The Case for FCC-ee Markus Klute (MIT) August 25th, 2020 TOTW Fermilab #### Introduction: the machine FCC-ee is an electron-positron collider sharing infrastructure with a subsequent hadron collider (FCC-hh) - Double-ring collider with 2 (or 4) interaction regions and a booster synchrotron in a ~100km tunnel - Injector complex with linac, pre-booster, and e+ source with damping ring Future Circular Collider Study. Volume 2: The Lepton Collider (FCC-ee) Conceptual Design Report, December 2018. Published in Eur. Phys. J. ST. Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020, arXiv:1910.11775; CERN-ESU-004 #### Introduction: timeline ### Introduction: goals #### Overall goal Perform all necessary steps and studies to enable a definitive project decision by 2026, at the anticipated date for the next ESU, and a subsequent start of civil engineering construction by 2029. ## This requires successful completion of the following four main activities - Develop and establish a governance model for project construction and operation - Develop and establish a financing strategy - Prepare and successfully complete all required project preparatory and administrative processes with the host states (debat public, EIA, etc.) - Perform site investigations to enable CE planning and to prepare CE tendering. #### In parallel development preparation of TDRs and physics/ experiment studies - Machine designs and main technology R&D lines - Establish user communities, work towards proto-experiment collaborations by 2025. ## Introduction: European Strategy Preamble: The particle physics community is ready to take the next step towards even higher energies and smaller scales. The vision is to prepare a Higgs factory, followed by a future hadron collider with sensitivity to energy scales an order of magnitude higher than those of the LHC, while addressing the associated technical and environmental challenges. ## High-priority future initiatives An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology: the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors; ## This is work for us in the US! • Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update. The timely realisation of the electron-positron international Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate. #### Introduction: event rates | Phase | e | Run duration | Center-of-mass | Integrated | Event | t | Ei | |--------------------------------|--------|--------------|---------------------------------------|--------------------------------|--|---------------------------------|--------------------------| | | | (years) | Energies (GeV) | Luminosity (ab ⁻¹) | Statistics | | 7 | | FCC- | -ee-Z | 4 | 88-95 | 150 | 3×10^{12} visible Z decays | s | , | | FCC- | -ee-W | 2 | 158-162 | 12 | 10 ⁸ WW events | | 7 E | | FCC- | -ee-H | 3 | 240 | 5 | 10 ⁶ ZH events | s | <u>2.</u> .⊆ | | FCC- | -ee-tt | 5 | 345-365 | 1.5 | $10^6 \text{ t}\overline{\text{t}} \text{ events}$ | s Inf | | | ² s ⁻¹] | 100 | 00 | | ILC-
C | LIC : | 10 ⁵ 10 ⁴ | W+W- 108 Single Z ZZ | | $L [10^{34} cm^{-2} s^{-1}]$ | | 10 | A A A A A A A A A A A A A A A A A A A | | -up | 10 ² | Single W W fusion 106 | | | | 1 100 | ******* | 10
Em [GeV] | 000 | 1 | Z fusion 10 ⁴ | \sqrt{s} [GeV] ## FCC-ee: The Higgs Factory | (4y) Z peak | E _{cm} = 91 GeV | 5 10 ¹² e+e- \rightarrow Z | |-------------------|---------------------------|---| | (2y) WW threshold | E _{cm} = 161 GeV | 108 e+e- → WW | | (3y) ZH threshold | E _{cm} = 240 GeV | 10 ⁶ e+e- → ZH | | (4y) tt threshold | E _{cm} = 350 GeV | 10 ⁶ e+e- \rightarrow tt | | (ny) H(optional) | E _{cm} = 125 GeV | 10⁴ e+e- > H | ### **HL-LHC Higgs Legacy** $$(\sigma \cdot BR) \, (gg \to H \to \gamma \gamma) \ = \ \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma \gamma) \, \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$ | | Statistical-only | | Statistical | + Systematic | |-----------------------------------|------------------|------|--------------|--------------| | | ATLAS CMS | | ATLAS | CMS | | $HH \rightarrow b\bar{b}b\bar{b}$ | 1.4 1.2 | | 0.61 | 0.95 | | $HH \to b\bar{b}\tau\tau$ | 2.5 | 1.6 | 2.1 | 1.4 | | $HH \to b\bar{b}\gamma\gamma$ | 2.1 | 1.8 | 2.0 | 1.8 | | $HH \to b\bar{b}VV(ll\nu\nu)$ | - | 0.59 | - | 0.56 | | $HH \to b\bar{b}ZZ(4l)$ | - | 0.37 | - | 0.37 | | combined | 3.5 | 2.8 | 3.0 | 2.6 | | | Combined | | Cor | mbined | | | 4.5 | | | 4.0 | ## Case for precision Higgs physics - **→** How large are potential deviations from BSM physics? - **→** How well do we need to measure Higgs couplings? - To be sensitive to a deviation δ , the measurement needs a precision of at least δ / 3, better δ /5 - Implications of new physics scale on couplings from heavy states or through mixing $$g = g_{\mathrm{SM}} \ [1 + \Delta] \ : \ \Delta = \mathcal{O}(v^2/\Lambda^2)$$ | | $\frac{\Gamma_{2\text{HDM}}[h^0 \to X]}{\Gamma_{\text{SM}}[h \to X]}$ | type I | type II | lepton-spec. | flipped | |---|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | ĺ | VV^* | $\sin^2(\beta - \alpha)$ | $\sin^2(\beta - \alpha)$ | $\sin^2(\beta - \alpha)$ | $\sin^2(\beta - \alpha)$ | | | $ar{u}u$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | | | $ar{d}d$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | $\frac{\sin^2 \alpha}{\cos^2 \beta}$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | $\frac{\sin^2 \alpha}{\cos^2 \beta}$ | | | $\ell^+\ell^-$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | $\frac{\sin^2 \alpha}{\cos^2 \beta}$ | $\frac{\sin^2 \alpha}{\cos^2 \beta}$ | $\frac{\cos^2 \alpha}{\sin^2 \beta}$ | arXiv:1310.836 - **→** Percent-level precision test TeV scale - **→** Requires 10⁶ Higgs events - **→** There is no strict limit to the precision needed! #### **Higgs Production** → e+e-→ZH production maximal at 240-260 GeV #### **Higgs Precision Measurements** - → Recoil method unique to lepton collider - → Tag Higgs event independent of decay mode - Provides precision and model independent measurements of - m_H - → Key input to Γ_H - Sensitive channel for Higgs to invisible search $$m_{\text{recoil}}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$$ #### Higgs self-coupling through loop corrections - Very large datasets at high energy allow extreme precision gzH measurements - Indirect and model-dependent probe of Higgs self-coupling | collider | 1-parameter | full SMEFT | |--------------------|-------------|------------| | CEPC 240 | 18% | - | | FCC-ee 240 | 21% | - | | FCC-ee 240/365 | 21% | 44% | | FCC-ee (4IP) | 15% | 27% | | ILC 250 | 36% | - | | ILC 250/500 | 32% | 58% | | ILC 250/500/1000 | 29% | 52% | | CLIC 380 | 117% | - | | CLIC 380/1500 | 72% | - | | CLIC 380/1500/3000 | 49% | - | arxiv:1312.3322 arxiv:1910.00012 ## **Precision Higgs Couplings** - ightharpoonup Measure σ (ee → ZH) * BR (H → X) by identifying X - ⇒ Example: $\sigma(ee \rightarrow ZH)$ * BR (H $\rightarrow ZZ$) $\propto g_{HZZ}^4/\Gamma_H$ - Total width from combination of measurements or fit - Branching fraction to invisible tested directly ## **Precision Higgs Couplings** | HL-LHC | ILC ₂₅₀ | | | | | | |--------|--|--|--|---|---|---| | | ILC250 | CLIC ₃₈₀ | FCC-ee | | | FCC-el | | 3 | 2 | 0.5 | 5 @ 240 GeV | +1.5 @ 365 GeV | + HL-LHC | 2 | | 25 | 15 | 8 | 3 | +4 | _ | 20 | | SM | 3.6 | 4.7 | 2.7 | 1.3 | 1.1 | SM | | 1.5 | 0.30 | 0.60 | 0.2 | 0.17 | 0.16 | 0.43 | | 1.7 | 1.7 | 1.0 | 1.3 | 0.43 | 0.40 | 0.26 | | 3.7 | 1.7 | 2.1 | 1.3 | 0.61 | 0.56 | 0.74 | | SM | 2.3 | 4.4 | 1.7 | 1.21 | 1.18 | 1.35 | | 2.5 | 2.2 | 2.6 | 1.6 | 1.01 | 0.90 | 1.17 | | 1.9 | 1.9 | 3.1 | 1.4 | 0.74 | 0.67 | 1.10 | | 4.3 | 14.1 | n.a. | 10.1 | 9.0 | 3.8 | n.a. | | 1.8 | 6.4 | n.a. | 4.8 | 3.9 | 1.3 | 2.3 | | 3.4 | _ | - | _ | _ | 3.1 | 1.7 | | SM | < 1.8 | < 3.0 | < 1.2 | < 1.0 | < 1.0 | n.a. | | | SM
1.5
1.7
3.7
SM
2.5
1.9
4.3
1.8
3.4 | SM 3.6
1.5 0.30
1.7 1.7
3.7 1.7
SM 2.3
2.5 2.2
1.9 1.9
4.3 14.1
1.8 6.4
3.4 – | SM 3.6 4.7 1.5 0.30 0.60 1.7 1.7 1.0 3.7 1.7 2.1 SM 2.3 4.4 2.5 2.2 2.6 1.9 1.9 3.1 4.3 14.1 n.a. 1.8 6.4 n.a. 3.4 — | SM 3.6 4.7 2.7 1.5 0.30 0.60 0.2 1.7 1.7 1.0 1.3 3.7 1.7 2.1 1.3 SM 2.3 4.4 1.7 2.5 2.2 2.6 1.6 1.9 1.9 3.1 1.4 4.3 14.1 n.a. 10.1 1.8 6.4 n.a. 4.8 3.4 — — — | SM 3.6 4.7 2.7 1.3 1.5 0.30 0.60 0.2 0.17 1.7 1.7 1.0 1.3 0.43 3.7 1.7 2.1 1.3 0.61 SM 2.3 4.4 1.7 1.21 2.5 2.2 2.6 1.6 1.01 1.9 1.9 3.1 1.4 0.74 4.3 14.1 n.a. 10.1 9.0 1.8 6.4 n.a. 4.8 3.9 3.4 | SM 3.6 4.7 2.7 1.3 1.1 1.1 1.5 0.30 0.60 0.2 0.17 0.16 1.7 1.7 1.0 1.3 0.43 0.40 3.7 1.7 2.1 1.3 0.61 0.56 SM 2.3 4.4 1.7 1.21 1.18 2.5 2.2 2.6 1.6 1.01 0.90 1.9 1.9 3.1 1.4 0.74 0.67 4.3 14.1 n.a. 10.1 9.0 3.8 1.8 6.4 n.a. 4.8 3.9 1.3 3.4 3.1 | #### S-channel Higgs Production #### **⇒** s-channel production - very small cross section - reduced by ISR and beam spread - $\sigma^{born}(\mu + \mu \rightarrow H) \approx 40.000 \sigma^{born}(e + e \rightarrow H)$ #### → Beam-spread improvements - FCC-ee via monochromators - Feasibility and impact on luminosity need study #### **⇒** Expected significance 0.7σ / 10ab-1 Set an electron Yukawa coupling upper limit: k_e < 2.5 @95% CL Upper Limits / Precision on κ_e ### Exclusive Higgs boson decays - → First and second generation couplings accessible - Sensitivity to u/d quark Yukawa coupling - Sensitivity due to interference $$\frac{{\rm BR}_{h\to\rho\gamma}}{{\rm BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_{u} - 0.12 \bar{\kappa}_{d} \right]}{0.57 \bar{\kappa}_{b}^{2}} \times 10^{-5}$$ - Also interesting to hadron collider program - → Alternative H→MV decays should be studied (V= γ, W, and Z) $$H \rightarrow J/\Psi \gamma$$ y_c $H \rightarrow \varphi \gamma$ y_s $H \rightarrow \rho \gamma$ y_{u, y_d} ### Rare and Exotics Higgs Bosons - → Largely unexplored! - → ZH events allow for detailed studies of rare and exotic decays - improved with hadronic and invisible Z decays - set requirements for lepton collider detector - Coupling measurements have sensitivity to BSM decays - Dedicated studies using specific final states improve sensitivity - ⇒ Example: Higgs to invisible, flavor violating Higgs, and many more - Modes with of limited LHC sensitivity are of particular importance to lepton collider program - → Detailed discussion of exotic Higgs decays at Phys. Rev. D 90, 075004 (2014) ``` h \rightarrow \mathcal{K}_T h \rightarrow 4b h \rightarrow 2b2\tau h\to 2b2\mu h \rightarrow 4\tau, 2\tau 2\mu h \rightarrow 4i h \rightarrow 2\gamma 2j h \rightarrow 4\gamma h \to ZZ_D, Za \to 4\ell' h \rightarrow Z_D Z_D \rightarrow 4\ell h \rightarrow \gamma + \mathcal{L}_T h \rightarrow 2\gamma + K_T h \rightarrow 4 ISOLATED LEPTONS + \mathbb{Z}_T h \rightarrow 2\ell + K_T h \rightarrow ONE LEPTON-JET + X h \rightarrow TWO LEPTON-JETS + X h \rightarrow b\bar{b} + \mathcal{K}_{T} h \rightarrow \tau^+\tau^- + \cancel{K}_T ``` ## FCC-ee: The Electroweak Factory | (4y) Z peak | E _{cm} = 91 GeV | 5 10¹² e+e- → Z | |-------------------|----------------------------------|----------------------------------------------------| | (2y) WW threshold | E _{cm} = 161 GeV | 108 e+e- \rightarrow WW | | (3y) ZH threshold | E _{cm} = 240 GeV | 10 ⁶ e+e- → ZH | | (4y) tt threshold | E _{cm} = 350 GeV | 10 ⁶ e+e- \rightarrow \overline{tt} | | (ny) H(optional) | E _{cm} = 125 GeV | 10 ⁴ e+e- $\rightarrow \overline{H}$ | #### W Boson Mass #### W Mass Measurement - W pair threshold scan with $=> \Delta M_W = 0.45$ MeV (stat. only) - Leading systematic: beam energy - Direct W mass reconstruction => ΔM_W = 0.22 MeV (stat. only) - Leading systematic: theoretical Can systematic uncertainties meet statistical precision? #### **Electroweak Precision** #### TeraZ (5 X 10¹² Z) From data collected in a lineshape energy scan: - Z mass (key for jump in precision for ewk fits) - Z width (jump in sensitivity to ewk rad corr) - R_I = hadronic/leptonic width (α_s(m²_Z), lepton couplings, precise universality test) - peak cross section (invisible width, N_v) - $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_Z^2)$, lepton couplings) - Tau polarization ($sin^2\theta_{eff}$, lepton couplings) - R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings) #### Most critical systematic uncertainties: - Center-of-mass energy and energy spread - Luminosity • $\Delta M_Z = 0.004 \text{ MeV (stat. only)}$ ## FCC-ee: The Top Factory | (4y) Z peak | E _{cm} = 91 GeV | $5 \ 10^{12} \ \text{e+e-} \rightarrow \text{Z}$ | |-------------------|---------------------------|--------------------------------------------------| | (2y) WW threshold | E _{cm} = 161 GeV | 108 e+e- \rightarrow WW | | (3y) ZH threshold | E _{cm} = 240 GeV | 10 ⁶ e+e- → ZH | | (4y) tt threshold | E _{cm} = 350 GeV | 10 ⁶ e+e- \rightarrow tt | | (ny) H(optional) | E _{cm} = 125 GeV | 10⁴ e+e- > H | ## **Top Physics** ## Top Mass LHC Legacy #### Projections for various techniques - direct measurement in ttbar or single top - jet systematics dominate - indirect measurement from cross sections - theory and luminosity uncertainties dominate - using of I + $(J/\psi \rightarrow) \mu\mu$ final state - uncert. on modelling of b-fragmentation/-decay dominate - clean signature, small BR, limited by statistics - Usually ambiguity of top mass definition not considered - ATLAS using only I + $(J/\psi \rightarrow) \mu\mu$ final states - Stat. 0.14 GeV, syst. 0.48 GeV (=0.28%, at the level of the current best mass value) - · CMS Can reach between 0.1%-0.7% precision #### Top-pair threshold scan Top mass and width can be measured directly with an accurate top cross section threshold scan • Precise knowledge of α_s improved correlation of m_t , Γ_t , and Y_t drastically 25 <u>arxiv:1604.08122</u> ### Top-pair threshold scan - Statistical accuracy on mt (Γ_t) is ~17 (45) MeV and 10% on Y_t - Systematic uncertainties - 3 MeV from center-of-mass energy - 5 MeV from α_s - ~40 MeV from theoretical uncertainties (NNNLO) #### Top-pair threshold scan - Precision test of the Standard Model - Improved understanding in top-W-H radiative corrections ## **EW & Top Physics Program** | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Observable | present | FCC-ee | FCC-ee | Comment and | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|------------|---------|--------------------------------------| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | leading exp. error | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | mz (keV) | 91186700 ± 2200 | 4 | _ | From Z line shape scan | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (===) | | | | _ | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\Gamma_{\rm Z}~({\rm keV})$ | 2495200 ± 2300 | 4 | 25 | From Z line shape scan | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | Beam energy calibration | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | R_{ℓ}^{Z} (×10 ³) | 20767 ± 25 | 0.06 | 0.2-1 | ratio of hadrons to leptons | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | acceptance for leptons | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$ | 1196 ± 30 | 0.1 | 0.4-1.6 | from R_{ℓ}^{Z} above | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 216290 ± 660 | 0.3 | <60 | ratio of bb to hadrons | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | stat. extrapol. from SLD | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$ | 41541 ± 37 | 0.1 | 4 | peak hadronic cross section | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | luminosity measurement | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $N_{\nu}(\times 10^{3})$ | 2996 ± 7 | 0.005 | 1 | Z peak cross sections | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | Luminosity measurement | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$ | 231480 ± 160 | 3 | 1 | from $A_{FB}^{\mu\mu}$ at Z peak | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | Beam energy calibration | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $1/\alpha_{\rm QED}({\rm m_Z^2})(\times 10^3)$ | 128952 ± 14 | 3 | small | from $A_{FB}^{\mu\mu}$ off peak | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | - | | | | QED&EW errors dominate | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $A_{\rm FB}^{\rm b}, 0 \ (\times 10^4)$ | 992 ± 16 | 0.02 | 1-3 | b-quark asymmetry at Z pole | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | from jet charge | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $A_{FB}^{pol,\tau}$ (×10 ⁴) | 1498 ± 49 | 0.15 | <2 | au polarization asymmetry | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | au decay physics | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | m _W (MeV) | 80350 ± 15 | 0.25 | 0.3 | From WW threshold scan | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | Beam energy calibration | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\Gamma_{ m W}~({ m MeV})$ | 2085 ± 42 | 1.2 | 0.3 | From WW threshold scan | | $N_{ u}(imes 10^3)$ 2920 \pm 50 0.8 small ratio of invis. to leptor in radiative Z returns $m_{\rm top}~({\rm MeV/c^2})$ 172740 \pm 500 17 small From $t\bar{t}$ threshold so QCD errors domin $\Gamma_{\rm top}~({\rm MeV/c^2})$ 1410 \pm 190 45 small From $t\bar{t}$ threshold so | | | | | Beam energy calibration | | $N_{ u}(imes 10^3)$ 2920 \pm 50 0.8 small ratio of invis. to lepto in radiative Z return $m_{\rm top}~({\rm MeV/c^2})$ 172740 \pm 500 17 small From $t\bar{t}$ threshold so QCD errors domin $\Gamma_{\rm top}~({\rm MeV/c^2})$ 1410 \pm 190 45 small From $t\bar{t}$ threshold so | $lpha_{ m s}({ m m_W^2})(imes 10^4)$ | 1170 ± 420 | 3 | small | from R_{ℓ}^{W} | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $N_{\nu}(\times 10^3)$ | 2920 ± 50 | 0.8 | small | ratio of invis. to leptonic | | $\Gamma_{ m top} \; ({ m MeV/c^2}) \; 1410 \pm 190 \; 45 \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} \; { m From} \; t \overline{t} \; { m threshold} \; { m small} m$ | | | | | in radiative Z returns | | $\Gamma_{ m top} \; ({ m MeV/c^2}) \; 1410 \pm 190 \; 45 \; { m small} \; { m From} \; { m t} { m \overline{t}} \; { m threshold} \; { m sol} \; { m top} \;$ | $m_{\rm top}~({ m MeV/c^2})$ | 172740 ± 500 | 17 | small | From $t\bar{t}$ threshold scan | | | | | | | QCD errors dominate | | | $\Gamma_{\rm top}~({ m MeV/c^2})$ | 1410 ± 190 | 45 | small | From $t\bar{t}$ threshold scan | | | | | | | QCD errors dominate | | $\lambda_{\mathrm{top}}/\lambda_{\mathrm{top}}^{\mathrm{SM}}$ 1.2 \pm 0.3 0.10 small From $\mathrm{t}\bar{\mathrm{t}}$ threshold see | $\lambda_{ m top}/\lambda_{ m top}^{ m SM}$ | 1.2 ± 0.3 | 0.10 | small | From $t\overline{t}$ threshold scan | | | | | | | QCD errors dominate | | ttZ couplings $\pm 30\%$ 0.5 - 1.5% small From $\sqrt{s} = 365\mathrm{GeV}$ | ttZ couplings | $\pm 30\%$ | 0.5 - 1.5% | small | From $\sqrt{s} = 365 \text{GeV}$ run | ## First set of main observables - needs to be improved - Focus was on statistical precision - For Z and W boson mass, center-ofmass energy uncertainty will dominate - For cross-section measurements the luminosity measurement will be limiting - Possible experimental uncertainties are indicative - Tau, b, and c observables to be added - Theory work is critical and has been initiated. A lot of work ahead. - Aim for next study: detector design to match experimental systematic uncertainties to statistical precision ## FCC-ee: Taus, Flavor and QCD ## **QCD Opportunities** - High precision α_s (order of magnitude improvement) determination from - Hadronic tau decays - Jet rates and event shapes - Hadronic Z decays - Hadronic W decays - High precision studies of perturbative parton radiation - Jet rates and event shapes - Jet substructure - Quark/gluon/heavy-quark discrimination - q, g, b, c parton-to-hadron fragmentation functions - High precision non-perturbative QCD studies - Color reconnection - Final-state multiparticle correlations - High precision hadronic studies - Very rare hadron production and decays ## Tau and Flavor Physics | Observable | Present | FCC-ee | FCC-ee | |-------------------------------------------------|--------------------|--------|--------| | | value \pm error | stat. | syst. | | $m_{\tau} \; ({ m MeV})$ | 1776.86 ± 0.12 | 0.004 | 0.1 | | $\mathcal{B}(au o \mathrm{e}ar{ u} u) \ (\%)$ | 17.82 ± 0.05 | 0.0001 | 0.003 | | $\mathcal{B}(au o \mu \bar{ u} u) \ (\%)$ | 17.39 ± 0.05 | 0.0001 | 0.003 | | $ au_{ au}$ (fs) | 290.3 ± 0.5 | 0.001 | 0.04 | Can systematic uncertainties meet statistical precision? | Decay | Present bound | FCC-ee sensitivity | |---------------------|-----------------------|----------------------| | $Z \to \mu e$ | 0.75×10^{-6} | $10^{-10} - 10^{-8}$ | | $Z \to \tau \mu$ | 12×10^{-6} | 10^{-9} | | $Z \to \tau e$ | 9.8×10^{-6} | 10^{-9} | | $ au o \mu \gamma$ | 4.4×10^{-8} | 2×10^{-9} | | $\tau \to 3\mu$ | 2.1×10^{-8} | 10^{-10} | arXiv:1811.09408 ## FCC-ee: Discovery Machine ## **Discovery Physics** or l - v arXiv:1411.5230 Economic extension by adding a number of Fermionic singlets "Right-handed" or "sterile" neutrinos. Two mass-differences \Rightarrow at least two sterile neutrinos. New mass scale, a priori unrelated to the known ones. Many constraints from experiments on all energy scales. #### Search for New Scalars arXiv:hep-ex/0206022v1 10 Jun 2002 #### → Measurement with OPAL at LEP Decay-mode independent searches for new scalar bosons with the OPAL detector at LEP The OPAL Collaboration #### Abstract This paper describes topological searches for neutral scalar bosons S^0 produced in association with a Z^0 boson via the Bjorken process $e^+e^- \to S^0Z^0$ at centre-of-mass energies of 91 GeV and 183–209 GeV. These searches are based on studies of the recoil mass spectrum of $Z^0 \to e^+e^-$ and $\mu^+\mu^-$ events and on a search for S^0Z^0 with $Z^0 \to \nu\bar{\nu}$ and $S^0 \to e^+e^-$ or photons. They cover the decays of the S^0 into an arbitrary combination of hadrons, leptons, photons and invisible particles as well as the possibility that it might be stable. No indication for a signal is found in the data and upper limits on the cross section of the Bjorken process are calculated. Cross-section limits are given in terms of a scale factor k with respect to the Standard Model cross section for the Higgs-strahlung process $e^+e^- \to H^0_{SM}Z^0$. These results can be interpreted in general scenarios independently of the decay modes of the S^0 . The examples considered here are the production of a single new scalar particle with a decay width smaller than the detector mass resolution, and for the first time, two scenarios with continuous mass distributions, due to a single very broad state or several states close in mass. ### **Discovery Physics** - EFT D6 operators (some assumptions) - Higgs and EWPOs are complementary #### Your contributions - → Can you (or your students) - use studies to design or optimize detectors? - develop or optimize reconstruction, identification, and analysis using modern techniques? - come up with new or unexplored ideas? - **→** For more details, see <u>case studies</u> for FCC-ee community - **→** Software tutorial mid September #### Conclusion - FCC-ee offers a huge physics program with - → Higgs and top measurements with > 10⁶ events each in short (3-5y) runs - → Unique possibilities - Electron Yukawa coupling - TeraZ + beam energy calibration - keV and ppm precision on EWPOs at Z resonance and WW threshold - \bullet α_{QED} (m_Z), α_{S} (m_Z), $\sin^{2}\theta_{W}^{eff}$ and $G\tau$ - Searches for LLPs and rare phenomena (LFV, LNF, light scalars, ...) - Flavor physics program with 10^{12} Bs and 10^{11} τ 's - Offering sensitivity to new physics at scales of 10 to 70 TeV - Ambitious program aiming for significant progress (order(s) of magnitude) in understanding of nature - Main challenge is to imagine/optimize detector to match statistical power and to sharpen the theory calculations - Last but not least: an essential springboard towards 100 TeV pp collisions #### FCC documentation ## Outcome of design studies recommended by the 2013 European Strategy 4 CDR volumes published in EPJ ## FCC Physics Opportunities FCC-hh: The Hadron Collider FCC-ee: The Lepton Collider HE-LHC: The High Energy Large Hadron Collider #### **Recent FCC publications** 1) Future Circular Collider - European Strategy Update Documents (FCC-ee), (FCC-hh), (FCC-int) - 2) FCC-ee: Your Questions Answered <u>arXiv:</u> 1906.02693 - 3) Circular and Linear e+e- Colliders: Another Story of Complementarity arXiv:1912.11871 - 4) Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders <u>arXiv:</u> 1901.02648 - 5) Polarization and Centre-of-mass Energy Calibration at FCC-ee, <u>arXiv:1909.12245</u> #### **Higgs Related Physics at Lepton Colliders** | √s [GeV] | √s | Measurements (incomplete list) | |----------|--------------------------------------|------------------------------------------------------------------------------------| | 90 | mz | m_Z , Γ_Z , α_s , α_{QED} , flavor, QCD | | 125 | m _H | s-channel Higgs production | | 160 | 2m _W | m_W , α_s | | 240-250 | m _H +m _Z + | mн, Гн, J ^{PC} , g _{нхх} , BSM decays, indirect g _{ннн} | | 340-355 | 2*m _{top} | ghww, Γ_H , indirect g_{Htt} , m_{top} | | 500 | 2*m _{top} +m _H + | GHHH, GHtt | | > 500 | M _{NP} | gнtt, gннн, BSM Higgs | #### **CP Measurements** - → CP violation can be studied by searching for CP-odd contributions; CP-even already established - → Higgs to Tau decays of interest - Studies consider intermediated resonances (ρ,a1) $\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + i\gamma_5\sin\Delta)f$ | Colliders | LHC | HL-LHC | $FCCee (1 ab^{-1})$ | $FCCee (5 ab^{-1})$ | FCCee (10 ab^{-1}) | |---------------------|-----|--------|---------------------|---------------------|------------------------------| | $Accuracy(1\sigma)$ | 25° | 8.0° | 5.5° | 2.5° | 1.7° | http://arxiv.org/abs/1308.1094