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MACHINE USED ● The machine used for all simulations is 
the SPS

NOTE
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TWO PARTICLE MODEL
01

Including non-zero 
chromaticity and resistive wall 
wakes in PyHEADTAIL
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RHO - A 
PARAMETER FOR 

THE WAKES

● Rho defined as a measure of the detuning 
wake w.r.t the driving wake

where kQ is detuning wake and kD is 
driving wake

● kD always kept constant

DETOUR -
BACKGROUND
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● Impedance: resistive 
wall

● Non-linear 
synchrotron motion

HEAD-TAIL REGIME

TWO PARTICLE
MODEL

7

Mild stabilising 
effect for all values 

of detuning
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TMCI REGIME

Increasin
g 
detuning 
wake

TWO PARTICLE
MODEL
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At zero 
chromaticity, beam 

always stable for 
detuning > driving

For non-zero 
chromaticity, 

mostly stabilising

● Impedance: resistive 
wall

● Non-linear 
synchrotron motion
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EXPANDED SWEEP

TWO PARTICLE
MODEL

9

Destabilising for 
certain 

chromaticity ranges

● Sweep with higher 
chromaticity range

● Impedance: resistive 
wall

● Non-linear 
synchrotron motion
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● Very low effect in Head-Tail regime
● In the TMCI regime

○ Always stabilising at zero 
chromaticity

○ Destabilises in some chromaticity 
ranges 

● Effect depends on the chromaticity and 
the relative magnitude of driving and 
detuning wakes
○ Greater impact for 

detuning > driving
● Matches the expectation of analytical two 

particle model

RESULTS

TWO PARTICLE
MODEL
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MANY PARTICLE 
MODEL

02

Extending previous 
simulations to consider large 
number of macroparticles and 
benchmarking with EDELPHI
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DIFFERENT MODES

● Three modes 
expected

● Identified by 
observing intra-
bunch motion

Mode 0 Mode 1 Mode 2

MANY PARTICLE
MODEL
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● Impedance: Resistive 
wall

● Linear synchrotron 
motion

EFFECT W.R.T 
CHROMATICITY

MANY PARTICLE
MODEL

14

Mild destabilisation 
for mode 0 with 

negative rho

Always 
stabilising for 

mode 1

No clear trend 
for higher order 

modes
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● Impedance: resistive 
wall

● Non-linear 
synchrotron motion

● Single harmonic RF 
voltage

EFFECT W.R.T 
CHROMATICITY

MANY PARTICLE
MODEL

15

Stabilising effect, 
but negligible for 

mode 0
Growth rate 

determined by 
driving

For mode 1, effect 
depends on sign of 

rho

No clear 
trend for 

higher order 
modes
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● Impedance: resistive 
wall

● Non-linear 
synchrotron motion

● Single harmonic RF 
voltage

FLAT CHAMBER 
CONDITIONS

MANY PARTICLE
MODEL

16

Blue curves - no detuning

X plane more stable than Y plane
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FLAT CHAMBER 
CONDITIONS

MANY PARTICLE
MODEL

17

● Impedance: resistive 
wall

● Non-linear 
synchrotron motion

● Single harmonic RF 
voltage

Red curves - with 
impedance ratios 
expected in a flat 

chamber
Detuning is equal 

and opposite in the 
planes

rho value wrt driving 
in the same plane

Y plane more stable than X plane!
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RESULTS

● Impact depends on the sign of the 
detuning impedance and chromaticity
○ For a flat chamber, a situation 

where the vertical plane is more 
stable than the horizontal plane 
is possible

● Second harmonic RF voltage also has 
an impact
○ Low second harmonic RF 

voltage - destabilises mode 1
○ High second harmonic RF 

voltage - stabilises mode 1
● Interesting to study this effect further

MANY PARTICLE
MODEL
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● Detuning also expected to impact TMCI 
threshold

● Intensity sweeps carried out with 
different impedances 

EFFECT ON TMCI 
THRESHOLD

MANY PARTICLE
MODEL
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RESISTIVE WALL

● Impedance: resistive 
wall

● Linear synchrotron 
motion

MANY PARTICLE
MODEL

20

Increase in threshold 
for other values of 

detuning

No threshold for very high 
negative detuning
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BROADBAND 
RESONATOR - SPS 
LIKE PARAMETERS

● Impedance: 
broadband resonator 
with Q = 1, f = 1 GHz 
and R = 7 M Ohm

● Linear synchrotron 
motion 

MANY PARTICLE
MODEL

21

Negative 
detuning 
increases 
threshold

Positive 
detuning 

lowers 
threshold
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● Realistic SPS impedance model available 
as a wake table with values for driving 
and detuning in X and Y planes

● Post LS2 model used
● 2 conditions considered

○ Only driving wakes
○ Driving + detuning wakes

USING REALISTIC 
SPS WAKES

DETOUR

22
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SPS IMPEDANCE

● Impedance: SPS wake 
model

● Linear synchrotron 
motion

MANY PARTICLE
MODEL

23

Higher threshold 
for X plane

Blue curves - no detuning
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SPS IMPEDANCE

MANY PARTICLE
MODEL
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● Higher threshold for X 
plane

● Threshold for X 
increased more by 
detuning than for Y Greater increase in 

X plane than Y 
plane

Red curves - driving + detuning

Detuning increases 
threshold in both 

planes

Reduces threshold 
for the small TMCI 

island
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RESULTS

● Detuning impedance affects the TMCI 
threshold
○ The threshold for the horizontal 

plane is pushed farther than the 
threshold  for the vertical plane 
in the SPS

● Different impact depending on kind of 
impedance considered

MANY PARTICLE
MODEL
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BENCHMARKING 
WITH EDELPHI

● Vlasov solver based approach
● Allows more detailed tune analysis than 

PyHEADTAIL

MANY PARTICLE
MODEL
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FLAT CHAMBER CONDITIONS, RESISTIVE WALLMANY PARTICLE
MODEL

27

Good agreement 
between results
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COMPARING GROWTH RATES, REAL WAKESMANY PARTICLE
MODEL

28

Good 
agreement 

between 
results

Disparity for 
higher growth 

rates
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COMPARING X TUNES - WITHOUT DETUNINGMANY PARTICLE
MODEL

29

PyHEADTAIL EDELPHI

Cannot obtain all the tunes
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TUNE ANALYSIS - X
WITHOUT DETUNING

● Zooming out
● Complete tune picture 

possible

MANY PARTICLE
MODEL

30
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COMPARING X TUNES - WITH DETUNINGMANY PARTICLE
MODEL

31

PyHEADTAIL EDELPHI

Obtaining tunes even 
more difficult in 

presence of detuning
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TUNE ANALYSIS - X
WITH DETUNING

● Zooming out
● Complete tune 

analysis possible 
even with detuning

MANY PARTICLE
MODEL
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RESULTS

● Good agreement between PyHEADTAIL 
and EDELPHI for intensity sweeps to a 
certain extent
○ Same threshold observed with both 

tools
○ Growth rates differ after ~500 for 

intensity sweep
● Response is in better agreement for 

chromaticity sweep

MANY PARTICLE
MODEL
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DETUNING IN REAL 
MACHINE

03

Including specific SPS 
parameters like higher order 
chromaticity and optics
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● Longitudinal emittance expected to 
impact the TMCI threshold

● Higher order chromaticity and non-
linearities are considered as well
○ First order chromaticity is zero

● An overview of the effect of detuning is 
possible by considering the longitudinal 
emittance

EFFECT OF 
LONGITUDINAL 

EMITTANCE

SPS EXAMPLE
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CONSIDERING EMITTANCE, LINEAR

37

SPS EXAMPLE

Detuning 
increases 
threshold
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CONSIDERING EMITTANCE, NON LINEAR 

38

SPS EXAMPLE

Detuning 
increases 
threshold

Lower 
growth rate 
than linear
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CONSIDERING EMITTANCE, NON LINEAR WITH HIGH ORDER CHROMATICITIES

39

SPS EXAMPLE

With second 
and third 

order 
chromaticities

Detuning still 
increases 
threshold

Threshold lower 
than that 

without higher 
order effects
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CONSIDERING EMITTANCE, LINEAR

40

SPS EXAMPLE

Threshold 
increased by a 
greater extent 
than Y plane

Threshold not 
visible in the 
considered 

intensity range
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CONSIDERING EMITTANCE, NON LINEAR 

41

SPS EXAMPLE

No higher order 
chromaticity 

effects

Threshold not 
visible in the 
considered 

intensity range
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CONSIDERING EMITTANCE, NON LINEAR WITH HIGH ORDER CHROMATICITIES

42

SPS EXAMPLE

With second 
and third 

order 
chromaticities

Higher order 
effects have 

greater impact 
on X plane

Higher order 
effects more 

critical to 
stability than 

detuning
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● The chromaticity of operation also 
expected to affect the threshold

● Positive chromaticity considered for study
○ Results for two different optics

EFFECT OF 
CHROMATICITY

43

SPS EXAMPLE
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CONSIDERING CHROMATICITY, Q20 OPTICS
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SPS EXAMPLE

Increase in 
threshold with 
chromaticity

Lower threshold 
than without 

detuning
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CONSIDERING CHROMATICITY, Q20 OPTICS
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SPS EXAMPLE

Increase in 
threshold with 
chromaticity

Threshold 
much larger at 
higher chroma 
than without 

detuning

Detuning has 
more impact on 

X plane
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CONSIDERING CHROMATICITY, Q26 OPTICS

46

SPS EXAMPLE

Threshold 
increases with 
chromaticity 

at a larger 
slope than Q-

20 optics

At higher 
chroma, 

threshold higher 
than Q-20 optics
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CONSIDERING CHROMATICITY, Q26 OPTICS

47

SPS EXAMPLE

Threshold 
increases with 
chromaticity 

at a larger 
slope than Q-

20 optics

At higher 
chroma, 

threshold not 
even visible!
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RESULTS

● Higher order chromaticities play a role in 
threshold especially at higher longitudinal 
emittances

● At higher chromaticities detuning reduces 
the threshold for the vertical plane and 
increases for the horizontal plane

● Q-20 optics is more critical than Q-26 wrt 
to TMCI threshold at higher chromaticities
○ For Y plane, Q-26 has higher 

threshold for chromaticity > 0.4
○ Due to different chromatic 

frequency shifts in different optics

48

SPS EXAMPLE
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ANALYTICAL MULTI-
BUNCH
MODEL

03

Transfer matrix based 
approach for rigid bunches 
with wakes
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ANALYTICAL 
APPROACH

● Transfer matrix approach for a multi-
bunch model assuming
○ Rigid bunches
○ Single turn wakes
○ Decoupled transverse planes
○ No longitudnal motion

● Obtained a matrix relating the coordinates 
of all bunches from one turn to the next
○ Written as a function of transfer 

matrix and wake matrix

ANALYTICAL MULTI-BUNCH
MODEL

51
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GENERAL EQUATION

● The general equation for n bunches is 
given by

52

ANALYTICAL MULTI-BUNCH
MODEL
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TRANSFER MATRIX

● T is nxn block diagonal transfer matrix for 
n bunches where M is 2x2 matrix

● M is given by
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ANALYTICAL MULTI-BUNCH
MODEL
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WAKE MATRIX

● W2nx2n is the sparse wake matrix for n
bunches that generates the wake kick
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ANALYTICAL MULTI-BUNCH
MODEL
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TIME DOMAIN 
TRACKING

● The obtained matrix used for time-domain 
tracking over a certain number of turns

● Bunch by bunch tunes obtained from this 
data using HarPy
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ANALYTICAL MULTI-BUNCH
MODEL



56

8 TURNS

56

ANALYTICAL MULTI-BUNCH
MODEL

● Number of turns too 
low for detetcting 
tunes correctly Turns = 8
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32 TURNS

57

ANALYTICAL MULTI-BUNCH
MODEL

● Better picture seen

Turns = 32



58

64 TURNS

58

ANALYTICAL MULTI-BUNCH
MODEL

● Tune shift from 
detuning has 
converged

● Tunes from only 
driving still change

Turns = 64
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128 TURNS

59

ANALYTICAL MULTI-BUNCH
MODEL

Turns = 128

● Tune shift from 
detuning has 
converged

● Tunes from only 
driving still change
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256 TURNS

60

ANALYTICAL MULTI-BUNCH
MODEL

Turns = 256

● Tune shift from 
detuning has 
converged

● Tunes from only 
driving still change
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1024 TURNS

61

ANALYTICAL MULTI-BUNCH
MODEL

Turns = 1024

● Tune shift from 
detuning has 
converged

● Tunes from only 
driving still change
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4096 TURNS

62

ANALYTICAL MULTI-BUNCH
MODEL

Turns = 4096

● Tune shift from 
detuning has 
converged

● Tunes from only 
driving still change

Detuning 
dominates overall 

tune shift
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8192 TURNS

63

ANALYTICAL MULTI-BUNCH
MODEL

● Tune shifts have 
converged

● Small change with 
turns

● Smooth tunes as 
expected

Turns = 8192

Detuning 
dominates overall 

tune shift
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TUNE 
CONVERGENCE

64

ANALYTICAL MULTI-BUNCH
MODEL

Tune excursion 
converges to tune from 

only detuning● Plot of maximum 
tune excursion 
against the number of 
turns
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RESULTS

● Driving averages out over a large number 
of turns

● Detuning dominates the tune shifts
● Multi-turn wake model also developed

○ Included in report
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SPS EXAMPLE
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SUMMARY

● Detuning impedance affects the growth 
rate and the extent of the effect depends 
on the chromaticity and the RF voltages

● It also has an appreciable impact on the 
TMCI threshold and tune shifts

● Good agreement between tracking 
simulations and Vlasov solver approach to 
a certain extent

● Rigid bunch analytical model developed 
for multi-bunch beams to study the effect 
of detuning impedance
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Questions? THANKS!
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03SIMULATION PARAMETERS

APPENDIX A
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MACHINE 
PARAMETERS

● Number of macroparticles: 5e5
● Machine: SPS at Q-20 injection
● Number of slices: 500
● Chromaticities

○ Qp_x = Qp_y = 0 (for intensity 
sweep)

○ Qpp_x = 272; Qpp_y = 662
○ Qppp_x = -1869000; Qppp_y = 

1449600
● Intensity: 2e11 protons (for chromaticity 

sweep)
● Number of turns: 8192
● Number of segments: 1
● RF voltages: 5.75 MV, 0.8625 MV
● Bunch length: 0.23 m
● Bucket length: 2.5 ns
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WAKE PARAMETERS● Pipe radius: 3 
cm

● Conductivity: 
1E6

RESISTIVE WALL RESONATOR SPS MODELS

● R: 7 M Ohm
● f: 1 GHz
● Q: 1

● Post LS2 Q20
● Post LS2 Q22
● Post LS2 Q26
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03ADDITIONAL SLIDES

APPENDIX B
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● Impedance: 
Broadband resonator

● Linear synchrotron 
motion

EFFECT W.R.T 
CHROMATICITY

MANY PARTICLE
MODEL

73

Always stabilising
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● Only rho = 0 and -1 
considered

● Second harmonic 
voltage varied as a 
percentage first

● For higher second 
harmonic, detuning is 
stabilising

INCLUDING SECOND 
HARMONIC

MANY PARTICLE
MODEL

● Impedance: Resistive 
Wall

● Non-linear 
synchrotron motion 

● Double harmonic RF 
voltage
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● Only rho = 0 and -1 
considered

● Second harmonic 
voltage varied as a 
percentage first

● For higher second 
harmonic, detuning is 
stabilising

INCLUDING SECOND 
HARMONIC

MANY PARTICLE
MODEL

● Impedance: Resistive 
Wall

● Non-linear 
synchrotron motion 

● Double harmonic RF 
voltage
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● Dependence on the second harmonic 
implies effect influenced by the actual 
distribution

● Distribution profiles examined for 
different conditions

EFFECT OF ACTUAL 
DISTRIBUTION

MANY PARTICLE
MODEL

76
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● Perfect gaussian
● No destabilisng effect

LINEAR

MANY PARTICLE
MODEL
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● Imperfect gaussian
● Destabilising effect 

seen

NON-LINEAR WITH 
SINGLE HARMONIC

MANY PARTICLE
MODEL
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● Second harmonic 10% 
of first

● Distribution closer to 
gaussian than single 
harmonic

INTRODUCING 
SECOND HARMONIC

MANY PARTICLE
MODEL
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● Second harmonic 20% 
of first

● Distribution tends to 
ideal gaussian

INTRODUCING 
SECOND HARMONIC

MANY PARTICLE
MODEL
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CONSIDERING EMITTANCE, LINEAR WITH HIGH ORDER CHROMATICITIES

81

SPS EXAMPLE
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CONSIDERING EMITTANCE, NON LINEAR WITH SECOND ORDER CHROMATICITY 

82

SPS EXAMPLE
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CONSIDERING EMITTANCE, LINEAR WITH HIGH ORDER CHROMATICITIES

83

SPS EXAMPLE
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CONSIDERING EMITTANCE, NON LINEAR WITH SECOND ORDER CHROMATICITY 

84

SPS EXAMPLE



85

CONSIDERING CHROMATICITY, Q22 OPTICS

85

SPS EXAMPLE
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CONSIDERING CHROMATICITY, Q22 OPTICS

86

SPS EXAMPLE
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WAKE KICK

● Wakes generate a kick acting on the 
momentum
○ Felt once each turn

● Wake kick is given by

depends on the positions of the same turn

87

ANALYTICAL MULTI-BUNCH
MODEL
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ONE TURN MAP

● Let M be the one-turn map
● The new coordinates of bunch 1 after the 

lattice and before the wake kick are
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ANALYTICAL MULTI-BUNCH
MODEL
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EFFECT OF WAKE 
KICK

● For 2 bunch system, final coordinates 
after kick given by
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ANALYTICAL MULTI-BUNCH
MODEL
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EIGENVALUE 
ANALYSIS

● The eigenvalues for n modes are given by

for mode i
● The tune       of mode i is given by
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ANALYTICAL MULTI-BUNCH
MODEL
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TUNES VS COUPLED BUNCH MODES

91

ANALYTICAL MULTI-BUNCH
MODEL
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INTRODUCTION OF 
DAMPER

● Ideal damper with gain g acting on the 
position is considered
○ As damper is independent of wakes, 

additional term in M
● New matrix M is given by
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ANALYTICAL MULTI-BUNCH
MODEL
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● Opposite shifts from 
driving and detuning

● Flat tune shift from 
driving + detuning

8 TURNS
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ANALYTICAL MULTI-BUNCH
MODEL

Turns = 8
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● Opposite shifts from 
driving and detuning

● Flat tune shift from 
driving + detuning

32 TURNS
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ANALYTICAL MULTI-BUNCH
MODEL

Turns = 32
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● Tune shift from 
detuning has 
converged

● Flat tune shift from 
driving + detuning

64 TURNS
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ANALYTICAL MULTI-BUNCH
MODEL

Turns = 64
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128 TURNS
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ANALYTICAL MULTI-BUNCH
MODEL

● Tune shift from 
detuning has 
converged

● Flat tune shift from 
driving + detuning

Turns = 128
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256 TURNS
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ANALYTICAL MULTI-BUNCH
MODEL

● Tune shift from 
detuning has 
converged

● Flat tune shift from 
driving + detuning

Turns = 256
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1024 TURNS

98

ANALYTICAL MULTI-BUNCH
MODEL

● Tune shift from 
detuning has 
converged

● Flat tune shift from 
driving + detuning

Turns = 1024
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4096 TURNS

99

ANALYTICAL MULTI-BUNCH
MODEL

● Tune shift from 
detuning has 
converged

● Tune shift in steps 
from driving + 
detuning

Turns = 4096
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8192 TURNS

100

ANALYTICAL MULTI-BUNCH
MODEL

● Tune shift from 
detuning has 
converged

● Tune shift in steps 
from driving + 
detuning

Turns = 8192
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TUNE 
CONVERGENCE

101

ANALYTICAL MULTI-BUNCH
MODEL

● Plot of maximum 
tune excursion 
against the number of 
turns

Turn where tune from 
driving + detuning jumps 

depends on intensity

Early jump for higher 
intensity


