

The Case for FCC-ee

Markus Klute (MIT) August 25th, 2020 TOTW Fermilab

Introduction: the machine

 FCC-ee is an electron-positron collider sharing infrastructure with a subsequent hadron collider (FCC-hh)

- Double-ring collider with 2 (or 4) interaction regions and a booster synchrotron in a ~100km tunnel
- Injector complex with linac, pre-booster, and e+ source with damping ring

Future Circular Collider Study. Volume 2: The Lepton Collider (FCC-ee) Conceptual Design Report, December 2018. Published in Eur. Phys. J. ST. Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020, arXiv:1910.11775; CERN-ESU-004

Introduction: timeline

Introduction: goals

Overall goal

 Perform all necessary steps and studies to enable a definitive project decision by 2026, at the anticipated date for the next ESU, and a subsequent start of civil engineering construction by 2029.

This requires successful completion of the following four main activities

- Develop and establish a governance model for project construction and operation
- Develop and establish a financing strategy
- Prepare and successfully complete all required project preparatory and administrative processes with the host states (debat public, EIA, etc.)
- Perform site investigations to enable CE planning and to prepare CE tendering.

In parallel development preparation of TDRs and physics/ experiment studies

- Machine designs and main technology R&D lines
- Establish user communities, work towards proto-experiment collaborations by 2025.

Introduction: European Strategy

Preamble: The particle physics community is ready to take the next step towards even higher energies and smaller scales. The vision is to prepare a Higgs factory, followed by a future hadron collider with sensitivity to energy scales an order of magnitude higher than those of the LHC, while addressing the associated technical and environmental challenges.

High-priority future initiatives

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

This is work for us in the US!

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron international Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

Introduction: event rates

Phase	e	Run duration	Center-of-mass	Integrated	Event	t	Ei
		(years)	Energies (GeV)	Luminosity (ab ⁻¹)	Statistics		7
FCC-	-ee-Z	4	88-95	150	3×10^{12} visible Z decays	s	,
FCC-	-ee-W	2	158-162	12	10 ⁸ WW events		7 E
FCC-	-ee-H	3	240	5	10 ⁶ ZH events	s	<u>2.</u> .⊆
FCC-	-ee-tt	5	345-365	1.5	$10^6 \text{ t}\overline{\text{t}} \text{ events}$	s Inf	
² s ⁻¹]	100	00		ILC- C	LIC :	10 ⁵ 10 ⁴	W+W- 108 Single Z ZZ
$L [10^{34} cm^{-2} s^{-1}]$		10	A A A A A A A A A A A A A A A A A A A		-up	10 ²	Single W W fusion 106
		1 100	*******	10 Em [GeV]	000	1	Z fusion 10 ⁴

 \sqrt{s} [GeV]

FCC-ee: The Higgs Factory

(4y) Z peak	E _{cm} = 91 GeV	5 10 ¹² e+e- \rightarrow Z
(2y) WW threshold	E _{cm} = 161 GeV	108 e+e- → WW
(3y) ZH threshold	E _{cm} = 240 GeV	10 ⁶ e+e- → ZH
(4y) tt threshold	E _{cm} = 350 GeV	10 ⁶ e+e- \rightarrow tt
(ny) H(optional)	E _{cm} = 125 GeV	10⁴ e+e- > H

HL-LHC Higgs Legacy

$$(\sigma \cdot BR) \, (gg \to H \to \gamma \gamma) \ = \ \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma) \, \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

	Statistical-only		Statistical	+ Systematic
	ATLAS CMS		ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4 1.2		0.61	0.95
$HH \to b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4
$HH \to b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0	2.6
	Combined		Cor	mbined
	4.5			4.0

Case for precision Higgs physics

- **→** How large are potential deviations from BSM physics?
- **→** How well do we need to measure Higgs couplings?
 - To be sensitive to a deviation δ , the measurement needs a precision of at least δ / 3, better δ /5
 - Implications of new physics scale on couplings from heavy states or through mixing

$$g = g_{\mathrm{SM}} \ [1 + \Delta] \ : \ \Delta = \mathcal{O}(v^2/\Lambda^2)$$

	$\frac{\Gamma_{2\text{HDM}}[h^0 \to X]}{\Gamma_{\text{SM}}[h \to X]}$	type I	type II	lepton-spec.	flipped
ĺ	VV^*	$\sin^2(\beta - \alpha)$	$\sin^2(\beta - \alpha)$	$\sin^2(\beta - \alpha)$	$\sin^2(\beta - \alpha)$
	$ar{u}u$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$
	$ar{d}d$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$
	$\ell^+\ell^-$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$

arXiv:1310.836

- **→** Percent-level precision test TeV scale
 - **→** Requires 10⁶ Higgs events
- **→** There is no strict limit to the precision needed!

Higgs Production

→ e+e-→ZH production maximal at 240-260 GeV

Higgs Precision Measurements

- → Recoil method unique to lepton collider
- → Tag Higgs event independent of decay mode
- Provides precision and model independent measurements of

 - m_H
- → Key input to Γ_H
- Sensitive channel for Higgs to invisible search

$$m_{\text{recoil}}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$$

Higgs self-coupling through loop corrections

- Very large datasets at high energy allow extreme precision gzH measurements
- Indirect and model-dependent probe of Higgs self-coupling

collider	1-parameter	full SMEFT
CEPC 240	18%	-
FCC-ee 240	21%	-
FCC-ee 240/365	21%	44%
FCC-ee (4IP)	15%	27%
ILC 250	36%	-
ILC 250/500	32%	58%
ILC 250/500/1000	29%	52%
CLIC 380	117%	-
CLIC 380/1500	72%	-
CLIC 380/1500/3000	49%	-

arxiv:1312.3322 arxiv:1910.00012

Precision Higgs Couplings

- ightharpoonup Measure σ (ee → ZH) * BR (H → X) by identifying X
- ⇒ Example: $\sigma(ee \rightarrow ZH)$ * BR (H $\rightarrow ZZ$) $\propto g_{HZZ}^4/\Gamma_H$
- Total width from combination of measurements or fit
- Branching fraction to invisible tested directly

Precision Higgs Couplings

HL-LHC	ILC ₂₅₀					
	ILC250	CLIC ₃₈₀	FCC-ee			FCC-el
3	2	0.5	5 @ 240 GeV	+1.5 @ 365 GeV	+ HL-LHC	2
25	15	8	3	+4	_	20
SM	3.6	4.7	2.7	1.3	1.1	SM
1.5	0.30	0.60	0.2	0.17	0.16	0.43
1.7	1.7	1.0	1.3	0.43	0.40	0.26
3.7	1.7	2.1	1.3	0.61	0.56	0.74
SM	2.3	4.4	1.7	1.21	1.18	1.35
2.5	2.2	2.6	1.6	1.01	0.90	1.17
1.9	1.9	3.1	1.4	0.74	0.67	1.10
4.3	14.1	n.a.	10.1	9.0	3.8	n.a.
1.8	6.4	n.a.	4.8	3.9	1.3	2.3
3.4	_	-	_	_	3.1	1.7
SM	< 1.8	< 3.0	< 1.2	< 1.0	< 1.0	n.a.
	SM 1.5 1.7 3.7 SM 2.5 1.9 4.3 1.8 3.4	SM 3.6 1.5 0.30 1.7 1.7 3.7 1.7 SM 2.3 2.5 2.2 1.9 1.9 4.3 14.1 1.8 6.4 3.4 –	SM 3.6 4.7 1.5 0.30 0.60 1.7 1.7 1.0 3.7 1.7 2.1 SM 2.3 4.4 2.5 2.2 2.6 1.9 1.9 3.1 4.3 14.1 n.a. 1.8 6.4 n.a. 3.4 —	SM 3.6 4.7 2.7 1.5 0.30 0.60 0.2 1.7 1.7 1.0 1.3 3.7 1.7 2.1 1.3 SM 2.3 4.4 1.7 2.5 2.2 2.6 1.6 1.9 1.9 3.1 1.4 4.3 14.1 n.a. 10.1 1.8 6.4 n.a. 4.8 3.4 — — —	SM 3.6 4.7 2.7 1.3 1.5 0.30 0.60 0.2 0.17 1.7 1.7 1.0 1.3 0.43 3.7 1.7 2.1 1.3 0.61 SM 2.3 4.4 1.7 1.21 2.5 2.2 2.6 1.6 1.01 1.9 1.9 3.1 1.4 0.74 4.3 14.1 n.a. 10.1 9.0 1.8 6.4 n.a. 4.8 3.9 3.4	SM 3.6 4.7 2.7 1.3 1.1 1.1 1.5 0.30 0.60 0.2 0.17 0.16 1.7 1.7 1.0 1.3 0.43 0.40 3.7 1.7 2.1 1.3 0.61 0.56 SM 2.3 4.4 1.7 1.21 1.18 2.5 2.2 2.6 1.6 1.01 0.90 1.9 1.9 3.1 1.4 0.74 0.67 4.3 14.1 n.a. 10.1 9.0 3.8 1.8 6.4 n.a. 4.8 3.9 1.3 3.4 3.1

S-channel Higgs Production

⇒ s-channel production

- very small cross section
- reduced by ISR and beam spread
- $\sigma^{born}(\mu + \mu \rightarrow H) \approx 40.000 \sigma^{born}(e + e \rightarrow H)$

→ Beam-spread improvements

- FCC-ee via monochromators
- Feasibility and impact on luminosity need study

⇒ Expected significance 0.7σ / 10ab-1

Set an electron Yukawa coupling upper limit:
 k_e < 2.5 @95% CL

Upper Limits / Precision on κ_e

Exclusive Higgs boson decays

- → First and second generation couplings accessible
 - Sensitivity to u/d quark Yukawa coupling
 - Sensitivity due to interference

$$\frac{{\rm BR}_{h\to\rho\gamma}}{{\rm BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right]}{0.57 \bar{\kappa}_{b}^{2}} \times 10^{-5}$$

- Also interesting to hadron collider program
- → Alternative H→MV decays should be studied (V= γ, W, and Z)

$$H \rightarrow J/\Psi \gamma$$
 y_c
 $H \rightarrow \varphi \gamma$ y_s
 $H \rightarrow \rho \gamma$ y_{u, y_d}

Rare and Exotics Higgs Bosons

- → Largely unexplored!
- → ZH events allow for detailed studies of rare and exotic decays
 - improved with hadronic and invisible Z decays
 - set requirements for lepton collider detector
- Coupling measurements have sensitivity to BSM decays
- Dedicated studies using specific final states improve sensitivity
- ⇒ Example: Higgs to invisible, flavor violating Higgs, and many more
- Modes with of limited LHC sensitivity are of particular importance to lepton collider program
- → Detailed discussion of exotic Higgs decays at Phys. Rev. D 90, 075004 (2014)

```
h \rightarrow \mathcal{K}_T
h \rightarrow 4b
h \rightarrow 2b2\tau
h\to 2b2\mu
h \rightarrow 4\tau, 2\tau 2\mu
h \rightarrow 4i
h \rightarrow 2\gamma 2j
h \rightarrow 4\gamma
h \to ZZ_D, Za \to 4\ell'
h \rightarrow Z_D Z_D \rightarrow 4\ell
h \rightarrow \gamma + \mathcal{L}_T
h \rightarrow 2\gamma + K_T
h \rightarrow 4 ISOLATED LEPTONS + \mathbb{Z}_T
h \rightarrow 2\ell + K_T
h \rightarrow ONE LEPTON-JET + X
h \rightarrow TWO LEPTON-JETS + X
h \rightarrow b\bar{b} + \mathcal{K}_{T}
h \rightarrow \tau^+\tau^- + \cancel{K}_T
```

FCC-ee: The Electroweak Factory

(4y) Z peak	E _{cm} = 91 GeV	5 10¹² e+e- → Z
(2y) WW threshold	E _{cm} = 161 GeV	108 e+e- \rightarrow WW
(3y) ZH threshold	E _{cm} = 240 GeV	10 ⁶ e+e- → ZH
(4y) tt threshold	E _{cm} = 350 GeV	10 ⁶ e+e- \rightarrow \overline{tt}
(ny) H(optional)	E _{cm} = 125 GeV	10 ⁴ e+e- $\rightarrow \overline{H}$

W Boson Mass

W Mass Measurement

- W pair threshold scan with $=> \Delta M_W = 0.45$ MeV (stat. only)
 - Leading systematic: beam energy

- Direct W mass reconstruction
 => ΔM_W = 0.22 MeV (stat. only)
 - Leading systematic: theoretical

Can systematic uncertainties meet statistical precision?

Electroweak Precision

TeraZ (5 X 10¹² Z)

From data collected in a lineshape energy scan:

- Z mass (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- R_I = hadronic/leptonic width (α_s(m²_Z), lepton couplings, precise universality test)
- peak cross section (invisible width, N_v)
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_Z^2)$, lepton couplings)
- Tau polarization ($sin^2\theta_{eff}$, lepton couplings)
- R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings)

Most critical systematic uncertainties:

- Center-of-mass energy and energy spread
- Luminosity

• $\Delta M_Z = 0.004 \text{ MeV (stat. only)}$

FCC-ee: The Top Factory

(4y) Z peak	E _{cm} = 91 GeV	$5 \ 10^{12} \ \text{e+e-} \rightarrow \text{Z}$
(2y) WW threshold	E _{cm} = 161 GeV	108 e+e- \rightarrow WW
(3y) ZH threshold	E _{cm} = 240 GeV	10 ⁶ e+e- → ZH
(4y) tt threshold	E _{cm} = 350 GeV	10 ⁶ e+e- \rightarrow tt
(ny) H(optional)	E _{cm} = 125 GeV	10⁴ e+e- > H

Top Physics

Top Mass LHC Legacy

Projections for various techniques

- direct measurement in ttbar or single top
 - jet systematics dominate
- indirect measurement from cross sections
 - theory and luminosity uncertainties dominate
- using of I + $(J/\psi \rightarrow) \mu\mu$ final state
 - uncert. on modelling of b-fragmentation/-decay dominate
 - clean signature, small BR, limited by statistics
- Usually ambiguity of top mass definition not considered
- ATLAS using only I + $(J/\psi \rightarrow) \mu\mu$ final states
 - Stat. 0.14 GeV, syst. 0.48 GeV (=0.28%, at the level of the current best mass value)
- · CMS

Can reach between 0.1%-0.7% precision

Top-pair threshold scan

 Top mass and width can be measured directly with an accurate top cross section threshold scan

• Precise knowledge of α_s improved correlation of m_t , Γ_t , and Y_t drastically

25 <u>arxiv:1604.08122</u>

Top-pair threshold scan

- Statistical accuracy on mt (Γ_t) is ~17 (45) MeV and 10% on Y_t
- Systematic uncertainties
 - 3 MeV from center-of-mass energy
 - 5 MeV from α_s
 - ~40 MeV from theoretical uncertainties (NNNLO)

Top-pair threshold scan

- Precision test of the Standard Model
- Improved understanding in top-W-H radiative corrections

EW & Top Physics Program

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Observable	present	FCC-ee	FCC-ee	Comment and
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					leading exp. error
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mz (keV)	91186700 ± 2200	4	_	From Z line shape scan
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(===)				_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Gamma_{\rm Z}~({\rm keV})$	2495200 ± 2300	4	25	From Z line shape scan
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Beam energy calibration
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					acceptance for leptons
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		216290 ± 660	0.3	<60	ratio of bb to hadrons
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					stat. extrapol. from SLD
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					luminosity measurement
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{\nu}(\times 10^{3})$	2996 ± 7	0.005	1	Z peak cross sections
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Luminosity measurement
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	3	1	from $A_{FB}^{\mu\mu}$ at Z peak
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Beam energy calibration
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1/\alpha_{\rm QED}({\rm m_Z^2})(\times 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-				QED&EW errors dominate
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\rm FB}^{\rm b}, 0 \ (\times 10^4)$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					from jet charge
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	<2	au polarization asymmetry
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					au decay physics
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m _W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Beam energy calibration
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Gamma_{ m W}~({ m MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
$N_{ u}(imes 10^3)$ 2920 \pm 50 0.8 small ratio of invis. to leptor in radiative Z returns $m_{\rm top}~({\rm MeV/c^2})$ 172740 \pm 500 17 small From $t\bar{t}$ threshold so QCD errors domin $\Gamma_{\rm top}~({\rm MeV/c^2})$ 1410 \pm 190 45 small From $t\bar{t}$ threshold so					Beam energy calibration
$N_{ u}(imes 10^3)$ 2920 \pm 50 0.8 small ratio of invis. to lepto in radiative Z return $m_{\rm top}~({\rm MeV/c^2})$ 172740 \pm 500 17 small From $t\bar{t}$ threshold so QCD errors domin $\Gamma_{\rm top}~({\rm MeV/c^2})$ 1410 \pm 190 45 small From $t\bar{t}$ threshold so	$lpha_{ m s}({ m m_W^2})(imes 10^4)$	1170 ± 420	3	small	from R_{ℓ}^{W}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	small	ratio of invis. to leptonic
$\Gamma_{ m top} \; ({ m MeV/c^2}) \; 1410 \pm 190 \; 45 \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m$					in radiative Z returns
$\Gamma_{ m top} \; ({ m MeV/c^2}) \; 1410 \pm 190 \; 45 \; { m small} \; { m From} \; { m t} { m \overline{t}} \; { m threshold} \; { m sol} \; { m top} \;$	$m_{\rm top}~({ m MeV/c^2})$	172740 ± 500	17	small	From $t\bar{t}$ threshold scan
					QCD errors dominate
	$\Gamma_{\rm top}~({ m MeV/c^2})$	1410 ± 190	45	small	From $t\bar{t}$ threshold scan
					QCD errors dominate
$\lambda_{\mathrm{top}}/\lambda_{\mathrm{top}}^{\mathrm{SM}}$ 1.2 \pm 0.3 0.10 small From $\mathrm{t}\bar{\mathrm{t}}$ threshold see	$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2 ± 0.3	0.10	small	From $t\overline{t}$ threshold scan
					QCD errors dominate
ttZ couplings $\pm 30\%$ 0.5 - 1.5% small From $\sqrt{s} = 365\mathrm{GeV}$	ttZ couplings	$\pm 30\%$	0.5 - 1.5%	small	From $\sqrt{s} = 365 \text{GeV}$ run

First set of main observables - needs to be improved

- Focus was on statistical precision
- For Z and W boson mass, center-ofmass energy uncertainty will dominate
- For cross-section measurements the luminosity measurement will be limiting
- Possible experimental uncertainties are indicative
- Tau, b, and c observables to be added
- Theory work is critical and has been initiated. A lot of work ahead.
- Aim for next study: detector design to match experimental systematic uncertainties to statistical precision

FCC-ee: Taus, Flavor and QCD

QCD Opportunities

- High precision α_s (order of magnitude improvement) determination from
 - Hadronic tau decays
 - Jet rates and event shapes
 - Hadronic Z decays
 - Hadronic W decays
- High precision studies of perturbative parton radiation
 - Jet rates and event shapes
 - Jet substructure
 - Quark/gluon/heavy-quark discrimination
 - q, g, b, c parton-to-hadron fragmentation functions
- High precision non-perturbative QCD studies
 - Color reconnection
 - Final-state multiparticle correlations
- High precision hadronic studies
 - Very rare hadron production and decays

Tau and Flavor Physics

Observable	Present	FCC-ee	FCC-ee
	value \pm error	stat.	syst.
$m_{\tau} \; ({ m MeV})$	1776.86 ± 0.12	0.004	0.1
$\mathcal{B}(au o \mathrm{e}ar{ u} u) \ (\%)$	17.82 ± 0.05	0.0001	0.003
$\mathcal{B}(au o \mu \bar{ u} u) \ (\%)$	17.39 ± 0.05	0.0001	0.003
$ au_{ au}$ (fs)	290.3 ± 0.5	0.001	0.04

Can systematic uncertainties meet statistical precision?

Decay	Present bound	FCC-ee sensitivity
$Z \to \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$
$Z \to \tau \mu$	12×10^{-6}	10^{-9}
$Z \to \tau e$	9.8×10^{-6}	10^{-9}
$ au o \mu \gamma$	4.4×10^{-8}	2×10^{-9}
$\tau \to 3\mu$	2.1×10^{-8}	10^{-10}

arXiv:1811.09408

FCC-ee: Discovery Machine

Discovery Physics

or l - v

arXiv:1411.5230

Economic extension by adding a number of Fermionic singlets

"Right-handed" or "sterile" neutrinos.

Two mass-differences \Rightarrow at least two sterile neutrinos.

New mass scale, a priori unrelated to the known ones.

Many constraints from experiments on all energy scales.

Search for New Scalars

arXiv:hep-ex/0206022v1 10 Jun 2002

→ Measurement with OPAL at LEP

Decay-mode independent searches for new scalar bosons with the OPAL detector at LEP

The OPAL Collaboration

Abstract

This paper describes topological searches for neutral scalar bosons S^0 produced in association with a Z^0 boson via the Bjorken process $e^+e^- \to S^0Z^0$ at centre-of-mass energies of 91 GeV and 183–209 GeV. These searches are based on studies of the recoil mass spectrum of $Z^0 \to e^+e^-$ and $\mu^+\mu^-$ events and on a search for S^0Z^0 with $Z^0 \to \nu\bar{\nu}$ and $S^0 \to e^+e^-$ or photons. They cover the decays of the S^0 into an arbitrary combination of hadrons, leptons, photons and invisible particles as well as the possibility that it might be stable.

No indication for a signal is found in the data and upper limits on the cross section of the Bjorken process are calculated. Cross-section limits are given in terms of a scale factor k with respect to the Standard Model cross section for the Higgs-strahlung process $e^+e^- \to H^0_{SM}Z^0$.

These results can be interpreted in general scenarios independently of the decay modes of the S^0 . The examples considered here are the production of a single new scalar particle with a decay width smaller than the detector mass resolution, and for the first time, two scenarios with continuous mass distributions, due to a single very broad state or several states close in mass.

Discovery Physics

- EFT D6 operators (some assumptions)
- Higgs and EWPOs are complementary

Your contributions

- → Can you (or your students)
 - use studies to design or optimize detectors?
 - develop or optimize reconstruction, identification, and analysis using modern techniques?
 - come up with new or unexplored ideas?

- **→** For more details, see <u>case studies</u> for FCC-ee community
- **→** Software tutorial mid September

Conclusion

- FCC-ee offers a huge physics program with
 - → Higgs and top measurements with > 10⁶ events each in short (3-5y) runs
 - → Unique possibilities
 - Electron Yukawa coupling
 - TeraZ + beam energy calibration
 - keV and ppm precision on EWPOs at Z resonance and WW threshold
 - \bullet α_{QED} (m_Z), α_{S} (m_Z), $\sin^{2}\theta_{W}^{eff}$ and $G\tau$
 - Searches for LLPs and rare phenomena (LFV, LNF, light scalars, ...)
 - Flavor physics program with 10^{12} Bs and 10^{11} τ 's
 - Offering sensitivity to new physics at scales of 10 to 70 TeV
- Ambitious program aiming for significant progress (order(s) of magnitude) in understanding of nature
- Main challenge is to imagine/optimize detector to match statistical power and to sharpen the theory calculations
- Last but not least: an essential springboard towards 100 TeV pp collisions

FCC documentation

Outcome of design studies recommended by the 2013 European Strategy

4 CDR volumes published in EPJ

FCC Physics Opportunities

FCC-hh: The Hadron Collider

FCC-ee: The Lepton Collider

HE-LHC: The High Energy Large Hadron Collider

Recent FCC publications

1) Future Circular Collider - European Strategy Update Documents

(FCC-ee), (FCC-hh), (FCC-int)

- 2) FCC-ee: Your Questions Answered <u>arXiv:</u> 1906.02693
- 3) Circular and Linear e+e- Colliders: Another Story of Complementarity

arXiv:1912.11871

- 4) Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders <u>arXiv:</u> 1901.02648
- 5) Polarization and Centre-of-mass Energy Calibration at FCC-ee, <u>arXiv:1909.12245</u>

Higgs Related Physics at Lepton Colliders

√s [GeV]	√s	Measurements (incomplete list)
90	mz	m_Z , Γ_Z , α_s , α_{QED} , flavor, QCD
125	m _H	s-channel Higgs production
160	2m _W	m_W , α_s
240-250	m _H +m _Z +	mн, Гн, J ^{PC} , g _{нхх} , BSM decays, indirect g _{ннн}
340-355	2*m _{top}	ghww, Γ_H , indirect g_{Htt} , m_{top}
500	2*m _{top} +m _H +	GHHH, GHtt
> 500	M _{NP}	gнtt, gннн, BSM Higgs

CP Measurements

- → CP violation can be studied by searching for CP-odd contributions; CP-even already established
- → Higgs to Tau decays of interest
- Studies consider intermediated resonances (ρ,a1)

 $\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + i\gamma_5\sin\Delta)f$

Colliders	LHC	HL-LHC	$FCCee (1 ab^{-1})$	$FCCee (5 ab^{-1})$	FCCee (10 ab^{-1})
$Accuracy(1\sigma)$	25°	8.0°	5.5°	2.5°	1.7°

http://arxiv.org/abs/1308.1094