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Introduction: B-Train (1/2)

 Real-time magnetic field measurements:

Why measurement instead of
simulation?
Problem to predict the combined effects

PS super-cycle example

Purpose:
• Measure the field of the main bending

magnets
of the Synchrotron accelerators
 For the RF accelerating cavities
 For beam intensity calculation
 For the power converter of the main

bending magnets

Improvement on the accelerator
operation:
• Increase the field reproducibility
• Reduce the cycle time
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What is needed:
• Absolute local/integral field at 250 kHz
• Wide dynamic range from about 0 to 2 T
• A reference magnet (when available)

Saturation

Dynamic behavior

Magnetic history

Hysteresis
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Introduction: B-Train (2/2)

Injection
plateau

Extraction
plateau

acceleration

Field
marker

PS cycle example

The field variationThe reference field

Field tracking:
Induction coil

The magnetic field 𝐵 in (T)
The reference field 𝐵𝑚𝑎𝑟𝑘𝑒𝑟  in (T)
The starting time 𝑡0 in (s)
The coil surface 𝐴𝑐𝑜𝑖𝑙 in (m2)
The induced coil voltage 𝑉𝑐𝑜𝑖𝑙 in (V)

Proton Synchrotron (PS)
reference magnet
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Marker:
FMR
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Introduction: Marker sensors (1/2)

 Minimum requirements:
• Field range: up to 0.7 T
• Field ramp rate: up to 5 T/s
• Field gradient: up to 1.2 T/m, equivalent to an inhomogeneity G/Bmarker of 10 m-1

• Field reproducibility : better than 10-4 at beam injection
• Reliability: only few hours of downtime per year allowed
• Required lifetime: > 20 years
• Field absolute accuracy: 10-3

 Sensor types:

Fluxmeter (rotating or translating):
• Not real time

NMR (Nuclear Magnetic Resonance) [2]:
• Metrological reference
• Field inhomogeneity < 0.06 m-1

• Low field ramp rate <0.1 T/s

ESR (Electron Spin Resonance) [3,4]:
• High inhomogeneity field > 5 m-1

• High field ramp rate > 2.3 T/s
• Calibration and operation
• Low field measurement < 10 mT

Hall probes [1]:
• Wide dynamic range
• Low stability
• Regular calibration needed

ESR NMR

fluxmeter

AC Hall DC Hall

Courtesy of L. Bottura and K. N. Henrichsen
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Introduction: Marker sensors (2/2)

 Markers used in the CERN accelerators

Software Marker Peaking Strip NMR ESR

Electron
paramagnetic

resonance (EPR)

Ferrimagnetic
resonance

(FMR)

Preset value 5 mT ~43-2000 mT ~36-50 mT ~36-760 mT
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Introduction: ESR sensors at CERN

B-Train systems
ESR markers

Courtesy of E. Mobs
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Introduction: Electron Spin Resonance

 Magnetic resonance:
• In presence of a background magnetic field B0

• When sample is irradiated with an external microwave 𝐵1 ⊥ 𝐵0
• The resonance occurs when 𝑓1 = 𝑓0 :
The Larmor frequency is given by

∆𝐸 = ℎ𝑓0

𝑓0 =
𝛾

2𝜋 𝐵0

𝜸𝒏(𝟏𝑯)

𝟐𝝅
= 42.6 MHz/T    (for proton)

𝜸𝒆
𝟐𝝅

= 28025 MHz/T (for an isolated electron)

Factor ~670 !
These two gyromagnetic ratios are known within 10-7 accuracy or better [5]

Classical view Quantum view
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Introduction: Magnetic resonance material

1:Two unequal populations of atoms with anti-parallel magnetic moments and
magnetization ≠ 0
2:B=0 T magnetic moment ≠ 0 but spin randomly oriented (magnetization=0)

FMR EPR

Magnetic property Ferrimagnetic1 Paramagnetic2

Material Gallium doped Yttrium iron
garnet (GaYIG)

Organic free radical
α,γ-bisdiphenylene-β-

phenylallyl (BDPA)

Chemical composition GaY3Fe5O12 C39H5

Usage Microwave applications Standard for
EPR spectrometers

Spectrum Single narrow linewidth

Minimum operating field 30 mT
(with Gallium doping) < 1 T

Anisotropy high very low

Signal amplitude (same
detection electronic) 1500 mV 15 mV

Commercial
presentation 1 mm

1 mm
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Introduction: Ferrimagnetic resonance

 Ba depends on crystal axis alignment with respect to B0 and on the temperature

Ba=0 T therefore 𝛾 = 𝛾𝑒, in addition
no more temperature dependency

=> Temperature stable axis at about α=±30º

𝑓0 =
𝛾𝑒

2𝜋
(𝐵0 + 𝐵𝑎)

𝐵𝑎 = 𝐵𝑎
′ (𝛼) 𝐵𝑎

′′(𝑇)
α [degree]
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Microwave structures
Broadband devices
 Transmission line
 Coupling: typically YIG filter

– The magnetic resonance changes the coupling coefficient
Narrowband devices (Optimized for the marker field level)
 Resonator :

– RF source provided by external generator
 Oscillator:

– RF source provided by internal generator (cross-coupled transistor)

Introduction: Microwave structures and signal
detection

Magnetic resonance signal detection
 Amplitude
 Frequency
 Phase
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Design: Broadband devices

5 mm X-ray view

10 mm10 mm

10 mm

Transmission lineCoupling structure

Commercial YIG filter Stripline YIG filter
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Design: Lumped-element resonators (1/2)

f0=1 GHz B0=36 mT

- Suitable for RF ≤ 1 GHz
- Non-ferromagnetic elements
- Tunable if varicaps are used
- Small size

Paramagnetic

Main application: PS low field marker

1 mm
1 mm

B1

Ferrimagnetic

Sample types
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Design: Lumped-element resonators (1/2)

Elements value

Substrate type Rogers RO4350
B

Substrate size 20x20x1.5 mm3

Tuning circuit C1 4.7 pF

Matching circuit C2 4.7 pF

Matching circuit C3 15 pF

L1 1.2 nH

R1 at 1 GHz 38 mΩ

Lp 4.13 nH

Rp 1.35 Ω

fres 1.109 GHz

S11 -19 dB

Q-factor at -3 dB 36
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Design: Waveguide resonators (1/3)

Grounded CoPlanar Waveguide f0=3 GHz B0=106 mT
Main application: LEIR&PSB low field marker

Sample types

- Suitable for RF > 1 GHz
- Small size when using 𝜆/4
- Better control of the resonance frequency
- Fully parameterized

Paramagnetic

Ferrimagnetic

2 mm

B1
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Design: Waveguide resonators (2/3)

 HFSS (Ansys Electronics Desktop) 3D simulation

Magnetic field lines distr. Magnetic field strength
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Design: Waveguide resonators (3/3)

Return loss

Elements value

Substrate type Rogers RO4350 B

Substrate size 25x20x1.5 mm3

Strip width 2.1 mm

Strip length 15.25 mm

fres 3050 GHz

S11 -24 dB

Q-factor at -3 dB 70
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Design: Oscillators (1/5)

Integrated oscillators chip
Designed at EPFL by Dr. G. Boero and Dr. A. V. Matheoud

20 mm

2 mm
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Design: Oscillators (2/5)

Used of Integrated oscillator f0=10 GHz B0=360 mT [6]

- Cross-coupled LC oscillator
- Manufactured in CMOS

integrated circuit technology
- Fixed frequency

Courtesy of Dr. A. V. Matheoud

BDPA sample

500 µm
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Design: Oscillators (3/5)

Sample installation (10 GHz)

200 µm
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Design: Oscillators (4/5)

Used of Integrated oscillator f0=20 GHz B0=710 mT [7]

- Cross-coupled LC oscillator structure
- Variable frequency with varicap
- Output freq. 18.5-20.2 GHz

Courtesy of Dr. A. V. Matheoud

BDPA sample

500 µm
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Design: Oscillators (5/5)

Sample installation (20 GHz)

200 µm
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Design: Amplitude detection (1/2)

100 kHz -20 GHz
42 dB -6 dB 60 dB

Only for the EPR (BDPA) sample

 Resonators

RF LF
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Design: Amplitude detection (2/2)

 For resonators sensors up to 6 GHz (~0.22 T)

 For coupling structure sensors up to 6 GHz (~0.22 T)
10 mm

10 mm
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Design: Frequency detection (1/2)

 Oscillators

10 GHz oscillator

20 GHz oscillator

AC output

DC output

RF LF
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Design: Frequency detection (2/2)

 Electronic board with PLL mezzanine card
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Design: Phase detection

 Phase detection used with transmission line
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Design: Evaluation criteria

Typical ESR signal in marker mode (sweep 𝐵0, fixed 𝑓1)

Figure-of-merit:
1. The signal-to-noise ratio
2. The shape distortion
3. The marker value
4. The linewidth
5. The resolution

Amplitude
detection

Frequency
detection

Signal affected by
• Gyromagnetic ratio

(absolute calibration)
• Temperature
• Ramp rate
• Field direction
• Gradient
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Design: Calibration benches

 Characterization steps

- Effective gyromagnetic
ratio

- The resolution
- Temperature dependency
- Ramp rate dependency
- Field direction dependency

- Gradient sensitivity- The temperature stable
axis

Time-transient B0 fieldStatic B0 field
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Results: FMR sensors (1/2)

Resonance peak position changes with temperature when sphere is not aligned

Before alignment
40 µT/degC

After alignment
4 µT/degC

=> Temperature sensitivity is improved by an order of magnitude

 Temperature stable axis alignment (fixed 𝐵0, sweep 𝑓1)
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Results: FMR sensors (2/2)

=> Relevant influence on the roll angle by 430 µT/deg

Roll Pitch

Yaw

FMR sensors are insensitive to field ramp rates up to 5 T/s and gradients up to 12 T/m

 Field direction effect
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Results: EPR sensors (1/4)

=> Able to measure gradient up to 2 T/m

Oscillators

10 GHz1.1 GHz

3.1 GHz 18.5 GHz

Resonators

=> Able to measure gradient up to 12 T/m

 Gradient effect
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Results: EPR sensors (2/4)

Relevant marker value variation function of by field ramp rate with the 20 GHz oscillator
=> Electromotive forces on the varicaps and power supplies voltage

 Ramp rate effect (𝑩)

OscillatorsResonators



CERN MSC Seminar, 01/09/2020 34/42Anthony Beaumont

Results: performance summary

Low performance Medium performance high performance
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Experimental validation: FMR sensor in PS

FMR sensor at 36 mT (1 GHz) is installed in the focusing and defocusing sides of
the PS reference magnet MU101
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Experimental validation: FMR sensor in PS

FMR sensor at 36 mT (1 GHz)

=> Reproducibility by about 5 µT
corresponding to 5 x 10-5 at injection,
that is, within the PS operation
requirement
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Experimental validation: LEIR B-Train system (1/2)

The FMR sensor at 106 mT (3 GHz) is used in the fringe field of the main bending
magnet
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Experimental validation: LEIR B-Train system (2/2)

New B-train measurement:
 Resolution from 10 to 0.2 µT
 Radial position stability

from 0.6 to 0.1 mm RMS
 Max field error 1.5 mT (0.2%)

Impact of new marker:
 Cycle-to-cycle reproducibility

from several 100 T down to
38 T (1.4 x 10-4)

Beam revolution frequency
correction Beam position

Field at injection Reproducibility field @ Inj.

Field @ Inj.
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Conclusions and future perspectives

 The proposed ESR sensors have a reproducibility better than 1.4 x 10-4 .
They operate in a field range up to 0.7 T, in a field gradient up to 12 T/m
and with ramp rate up to 5 T/s.

 FMR sensors were implemented and validated on two B-Train systems.

 The parametric model of the waveguide resonator allows easy adaptation
to different field marker levels.

 Extended versions of the EPFL’s oscillator architecture could be used to
measure fields above 1 T.

 The implementation of a modulation coil on the marker sensor with an
adapted detection electronics, would allow operation in static background
field.
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Thank you for your attention

Questions?
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