EFFECT OF DETUNING IMPEDANCE ON STABILITY

Ninad Chitnis

Supervisor: Carlo Zannini

Acknowledgements: G. Iadarola, D. Amorim, G. Rumolo, B. Salvant, N. Mounet, X. Buffat, H. Bartosik, E. Metral

OI TWO PARTICLE MODEL

Initial work with two macroparticles

02 MANY PARTICLE MODEL

Extending to many particles and benchmarking with EDELPHI

03 DETUNING IN REAL MACHINE

Considering effect of SPS parameters

OY ANALYTICAL MULTI-BUNCH MODEL

Transfer matrix based approach

05 SUMMARY

INDEX

OI TWO PARTICLE MODEL

Initial work with two macroparticles

02 MANY PARTICLE MODEL

Extending to many particles and benchmarking with EDELPHI

03 DETUNING IN REAL MACHINE

Considering effect of SPS parameters

OY ANALYTICAL MULTI-BUNCH MODEL

Transfer matrix based approach

05 SUMMARY

INDEX

MACHINE USED

NOTE

• The machine used for all simulations is the SPS

Including non-zero chromaticity and resistive wall wakes in PyHEADTAIL

DETOUR -BACKGROUND

RHO – A PARAMETER FOR THE WAKES

• Rho defined as a measure of the detuning wake w.r.t the driving wake

$$ho=rac{k_Q}{k_D}$$

where k_Q is detuning wake and k_D is driving wake

• k_D always kept constant

HEAD-TAIL REGIME

- Impedance: resistive wall
- Non-linear synchrotron motion

TMCI REGIME

- Impedance: resistive wall
- Non-linear synchrotron motion

EXPANDED SWEEP

- Sweep with higher chromaticity range Impedance: resistive \bullet
- wall
- Non-linear ۲ synchrotron motion

RESULTS

- Very low effect in Head-Tail regime
- In the TMCI regime
 - Always stabilising at zero chromaticity
 - Destabilises in some chromaticity ranges
- Effect depends on the chromaticity and the relative magnitude of driving and detuning wakes
 - Greater impact for detuning > driving
- Matches the expectation of analytical two particle model

OI TWO PARTICLE MODEL

Initial work with two macroparticles

02 MANY PARTICLE MODEL

Extending to many particles and benchmarking with EDELPHI

03 DETUNING IN REAL MACHINE

Considering effect of SPS parameters

OY ANALYTICAL MULTI-BUNCH MODEL

Transfer matrix based approach

05 SUMMARY

INDEX

Extending previous simulations to consider large number of macroparticles and benchmarking with EDELPHI

DIFFERENT MODES

- Three modes \bullet
- expected Identified by observing intra-bunch motion \bullet

EFFECT W.R.T CHROMATICITY

- Impedance: Resistive wall
- Linear synchrotron motion

EFFECT W.R.T CHROMATICITY

- Impedance: resistive wall
- Non-linear synchrotron motion
- Single harmonic RF voltage

FLAT CHAMBER CONDITIONS

- Impedance: resistive wall
- Non-linear synchrotron motionSingle harmonic RF
- Single harmonic RF voltage

FLAT CHAMBER CONDITIONS

- Impedance: resistive wall
- Non-linear synchrotron motion
- Single harmonic RF voltage

RESULTS

- Impact depends on the sign of the detuning impedance and chromaticity
 - For a flat chamber, a situation where the vertical plane is more stable than the horizontal plane is possible
- Second harmonic RF voltage also has an impact
 - Low second harmonic RF voltage - destabilises mode 1
 - High second harmonic RF
 voltage stabilises mode 1
- Interesting to study this effect further

EFFECT ON TMCI THRESHOLD

- Detuning also expected to impact TMCI threshold
- Intensity sweeps carried out with different impedances

RESISTIVE WALL

- Impedance: resistive wall
- Linear synchrotron motion

BROADBAND RESONATOR – SPS LIKE PARAMETERS

- Impedance: broadband resonator with Q = 1, f = 1 GHz and R = 7 M Ohm
- Linear synchrotron motion

USING REALISTIC SPS WAKES

- Realistic SPS impedance model available as a wake table with values for driving and detuning in X and Y planes
- Post LS2 model used
- 2 conditions considered
 - Only driving wakes
 - Driving + detuning wakes

SPS IMPEDANCE

- Impedance: SPS wake model
- Linear synchrotron motion

SPS IMPEDANCE

- Higher threshold for X plane
- Threshold for X increased more by detuning than for Y

RESULTS

- Detuning impedance affects the TMCI threshold
 - The threshold for the horizontal plane is pushed farther than the threshold for the vertical plane in the SPS
- Different impact depending on kind of impedance considered

BENCHMARKING WITH EDELPHI

- Vlasov solver based approach
- Allows more detailed tune analysis than PyHEADTAIL

FLAT CHAMBER CONDITIONS, RESISTIVE WALL

COMPARING GROWTH RATES, REAL WAKES

COMPARING X TUNES – WITHOUT DETUNING

TUNE ANALYSIS – X WITHOUT DETUNING

- \bullet
- Zooming out Complete tune picture possible ٠

COMPARING X TUNES – WITH DETUNING

31

TUNE ANALYSIS – X WITH DETUNING

- \bullet
- Zooming out Complete tune analysis possible even with detuning \bullet

RESULTS

- Good agreement between PyHEADTAIL and EDELPHI for intensity sweeps to a certain extent
 - Same threshold observed with both tools
 - Growth rates differ after ~500 for intensity sweep
- Response is in better agreement for chromaticity sweep

OI TWO PARTICLE MODEL

Initial work with two macroparticles

02 MANY PARTICLE MODEL

Extending to many particles and benchmarking with EDELPHI

03 DETUNING IN REAL MACHINE

Considering effect of SPS parameters

OY ANALYTICAL MULTI-BUNCH MODEL

Transfer matrix based approach

05 SUMMARY

INDEX

O3 DETUNING IN REAL MACHINE

Including specific SPS parameters like higher order chromaticity and optics

SPS EXAMPLE

EFFECT OF LONGITUDINAL EMITTANCE

- Longitudinal emittance expected to impact the TMCI threshold
- Higher order chromaticity and nonlinearities are considered as well
 - First order chromaticity is zero
- An overview of the effect of detuning is possible by considering the longitudinal emittance
CONSIDERING EMITTANCE, LINEAR

CONSIDERING EMITTANCE, NON LINEAR

CONSIDERING EMITTANCE, NON LINEAR WITH HIGH ORDER CHROMATICITIES

39

CONSIDERING EMITTANCE, LINEAR

CONSIDERING EMITTANCE, NON LINEAR

41

CONSIDERING EMITTANCE, NON LINEAR WITH HIGH ORDER CHROMATICITIES

12

- The chromaticity of operation also expected to affect the threshold
- Positive chromaticity considered for study
 - Results for two different optics

CONSIDERING CHROMATICITY, Q20 OPTICS

CONSIDERING CHROMATICITY, Q20 OPTICS

15

CONSIDERING CHROMATICITY, Q26 OPTICS

CONSIDERING CHROMATICITY, Q26 OPTICS

- Higher order chromaticities play a role in threshold especially at higher longitudinal emittances
- At higher chromaticities detuning reduces the threshold for the vertical plane and increases for the horizontal plane
- Q-20 optics is more critical than Q-26 wrt to TMCI threshold at higher chromaticities
 - For Y plane, Q-26 has higher threshold for chromaticity > 0.4
 - Due to different chromatic frequency shifts in different optics

OI TWO PARTICLE MODEL

Initial work with two macroparticles

02 MANY PARTICLE MODEL

Extending to many particles and benchmarking with EDELPHI

03 SPS EXAMPLE

Considering effect of SPS parameters

OY ANALYTICAL MULTI-BUNCH MODEL

Transfer matrix based approach

OS SUMMARY

INDEX

03

ANALYTICAL MULT– Transfer matrix based approach for rigid bunches with wakes

MODEL

ANALYTICAL APPROACH

- Transfer matrix approach for a multibunch model assuming
 - Rigid bunches
 - Single turn wakes
 - Decoupled transverse planes
 - No longitudnal motion
- Obtained a matrix relating the coordinates of all bunches from one turn to the next
 - Written as a function of transfer matrix and wake matrix

GENERAL EQUATION

• The general equation for *n* bunches is given by

$$egin{pmatrix} x_0 \ x'_0 \ dots \ x_{n-1} \ x'_{n-1} \end{pmatrix}_j = \{I+W_{2n imes 2n}\}\,\{T_{n imes n}\} egin{pmatrix} x_0 \ x'_0 \ dots \ x'_0 \ dots \ x_{n-1} \ x'_{n-1} \end{pmatrix}_{j-1}$$

TRANSFER MATRIX

• T is nxn block diagonal transfer matrix for n bunches where M is 2x2 matrix

$$T_{n imes n} = egin{pmatrix} M & O & \ldots & O \ O & M & \ldots & O \ dots & dots & \ddots & dots \ O & O & \ldots & M \end{pmatrix}$$

$$M = egin{pmatrix} \cos\mu + lpha \sin\mu & eta \sin\mu \ -\gamma \sin\mu & \cos\mu - lpha \sin\mu \end{pmatrix}$$

WAKE MATRIX

• W_{2nx2n} is the sparse wake matrix for *n* bunches that generates the wake kick $W_{2n\times2n} = \begin{pmatrix} 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & \dots & 0 \\ CW_x^{dip}(z_1) & 0 & CW_x^{quad}(z_1) & 0 & \dots & 0 \\ 0 & 0 & \vdots & \ddots & \dots & 0 \\ \vdots & & & & \vdots \\ CW_x^{dip}(z_n) & 0 & CW_x^{dip}(z_n - z_1) & \dots & C\sum_{z_k < z_n} W_x^{quad}(z_n - z_k) & 0 \end{pmatrix}$

TIME DOMAIN TRACKING

- The obtained matrix used for time-domain tracking over a certain number of turns
- Bunch by bunch tunes obtained from this data using HarPy

8 TURNS

• Number of turns too low for detetcting tunes correctly

 \bullet

Y tunes vs bunches

- Tune shift from detuning has converged
- Tunes from only driving still change

- Tune shift from detuning has converged
- Tunes from only driving still change

- Tune shift from detuning has converged
- Tunes from only driving still change

- Tune shift from detuning has converged
- Tunes from only driving still change

4096 TURNS

- Tune shift from detuning has converged
- Tunes from only driving still change

8192 TURNS

- Tune shifts have converged
- Small change with turns
- Smooth tunes as expected

TUNE CONVERGENCE

• Plot of maximum tune excursion against the number of turns

- Driving averages out over a large number of turns
- Detuning dominates the tune shifts
- Multi-turn wake model also developed
 - Included in report

OI TWO PARTICLE MODEL

Initial work with two macroparticles

02 MANY PARTICLE MODEL

Extending to many particles and benchmarking with EDELPHI

03 DETUNING IN REAL MACHINE

Considering effect of SPS parameters

OY ANALYTICAL MULTI-BUNCH MODEL

Transfer matrix based approach

05 SUMMARY

INDEX

SUMMARY

- Detuning impedance affects the growth rate and the extent of the effect depends on the chromaticity and the RF voltages
- It also has an appreciable impact on the TMCI threshold and tune shifts
- Good agreement between tracking simulations and Vlasov solver approach to a certain extent
- Rigid bunch analytical model developed for multi-bunch beams to study the effect of detuning impedance

Questions?

THANKS!

APPENDIX A

SIMULATION PARAMETERS

MACHINE PARAMETERS

- Number of macroparticles: 5e5
- Machine: SPS at Q-20 injection
- Number of slices: 500
- Chromaticities
 - Qp_x = Qp_y = 0 (for intensity sweep)
 - Qpp_x = 272; Qpp_y = 662
 - Oppp_x = -1869000; Oppp_y = 1449600
- Intensity: 2ell protons (for chromaticity sweep)
- Number of turns: 8192
- Number of segments: 1
- RF voltages: 5.75 MV, 0.8625 MV
- Bunch length: 0.23 m
- Bucket length: 2.5 ns

RESISTIVE WALL

- Pipe radius: 3 \bullet cm
- Conductivity: 1E6 •

RESONATOR

- R:7 M Ohm •
- f: 1 GHz \bullet
- Q:1 \bullet

SPS MODELS

- Post LS2 Q20 \bullet
- •
- Post LS2 Q22 Post LS2 Q26 ۲

WAKE PARAMETERS

APPENDIX B

ADDITIONAL SLIDES
EFFECT W.R.T CHROMATICITY

- Impedance: Broadband resonator
- Linear synchrotron motion

INCLUDING SECOND HARMONIC

- Only rho = 0 and -1 considered
- Second harmonic voltage varied as a percentage first
- For higher second harmonic, detuning is stabilising

INCLUDING SECOND HARMONIC

- Only rho = 0 and -1 considered
- Second harmonic voltage varied as a percentage first
- For higher second harmonic, detuning is stabilising

EFFECT OF ACTUAL DISTRIBUTION

- Dependence on the second harmonic implies effect influenced by the actual distribution
- Distribution profiles examined for different conditions

NON-LINEAR WITH SINGLE HARMONIC

- Imperfect gaussianDestabilising effect
- Destabilising effective seen

INTRODUCING SECOND HARMONIC

- Second harmonic 10% of first
- Distribution closer to gaussian than single harmonic

INTRODUCING SECOND HARMONIC

- Second harmonic 20% of first
- Distribution tends to ideal gaussian

CONSIDERING EMITTANCE, LINEAR WITH HIGH ORDER CHROMATICITIES

CONSIDERING EMITTANCE, NON LINEAR WITH SECOND ORDER CHROMATICITY

82

CONSIDERING EMITTANCE, LINEAR WITH HIGH ORDER CHROMATICITIES

33

CONSIDERING EMITTANCE, NON LINEAR WITH SECOND ORDER CHROMATICITY

CONSIDERING CHROMATICITY, Q22 OPTICS

CONSIDERING CHROMATICITY, Q22 OPTICS

WAKE KICK

- Wakes generate a kick acting on the momentum
- Wake kick is given by

$$\Delta x_i' = C \sum_{z_k < z_i} \left\{ W^{dip}_x(z_i - z_k) x_k + W^{quad}_x(z_i - z_k) x_i
ight\}$$

depends on the positions of the same turn

ONE TURN MAP

- Let M be the one-turn map
- The new coordinates of bunch 1 after the lattice and before the wake kick are

$$egin{pmatrix} x_1 \ x_1' \end{pmatrix}_{1,int} = M st egin{pmatrix} x_1 \ x_1' \end{pmatrix}_0$$

EFFECT OF WAKE KICK

• For 2 bunch system, final coordinates after kick given by

EIGENVALUE ANALYSIS

• The eigenvalues for n modes are given by $\lambda_{i_1,2}=r_ie^{\pm j\mu_i}$

• The tune
$$\mu_i$$
 of mode i is given by

$$\mu_i = rccos rac{\lambda_{i_1} + \lambda_{i_2}}{2\sqrt{\lambda_{i_1}\lambda_{i_2}}}$$

TUNES VS COUPLED BUNCH MODES

91

INTRODUCTION OF DAMPER

- Ideal damper with gain *g* acting on the position is considered
 - As damper is independent of wakes, additional term in M
- New matrix M is given by

$$M = egin{pmatrix} \cos\mu + lpha \sin\mu - g & eta \sin\mu \ -\gamma \sin\mu & \cos\mu - lpha \sin\mu \end{pmatrix}$$

- Opposite shifts from driving and detuning
 Flat tune shift from
- Flat tune shift from driving + detuning

- Opposite shifts from driving and detuning
 Flat tune shift from
- Flat tune shift from driving + detuning

- Tune shift from detuning has converged
- Flat tune shift from driving + detuning

I28 TURNS

- Tune shift from detuning has converged
- converged
 Flat tune shift from driving + detuning

- Tune shift from detuning has converged
- Flat tune shift from driving + detuning

IO24 TURNS

- Tune shift from detuning has converged
- Flat tune shift from driving + detuning

- Tune shift from detuning has converged
- Tune shift in steps from driving + detuning

- Tune shift from detuning has converged
- Tune shift in steps from driving + detuning

TUNE

• Plot of maximum tune excursion against the number of turns

