efficiency of 91% relative to event preselection
 - muons reconstructed from mostly combined tracks but also MS-only tracks ($|\eta|>2.5$, extending acceptance to $|\eta|=2.7$) as well as segment-/calo-tagged tracks ($|\eta|<0.1$)

- Categorise events to improve the inclusive signal-to-background ratio

- Extract signal from a binned, maximum likelihood S+B fit of the dimuon mass distribution in the 110-160 GeV range
 - Simultaneous fit to 20 categories, background estimated from sidebands in each category

Dimuon mass resolution improved by adding at most one final-state-radiation photon (ggF & VBF)

Use only photons close to muons, negligible contributions from $H\rightarrow Z(\rightarrow \mu\mu)\gamma$

$H\rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020

- $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$
- Only events with FSR (5% of all)
 - Mean: 118.6 GeV
 - RMS: 4.7 GeV
 - Mean: 126.1 GeV
 - RMS: 4.3 GeV
Choice of analysis categories

- Sort events into mutually exclusive categories, targeting the various Higgs boson production modes
 - Category selections applied in a specific, exclusive order
- Employ process-specific boosted decision trees (using XGBoost)

Basic selection
targeting the various Higgs boson production modes
- trigger, primary vertex, two opposite-charge muons

ttH
- one extra electron or muon
- at least one b-tagged jet
- selection on dedicated BDT score

VH
- no b-tagged jets
- one (two) extra electron(s) or muon(s)
- selection on dedicated BDT score

VBF categories
- no b-tagged jets, no extra muons
- selection on dedicated BDT score

ggF categories
- no b-tagged jets, no extra muons

H → \mu^+\mu^- search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ttH category

- Requiring at least one extra electron or muon and at least one b-tagged jet
 - target semi-/di-leptonic decays of the top pair
- Using the two highest-\(p_T\) muons with opposite charge as Higgs candidate
- BDT (12 features, see backup), trained to distinguish \(ttH(\rightarrow \mu \mu)\) signal from all known SM backgrounds, used to define the final ttH category
 - large reduction of tt background, other sources include ttZ, diboson and ttH events where the Higgs does not decay into a muon pair

Expected signal events: 1.2

\(ttH\) purity (wrt other Higgs modes): 98%

\(S/B = 8\%\)
VH categories

- Veto events with a b-tagged jet
 - 4-lepton selection, \(\geq 2 \) extra e/\(\mu \) (targeting \(Z(\rightarrow l\bar{l})H \))
 - 3-lepton selection, 1 extra e/\(\mu \) (targeting \(W(\rightarrow l\nu)H \))

- Relaxed \(p_T \) cut on muons if comparing to ggF/VBF case

- Pairing based on charges and minimisation of \(\chi^2 \) criterion (when \(n_\mu > 2 \))
 - taking into account reconstructed and expected masses for the two bosons
 - pairing efficiency: 93\% (4-lepton), 97\% (3-lepton)

- BDT discriminants trained separately for 3-lepton and 4-lepton events (8 and 7 features, see backup)

- Dominant source of background: diboson processes
VH categories

$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
VH categories

VH3LH (higher S/B)
Expected signal events: 1.4
VH purity (wrt other Higgs modes): >99%
S/B = 3.7%
VH categories

VH3LH (higher S/B)
Expected signal events: 1.4
VH purity (wrt other Higgs modes): >99%
S/B = 3.7%

VH3MH (lower S/B)
Expected signal events: 2.8
VH purity (wrt other Higgs modes): 89%
S/B = 0.8%
VH categories

VH3LH (higher S/B)
Expected signal events: 1.4
VH purity (wrt other Higgs modes): >99%
S/B = 3.7%

VH3MH (lower S/B)
Expected signal events: 2.8
VH purity (wrt other Higgs modes): 89%
S/B = 0.8%

VH4L
Expected signal events: 0.5
VH purity (wrt other Higgs modes): >99%
S/B = 2.6%
VH categories

VH3LH (higher S/B)
Expected signal events: 1.4
VH purity (wrt other Higgs modes): >99%
S/B = 3.7%

VH3MH (lower S/B)
Expected signal events: 2.8
VH purity (wrt other Higgs modes): 89%
S/B = 0.8%

VH4L
Expected signal events: 0.5
VH purity (wrt other Higgs modes): >99%
S/B = 2.6%

$H \rightarrow \mu^+ \mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
VBF categories

- Veto events with a b-tagged jet or with an extra muon
- Select only events with at least 2 jets
- Trained dedicated BDT to separate VBF signal from background (17 features)
 - dimuon and dijet systems information
 - missing transverse energy and H_T (against tt)
 - N_{tracks} associated to each jet, providing discrimination between gluon- and quark-induced jets

- Using fully simulated samples in the 120-130 GeV window, BDT designed to be as insensitive to $m_{\mu\mu}$ as possible (same applies to ggF, see later)
VBF categories

- Four categories defined, remaining events will be tested for ggF categories (see next slide)

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>2.8</td>
<td>93%</td>
<td>18%</td>
</tr>
<tr>
<td>VBF High</td>
<td>3.5</td>
<td>87%</td>
<td>10%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>4.8</td>
<td>78%</td>
<td>5%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>7.5</td>
<td>65%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
VBF categories

- Four categories defined, remaining events will be tested for ggF categories (see next slide)

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>2.8</td>
<td>93%</td>
<td>18%</td>
</tr>
<tr>
<td>VBF High</td>
<td>3.5</td>
<td>87%</td>
<td>10%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>4.8</td>
<td>78%</td>
<td>5%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>7.5</td>
<td>65%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>2.8</td>
<td>93%</td>
<td>18%</td>
</tr>
<tr>
<td>VBF High</td>
<td>3.5</td>
<td>87%</td>
<td>10%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>4.8</td>
<td>78%</td>
<td>5%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>7.5</td>
<td>65%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
VBF categories

- Four categories defined, remaining events will be tested for ggF categories (see next slide)

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>2.8</td>
<td>93%</td>
<td>18%</td>
</tr>
<tr>
<td>VBF High</td>
<td>3.5</td>
<td>87%</td>
<td>10%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>4.8</td>
<td>78%</td>
<td>5%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>7.5</td>
<td>65%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
VBF categories

- Four categories defined, remaining events will be tested for ggF categories (see next slide)

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>2.8</td>
<td>93%</td>
<td>18%</td>
</tr>
<tr>
<td>VBF High</td>
<td>3.5</td>
<td>87%</td>
<td>10%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>4.8</td>
<td>78%</td>
<td>5%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>7.5</td>
<td>65%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
VBF categories

- Four categories defined, remaining events will be tested for ggF categories (see next slide)

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>2.8</td>
<td>93%</td>
<td>18%</td>
</tr>
<tr>
<td>VBF High</td>
<td>3.5</td>
<td>87%</td>
<td>10%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>4.8</td>
<td>78%</td>
<td>5%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>7.5</td>
<td>65%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

\[\sqrt{s} = 13 \text{ TeV, } 139 \text{ fb}^{-1} \]

![ATLAS plot](image-url)
VBF categories

• Four categories defined, remaining events will be tested for ggF categories (see next slide)

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>2.8</td>
<td>93%</td>
<td>18%</td>
</tr>
<tr>
<td>VBF High</td>
<td>3.5</td>
<td>87%</td>
<td>10%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>4.8</td>
<td>78%</td>
<td>5%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>7.5</td>
<td>65%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

$H\rightarrow\mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories

- Veto events with a b-tagged jet or with an extra muon
- Divide events into channels: N-jet = 0, 1 and ≥2
- Trained dedicated BDT to separate \(ggF + VBF \) signal from background
 - 3, 7, 17 features for 0-, 1-, and 2-jet, respectively (see backup)
 - 2-jet channel using the same features as in the VBF-dedicated BDT
- In each channel BDT used to create 4 categories
Categories - summary

- A total of 20 categories
 - ttH, $3xVH$, $4xVBF$, $4xN$-jet (0, 1, ≥ 2)
- S/B ranging from $<0.1\%$ (0-jet Low) to 18% (VBF Very High)
- Significance ranging from 0.1 to 0.6σ
- Very good separation between the different production modes
- DY background dominant in the ggF/VBF categories
Signal modeling

- Signal shape dominated by detector resolution
- Using double-sided Crystal Ball (CB) as analytic parameterisation for the signal
 - Gaussian core + power-law tails on each side
- MC spectra created by summing over all production modes in each category
 - relative normalisation from SM assumed, negligible differences observed between modes
- Crystal Ball width ranges from 2.6 to 3.2 GeV

Systematic uncertainties
- BR, QCD scale, PDF uncertainties (all modes)
- Underlying event, parton showering (ggF/VBF)
- Pileup modelling, N_{tracks}(jet)
- Reconstruction efficiencies (e/µ/b-tag/jet)
- Muon momentum scale and resolution, Run1 Higgs mass uncertainty (240 MeV)
Background modelling

• Key element of the search, as S/B is generally quite low
 • Per-mille level precision necessary, to avoid biases in extracted signal yields
• Requires a large number of simulated events
• Dimuon mass spectrum parameterised with:
 \(F(m_{\mu\mu}, a_i)^{\text{cat}} = \text{Core}(m_{\mu\mu}) \times \text{Empirical}(m_{\mu\mu}, a_i)^{\text{cat}} \)
Background modelling

- **Core($m_{\mu\mu}$)** function:
 - Crucial to take into account the steepness of the DY background as well as resolution effects
 - Based on DY line-shape @LO, convolved with Gaussian to take into account $m_{\mu\mu}$-dependent resolution effects
 - Fully rigid (no extra degrees of freedom)
 - Same for all categories
Background modelling

- **Empirical** \((m_{\mu\mu}, a_i)^{\text{cat}}\) function:
 - Using two “families” of functions: *PowerN* (N+1 parameters) and *EpolyN* (N parameters)
 - One function per category, with varying number of free parameters
 - Corrects for distortions of the \(m_{\mu\mu}\) spectrum induced by:
 - category selections
 - HO theory corrections
 - sub-leading background contributions

<table>
<thead>
<tr>
<th>Function</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerN</td>
<td>(m_{\mu\mu}^{a_0+a_1m_{\mu\mu}+a_2m_{\mu\mu}^2+\ldots+a_Nm_{\mu\mu}^N})</td>
</tr>
<tr>
<td>EpolyN</td>
<td>(\exp(a_1m_{\mu\mu} + a_2m_{\mu\mu}^2 + \ldots + a_Nm_{\mu\mu}^N))</td>
</tr>
</tbody>
</table>

\(H\rightarrow\mu^+\mu^-\) search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Choice of empirical function

Pre-selection: general fit quality
Keep only functions that can fit *data sidebands, full-sim background* and *fast-sim DY* with $P(\chi^2) > 1\%$ (DY not required for ttH and VH)

Spurious signal test
Discard all functions with measured spurious signal larger than 20\% of the statistical error on the signal (in each category)

Minimise statistical uncertainty
Retain only functions with the smallest number of degrees of freedom

Final stage
Pick the function with the smallest estimated spurious signal (but typically at this point we are already left with just one)
Spurious signal

- Measured signal yield from a \(S+B \) fit performed on **background-only templates**
 - built from high-statistics background samples (fast DY simulation for ggF/VBF, full simulation for ttH/VH)
 - Taking maximum absolute value of spurious signal in the 120-130 GeV mass range

- Dominant experimental systematic
 - accounting for imperfect choice of analytic model for the background and potential local biases in the \(m_{\mu\mu} \) spectrum (induced by selections, for example)

- All spurious signal uncertainties considered uncorrelated
 - Expected significance only impacted by ~2% if switching to full correlation

\(H \rightarrow \mu^+\mu^- \) search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Drell Yan simulation

- Fully simulated background samples are used to train the classifiers described earlier and to test the background modelling
 - Integrated luminosity 5-20 times larger than data ⇒ limiting factor when aiming at per-mille precision in background modelling!
- Two fast-simulations developed, minimal requirement: 10 ab⁻¹ per category

SHERPA 2.2.4 with LO matrix elements
(up to 3 extra partons)

PYTHIA for QED and QCD parton showering and hadronisation

POWHEG-BOX (0, 1 partons at NLO) + ALPGEN (2 partons at LO)

Approximate QCD shower algorithm, PHOTOS for QED FSR

- Experimental effects included through parameterisations extracted from fully simulated samples or ATLAS data
 - Particular focus on detailed description of
 - muons: momentum resolution, trigger and reconstruction efficiency
 - pile-up and underlying event effects on missing transverse energy
 - hadronic jets from the primary interaction and pile-up
Results
Results

\[\text{Weighted Events / 2 GeV} \]

\[\text{ATLAS} \]
\[\sqrt{s} = 13 \text{ TeV}, \text{ 139 fb}^{-1} \]
\[H \rightarrow \mu \mu, \ln(1 + S/B) \text{ weighted} \]

\[\text{Data - Bkg.} \]

\[\pm 0.58 \]
\[+0.13/-0.08 \]
\[+0.07/-0.03 \]
\[\pm 0.1 \]

Signal strength (best fit)

\[1.2 \pm 0.6 \]

Observed BR limit at 95% CL

\[< 4.7 \times 10^{-4} \]

Significance (wrt no \(H \rightarrow \mu \mu \) signal hypothesis)

\[\text{Observed: 2.0 \sigma} \]
\[\text{Expected: 1.7 \sigma} \]

Results

\(H \rightarrow \mu^+\mu^- \) search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020

26
Results

Signal strength (best fit)

1.2 ± 0.6
Results

Signal strength (best fit)

\[1.2 \pm 0.6 \]

Observed BR limit at 95% CL

\[<4.7 \times 10^{-4} \]
Results

Signal strength (best fit)
1.2 ± 0.6

Observed BR limit at 95% CL
<4.7 × 10^{-4}

Significance
(wrt no $H \rightarrow \mu\mu$ signal hypothesis)
- Observed: 2.0σ
- Expected: 1.7σ

$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Results

Signal strength (best fit)
1.2 ± 0.6

Observed BR limit at 95% CL
<4.7 x 10^-4

Significance
(wrt no $H\rightarrow\mu\mu$ signal hypothesis)
Observed: 2.0σ
Expected: 1.7σ

Uncertainties (on signal strength)
Statistics (data): ±0.58
Theory (signal): +0.13/-0.08
Experimental (signal): +0.07/-0.03
Background modelling: ±0.1

$H\rightarrow\mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Results

- Tested grouping categories (ttH+VH, VBF, 0-jet, 1-jet and 2-jet)
- Compatibility between signal strengths in the five groups: 20%
 - 2% when checking on ungrouped categorisation (20)
- Tested adding one extra degree of freedom to the background function for those categories with largest deviation from the average
 - Negligible impact on final result and compatibility check
Conclusions

- New $H \rightarrow \mu \mu$ results presented with the full Run 2 ATLAS dataset (139 fb$^{-1}$)
- Best-fit signal strength: 1.2 ± 0.6
- Observed significance: 2.0σ
- Large improvement over our previous publication, thanks to:
 - larger dataset (factor ~ 2)
 - more advanced techniques (+25%)
 - background modelling
 - definition of the categories

$H \rightarrow \mu^{+}\mu^{-}$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Conclusions

- New $H \rightarrow \mu \mu$ results presented with the full Run 2 ATLAS dataset (139 fb$^{-1}$)
- Best-fit signal strength: 1.2 ± 0.6
- Observed significance: 2.0σ
- Large improvement over our previous publication, thanks to:
 - larger dataset (factor ~ 2)
 - more advanced techniques (+25%)
 - background modelling
 - definition of the categories

$H \rightarrow \mu^+ \mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Conclusions

- New $H \rightarrow \mu \mu$ results presented with the full Run 2 ATLAS dataset (139 fb$^{-1}$)
- Best-fit signal strength: 1.2 ± 0.6
- Observed significance: 2.0σ
- Large improvement over our previous publication, thanks to:
 - larger dataset (factor ~ 2)
 - more advanced techniques (+25%)
 - background modelling
 - definition of the categories

$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Conclusions

- New $H\rightarrow\mu\mu$ results presented with the full Run 2 ATLAS dataset (139 fb$^{-1}$)
- Best-fit signal strength: 1.2 ± 0.6
- Observed significance: 2.0σ
- Large improvement over our previous publication, thanks to:
 - larger dataset (factor ~2)
 - more advanced techniques (+25%)
 - background modelling
 - definition of the categories
- Run 3 of vital importance to further increase sensitivity!

$H\rightarrow\mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Backup Slides
Object-level selections

Muons
- $|\eta|<2.7$, $p_T^{\text{lead}}>27$ GeV (matching event trigger), $p_T^{\text{sub}}>15$ GeV (10, for VH-3lep)
- Most efficient selections available
 - identification: mostly combined tracks but also including MS-only ($|\eta|>2.5$) and segment-/calo-tagged ($|\eta|<0.1$)
 - isolation: using ID tracks and calo deposits around the muon ($\Delta R<0.2$)

Photons
- only close to muons ($\Delta R(\gamma, \mu)<0.2$), with minimal p_T requirement ranging from 3 GeV ($\Delta R=0$) to 8 GeV ($\Delta R=0.2$)

Jets
- Reconstructed using the particle flow algorithm
- $p_T>25$ GeV for $|\eta|<2.4$, $p_T>30$ GeV for $2.4<|\eta|<4.5$
- remove jets not coming from the primary vertex (only for jets with $|\eta|<2.4$ and $p_T<60$ GeV)

Electrons
- $|\eta|<2.47$ and $p_T>7$ GeV (excluding $1.37<|\eta|<1.52$)
- Isolated (ID tracks and calo clusters within $\Delta R<0.2$) and matching the primary vertex
Choice of analysis categories

- Sort event in mutually exclusive categories, targeting the various Higgs boson production modes
 - Category selections applied in a specific, exclusive order
- Employ process-specific boosted decision trees (using XGBoost)

$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
H→μ+μ− search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020

ggF categories: 0-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-jet Very High</td>
<td>59</td>
<td>96%</td>
<td>0.4%</td>
</tr>
<tr>
<td>0-jet High</td>
<td>99</td>
<td>99%</td>
<td>0.2%</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>119</td>
<td>99%</td>
<td>0.1%</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>79</td>
<td>99%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

ATLAS

\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

![Graph showing the distribution of events for ggF and VBF categories](image)
ggF categories: 0-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-jet Very High</td>
<td>59</td>
<td>96%</td>
<td>0.4%</td>
</tr>
<tr>
<td>0-jet High</td>
<td>99</td>
<td>99%</td>
<td>0.2%</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>119</td>
<td>99%</td>
<td>0.1%</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>79</td>
<td>99%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$H\rightarrow\mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories: 0-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-jet Very High</td>
<td>59</td>
<td>96%</td>
<td>0.4%</td>
</tr>
<tr>
<td>0-jet High</td>
<td>99</td>
<td>99%</td>
<td>0.2%</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>119</td>
<td>99%</td>
<td>0.1%</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>79</td>
<td>99%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

$H\rightarrow\mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories: 0-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-jet Very High</td>
<td>59</td>
<td>96%</td>
<td>0.4%</td>
</tr>
<tr>
<td>0-jet High</td>
<td>99</td>
<td>99%</td>
<td>0.2%</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>119</td>
<td>99%</td>
<td>0.1%</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>79</td>
<td>99%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
ggF categories: 0-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-jet Very High</td>
<td>59</td>
<td>96%</td>
<td>0.4%</td>
</tr>
<tr>
<td>0-jet High</td>
<td>99</td>
<td>99%</td>
<td>0.2%</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>119</td>
<td>99%</td>
<td>0.1%</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>79</td>
<td>99%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

$H\rightarrow\mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories: 0-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-jet Very High</td>
<td>59</td>
<td>96%</td>
<td>0.4%</td>
</tr>
<tr>
<td>0-jet High</td>
<td>99</td>
<td>99%</td>
<td>0.2%</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>119</td>
<td>99%</td>
<td>0.1%</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>79</td>
<td>99%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories: 1-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-jet Very High</td>
<td>16.5</td>
<td>99%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1-jet High</td>
<td>46</td>
<td>98%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>90</td>
<td>97%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>125</td>
<td>96%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

The graph shows the fraction of events as a function of $O^{(1)}_{ggF}$ for the ATLAS experiment with $\sqrt{s} = 13$ TeV and 139 fb$^{-1}$. The categories are color-coded and labeled with their respective values:

- **Data**
- **VBF $H \rightarrow \mu\mu$ simulation**
- **ggF $H \rightarrow \mu\mu$ simulation**
- **Bkg simulation**
ggF categories: 1-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-jet Very High</td>
<td>16.5</td>
<td>99%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1-jet High</td>
<td>46</td>
<td>98%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>90</td>
<td>97%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>125</td>
<td>96%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
ggF categories: 1-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-jet Very High</td>
<td>16.5</td>
<td>99%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1-jet High</td>
<td>46</td>
<td>98%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>90</td>
<td>97%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>125</td>
<td>96%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$H \rightarrow \mu^+ \mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories: 1-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-jet Very High</td>
<td>16.5</td>
<td>99%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1-jet High</td>
<td>46</td>
<td>98%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>90</td>
<td>97%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>125</td>
<td>96%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

H→μ+μ− search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories: 1-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-jet Very High</td>
<td>16.5</td>
<td>99%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1-jet High</td>
<td>46</td>
<td>98%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>90</td>
<td>97%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>125</td>
<td>96%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
ggF categories: 1-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-jet Very High</td>
<td>16.5</td>
<td>99%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1-jet High</td>
<td>46</td>
<td>98%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>90</td>
<td>97%</td>
<td>0.4%</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>125</td>
<td>96%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

ATLAS

Data
- VBF $H \rightarrow \mu \mu$ simulation
- ggF $H \rightarrow \mu \mu$ simulation
- Bkg simulation

$O_{ggF}^{(1)}$
ggF categories: 2-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-jet Very High</td>
<td>17.6</td>
<td>98%</td>
<td>1.7%</td>
</tr>
<tr>
<td>2-jet High</td>
<td>50</td>
<td>95%</td>
<td>1%</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>79</td>
<td>91%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>63</td>
<td>85%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF categories: 2-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-jet Very High</td>
<td>17.6</td>
<td>98%</td>
<td>1.7%</td>
</tr>
<tr>
<td>2-jet High</td>
<td>50</td>
<td>95%</td>
<td>1%</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>79</td>
<td>91%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>63</td>
<td>85%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
ggF categories: 2-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-jet Very High</td>
<td>17.6</td>
<td>98%</td>
<td>1.7%</td>
</tr>
<tr>
<td>2-jet High</td>
<td>50</td>
<td>95%</td>
<td>1%</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>79</td>
<td>91%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>63</td>
<td>85%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Graph:

- **Data**
- **VBF $H \rightarrow \mu\mu$ simulation**
- **ggF $H \rightarrow \mu\mu$ simulation**
- **Bkg simulation**

ATLAS \(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

\(O_{ggF}^{(2)} \)
ggF categories: 2-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-jet Very High</td>
<td>17.6</td>
<td>98%</td>
<td>1.7%</td>
</tr>
<tr>
<td>2-jet High</td>
<td>50</td>
<td>95%</td>
<td>1%</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>79</td>
<td>91%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>63</td>
<td>85%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

ATLAS

- Data
- VBF $H\rightarrow\mu\mu$ simulation
- ggF $H\rightarrow\mu\mu$ simulation
- Bkg simulation

$O_{ggF}^{(2)}$
ggF categories: 2-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-jet Very High</td>
<td>17.6</td>
<td>98%</td>
<td>1.7%</td>
</tr>
<tr>
<td>2-jet High</td>
<td>50</td>
<td>95%</td>
<td>1%</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>79</td>
<td>91%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>63</td>
<td>85%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

ATLAS $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

![Graph showing fraction of events](image)
ggF categories: 2-jet channel

<table>
<thead>
<tr>
<th>Category</th>
<th>Expected signal</th>
<th>ggF+VBF purity</th>
<th>Expected S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-jet Very High</td>
<td>17.6</td>
<td>98%</td>
<td>1.7%</td>
</tr>
<tr>
<td>2-jet High</td>
<td>50</td>
<td>95%</td>
<td>1%</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>79</td>
<td>91%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>63</td>
<td>85%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$
Signal composition

<table>
<thead>
<tr>
<th>Category</th>
<th>ggF</th>
<th>VBF</th>
<th>WH</th>
<th>ZH</th>
<th>t(\bar{t})H</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>6.6%</td>
<td>93.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>VBF High</td>
<td>12.8%</td>
<td>87.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>21.3%</td>
<td>78.5%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>VBF Low</td>
<td>34.8%</td>
<td>64.8%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>2-jet Very High</td>
<td>82.0%</td>
<td>15.7%</td>
<td>1.2%</td>
<td>1.0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>2-jet High</td>
<td>79.3%</td>
<td>16.0%</td>
<td>2.7%</td>
<td>1.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>80.7%</td>
<td>10.4%</td>
<td>5.4%</td>
<td>3.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>78.2%</td>
<td>6.6%</td>
<td>8.8%</td>
<td>4.9%</td>
<td>1.5%</td>
</tr>
<tr>
<td>1-jet Very High</td>
<td>78.2%</td>
<td>21.2%</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1-jet High</td>
<td>88.2%</td>
<td>10.4%</td>
<td>0.9%</td>
<td>0.6%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>91.4%</td>
<td>6.1%</td>
<td>1.6%</td>
<td>0.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>92.4%</td>
<td>3.8%</td>
<td>2.6%</td>
<td>1.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0-jet Very High</td>
<td>94.1%</td>
<td>2.5%</td>
<td>1.4%</td>
<td>2.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0-jet High</td>
<td>98.3%</td>
<td>1.0%</td>
<td>0.4%</td>
<td>0.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>99.1%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>99.5%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
<tr>
<td>VH4L</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>99.5%</td>
<td>0.4%</td>
</tr>
<tr>
<td>VH3LH</td>
<td>0.3%</td>
<td>0.1%</td>
<td>96.9%</td>
<td>2.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>VH3LM</td>
<td>4.2%</td>
<td>1.0%</td>
<td>80.8%</td>
<td>8.6%</td>
<td>5.3%</td>
</tr>
<tr>
<td>(t\bar{t}H)</td>
<td>0.1%</td>
<td>0.0%</td>
<td>1.5%</td>
<td>0.4%</td>
<td>98.0%</td>
</tr>
</tbody>
</table>

\[H \rightarrow \mu^+\mu^- \] search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Background modelling uncertainties

<table>
<thead>
<tr>
<th>Category</th>
<th>Empirical Function</th>
<th>$\text{max}(SS/ \delta S)[%]$</th>
<th>$\text{max}(SS/S_{SM})[%]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBF Very High</td>
<td>Epoly1</td>
<td>-20.3</td>
<td>-34.8</td>
</tr>
<tr>
<td>VBF High</td>
<td>Power0</td>
<td>11.7</td>
<td>20.0</td>
</tr>
<tr>
<td>VBF Medium</td>
<td>Power0</td>
<td>8.5</td>
<td>16.4</td>
</tr>
<tr>
<td>VBF Low</td>
<td>Power0</td>
<td>11.2</td>
<td>2.4</td>
</tr>
<tr>
<td>2-jet Very High</td>
<td>Power1</td>
<td>-13.3</td>
<td>-34.5</td>
</tr>
<tr>
<td>2-jet High</td>
<td>Epoly2</td>
<td>-19.8</td>
<td>-41.2</td>
</tr>
<tr>
<td>2-jet Medium</td>
<td>Power1</td>
<td>19.8</td>
<td>40.9</td>
</tr>
<tr>
<td>2-jet Low</td>
<td>Epoly3</td>
<td>2.1</td>
<td>8.0</td>
</tr>
<tr>
<td>1-jet Very High</td>
<td>Epoly2</td>
<td>21.9</td>
<td>-53.4</td>
</tr>
<tr>
<td>1-jet High</td>
<td>Epoly2</td>
<td>-7.8</td>
<td>-18.5</td>
</tr>
<tr>
<td>1-jet Medium</td>
<td>Power1</td>
<td>4.2</td>
<td>7.9</td>
</tr>
<tr>
<td>1-jet Low</td>
<td>Power1</td>
<td>17.3</td>
<td>51.5</td>
</tr>
<tr>
<td>0-jet Very High</td>
<td>Power1</td>
<td>19.2</td>
<td>50.9</td>
</tr>
<tr>
<td>0-jet High</td>
<td>Power1</td>
<td>-19.4</td>
<td>43.5</td>
</tr>
<tr>
<td>0-jet Medium</td>
<td>Power1</td>
<td>25.8</td>
<td>69.4</td>
</tr>
<tr>
<td>0-jet Low</td>
<td>Epoly3</td>
<td>-20.8</td>
<td>-100.4</td>
</tr>
<tr>
<td>VH4L</td>
<td>Power1</td>
<td>20.7</td>
<td>230</td>
</tr>
<tr>
<td>VH3LH</td>
<td>Epoly2</td>
<td>36.9</td>
<td>210</td>
</tr>
<tr>
<td>VH3LM</td>
<td>Epoly3</td>
<td>33.6</td>
<td>276</td>
</tr>
<tr>
<td>$t\bar{t}H$</td>
<td>Power0</td>
<td>32.2</td>
<td>117</td>
</tr>
</tbody>
</table>
Background model choice

Function type

- Power1: 8
- Power0: 4
- Epoly1: 1
- Epoly2: 4
- Epoly3: 3

Number of free parameters

- $N = 2$: 12
- $N = 3$: 3
- $N = 1$: 5
Compatibility with previous result

<table>
<thead>
<tr>
<th>μ ATLAS-CONF-2019-028</th>
<th>μ this work</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 ± 0.7</td>
<td>1.2 ± 0.6</td>
<td>1.4σ</td>
</tr>
</tbody>
</table>

Values of the signal strengths (μ) reported in the conference note ATLAS-CONF-2019-028 and this work.

Their compatibility in terms of data statistics only and expressed as number of standard deviations σ is evaluated using a bootstrap technique (see Ref. Phys. Rev. D 39 (1989) 274) based on the data events passing the selection of either ATLAS-CONF-2019-028, or the one of the current analysis, or both.

All procedures of the respective analyses are preserved.

The correlation between the two signal strength measurements is evaluated to be 75%.
Broad excess at 135 GeV?

- Local fluctuations in different categories
- With scan of the background-only p-value as a function of $m_{\mu\mu}$, we find a local p-value of 2.5 σ at 135 GeV
- Including the look elsewhere effect (see here for a reference):
 - the global significance goes down to 1.6 σ, when using the 130-150 GeV range for the test (trial factor ~9)
 - if considering the entire range of the sidebands (110-120, 130-160 GeV) then this would double the trial factor, bringing the global p-value below 1 σ
$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
$H \rightarrow \mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
Systematic uncertainties (breakdown)
Upper limits on Higgs to leptons BR

$\sqrt{s} = 13$ TeV, 36-139 fb$^{-1}$

$B(H \rightarrow l \bar{l})$ in %

$H\rightarrow\mu^+\mu^-$ search with the ATLAS experiment - Giacomo Artoni (University of Oxford) - Sept. 8, 2020
ggF/VBF categories - BDT features

• The inputs are the same between the VBF BDT and the ggF 2-jet one

• Features used:
 • All channels: $p_T^{\mu\mu}$, $y^{\mu\mu}$ and $\cos\theta^*$
 • 1-/2-jet channels: leading jet information (p_T, η, N_{tracks}, $\Delta\phi_{\mu\mu,i}$)
 • 2-jet channel:
 sub-leading jet information (p_T, η, N_{tracks}, $\Delta\phi_{\mu\mu,i}$) and
dijet system information (p_T^{jj}, m^{jj}, y^{jj}, $\Delta\phi_{\mu\mu,ij}$)
• Features used:

• multiplicity of jets, b-tagged jets and jets with $|\eta| < 2.5$

• total H_T of jets (scalar sum of all their transverse momenta)

• missing transverse energy (E_{miss})

• transverse momenta of the non-Higgs leptons in the event (that is those that are not part of the Higgs candidate pair)

• $p_T^{\mu\mu}$, $y^{\mu\mu}$ and $\cos\theta^*$

• leading and sub-leading jet information transverse momenta

• transverse masses of leptonic W and top (3$^{\text{rd}}$ lepton + E_{miss} + b-tagged jet)

• transverse masses of hadronic W and top (using three jets, at least one b-tagged)

• sub-leading Higgs mass (extra muon + Higgs candidate muon with opposite charge)

• invariant mass of additional leptons (at least two muons or electrons)
VH (3-lepton) categories - BDT features

- Features used:
 - missing transverse energy ($E_{T\text{miss}}$)
 - $\Delta \phi$ between Higgs and $E_{T\text{miss}}$
 - transverse momentum of the W candidate lepton
 - transverse mass of the W candidate (lepton + $E_{T\text{miss}}$)
 - $\Delta \phi$ and $\Delta \eta$ between Higgs and extra lepton
 - number of jets
 - transverse momentum of the leading jet
Features used:

- number of jets
- transverse momentum of the leading and sub-leading jets
- $\Delta\phi$ between the leptons associated to a Z boson
- $\Delta\phi$ and $\Delta\eta$ between Higgs and Z candidate
- Z candidate mass
Data/simulation comparisons (VBF)

- **ATLAS**
 - **VBF Very High**: Normalised Events / 2 GeV
 - **VBF High**: Normalised Events / 2 GeV
 - **VBF Medium**: Normalised Events / 2 GeV
 - **VBF Low**: Normalised Events / 2 GeV

- **ATLAS**: \(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

- **Data - non-DY**, **Fast-Sim Sherpa**, **Fast-Sim Powheg/Alpgen**, **Full-Sim**

- **ATLAS** = 13 TeV, 139 fb

- **Data / MC**
Data/simulation comparisons (2-jet)

ATLAS
\(\sqrt{s} = 13\ \text{TeV}, 139 \text{ fb}^{-1}\)
2-Jet Low

ATLAS
\(\sqrt{s} = 13\ \text{TeV}, 139 \text{ fb}^{-1}\)
2-Jet Medium

ATLAS
\(\sqrt{s} = 13\ \text{TeV}, 139 \text{ fb}^{-1}\)
2-Jet Very High

ATLAS
\(\sqrt{s} = 13\ \text{TeV}, 139 \text{ fb}^{-1}\)
2-Jet High
Data/simulation comparisons (1-jet)

1-Jet Very High

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-Jet High

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-Jet Medium

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-Jet Low

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data/simulation comparisons (0-jet)

ATLAS

- **0-Jet Very High**
- **0-Jet High**
- **0-Jet Medium**
- **0-Jet Low**

Data - non-DY

Fast-Sim Sherpa

Fast-Sim Powheg/Alpgen

Full-Sim

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$
Fit breakdown on simulation (VBF)

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
\(H \rightarrow \mu\mu, \text{ VBF Very High} \)
\(\chi^2/\text{n.d.f.} = 1.21 \ (p = 22\%) \)

Events / 2 GeV

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
\(H \rightarrow \mu\mu, \text{ VBF Very High} \)
\(\chi^2/\text{n.d.f.} = 1.21 \ (p = 22\%) \)

Events / 2 GeV

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
\(H \rightarrow \mu\mu, \text{ VBF Very High} \)
\(\chi^2/\text{n.d.f.} = 1.21 \ (p = 22\%) \)

Events / 2 GeV

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
\(H \rightarrow \mu\mu, \text{ VBF Very High} \)
\(\chi^2/\text{n.d.f.} = 1.21 \ (p = 22\%) \)

Events / 2 GeV
Fit breakdown on simulation (2-jet)

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
H \(\rightarrow \mu\mu, 2\)-jet Medium
\(\chi^2/\text{n.d.f.} = 0.99 \) (p = 48%)

Events / 2 GeV

110 115 120 125 130 135 140 145 150 155 160

Temp./Core

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

m_\mu [GeV]

3000 4000 5000 6000 7000 8000

Events / 2 GeV

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
H \(\rightarrow \mu\mu, 2\)-jet Very High
\(\chi^2/\text{n.d.f.} = 1.25 \) (p = 19%)

Events / 2 GeV

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
H \(\rightarrow \mu\mu, 2\)-jet Low
\(\chi^2/\text{n.d.f.} = 0.97 \) (p = 50%)

Events / 2 GeV

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
H \(\rightarrow \mu\mu, 2\)-jet Medium
\(\chi^2/\text{n.d.f.} = 0.99 \) (p = 48%)

Events / 2 GeV

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)
H \(\rightarrow \mu\mu, 2\)-jet High
\(\chi^2/\text{n.d.f.} = 1.36 \) (p = 12%)

Events / 2 GeV
Fit breakdown on simulation (1-jet)

ATLAS Simulation

\[\sqrt{s} = 13 \text{ TeV}, \; 139 \text{ fb}^{-1} \]

- **H \rightarrow \mu \mu, 1-jet Very High**
- **H \rightarrow \mu \mu, 1-jet High**
- **H \rightarrow \mu \mu, 1-jet Medium**
- **H \rightarrow \mu \mu, 1-jet Low**

\[\chi^2/\text{n.d.f.} = \begin{cases} 1.07 & (p = 38\%) \\ 1.07 & (p = 38\%) \\ 0.69 & (p = 85\%) \\ 0.72 & (p = 82\%) \end{cases} \]
Fit breakdown on simulation (0-jet)

ATLAS Simulation

\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

\(H \rightarrow \mu\mu, \text{ 0-jet Very High} \)

\(\chi^2 / \text{n.d.f.} = 1.17 \ (p = 27\%) \)

\(\chi^2 / \text{n.d.f.} = 1.65 \ (p = 3\%) \)

\(\chi^2 / \text{n.d.f.} = 0.80 \ (p = 73\%) \)

\(\chi^2 / \text{n.d.f.} = 1.65 \ (p = 3\%) \)

\(\chi^2 / \text{n.d.f.} = 0.80 \ (p = 73\%) \)
Fit breakdown on data (VBF)

ATLAS

- **Very High category**
 - $\bar{p}s = 13$ TeV, 139 fb$^{-1}$
 - $H \rightarrow \mu\mu$, VBF

- **High category**
 - $\bar{p}s = 13$ TeV, 139 fb$^{-1}$
 - $H \rightarrow \mu\mu$, VBF

- **Medium category**
 - $\bar{p}s = 13$ TeV, 139 fb$^{-1}$
 - $H \rightarrow \mu\mu$, VBF

- **Low category**
 - $\bar{p}s = 13$ TeV, 139 fb$^{-1}$
 - $H \rightarrow \mu\mu$, VBF
Fit breakdown on data (2-jet)

ATLAS
\(\sqrt{s} = 13\,\text{TeV},\ 139\,\text{fb}^{-1}\)
\(H \rightarrow \mu\mu,\ 2\text{-jet Very High category}\)

ATLAS
\(\sqrt{s} = 13\,\text{TeV},\ 139\,\text{fb}^{-1}\)
\(H \rightarrow \mu\mu,\ 2\text{-jet High category}\)

ATLAS
\(\sqrt{s} = 13\,\text{TeV},\ 139\,\text{fb}^{-1}\)
\(H \rightarrow \mu\mu,\ 2\text{-jet Medium category}\)

ATLAS
\(\sqrt{s} = 13\,\text{TeV},\ 139\,\text{fb}^{-1}\)
\(H \rightarrow \mu\mu,\ 2\text{-jet Low category}\)
Fit breakdown on data (1-jet)

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

1-jet Very High category
- Data
- Core function
- Total pdf
- Signal pdf
- Bkg. pdf

1-jet Medium category
- Data
- Core function
- Total pdf
- Signal pdf
- Bkg. pdf

1-jet Low category
- Data
- Core function
- Total pdf
- Signal pdf
- Bkg. pdf
Fit breakdown on data (0-jet)

0-jet High category

- Data: Black line
- Core function: Green dashed line
- Total pdf: Blue line
- Signal pdf: Red line
- Bkg. pdf: Dark blue dashed line

0-jet Very High category

- Data: Black line
- Core function: Green dashed line
- Total pdf: Blue line
- Signal pdf: Red line
- Bkg. pdf: Dark blue dashed line

0-jet Medium category

- Data: Black line
- Core function: Green dashed line
- Total pdf: Blue line
- Signal pdf: Red line
- Bkg. pdf: Dark blue dashed line

0-jet Low category

- Data: Black line
- Core function: Green dashed line
- Total pdf: Blue line
- Signal pdf: Red line
- Bkg. pdf: Dark blue dashed line

ATLAS

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$H \rightarrow \mu\mu$, 0-jet categories

Events / 2 GeV

m_{\mu\mu} [GeV]

Data - Bkg.

m_{\mu\mu} [GeV]

Data - Bkg.

m_{\mu\mu} [GeV]

Data - Bkg.

Fit breakdown on data (ttH/VH)

ATLAS
\[\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \]
\(H \rightarrow \mu\mu \), VH4L category

ATLAS
\[\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \]
\(H \rightarrow \mu\mu \), VH3LM category

ATLAS
\[\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \]
\(H \rightarrow \mu\mu \), ttH category

ATLAS
\[\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \]
\(H \rightarrow \mu\mu \), VH3LH category