

Effect of a high frequency BBR on the SPS TMCI from a BBR with PyHEADTAIL

Acknowledgments: N. Mounet, B. Salvant, C. Zannini

Sébastien Joly, Elias Métral

31/08/2020

Introduction

- Within the framework of the study of the effects of space charge on the SPS TMCI, we looked at the effect of a high frequency broad-band resonator impedance on the TMCI from a broad-band resonator.
- A high frequency broad-band resonator impedance has some similarities with space charge and introduces negative tune shifts without any growth rate (for a high enough frequency).
- Investigating the impact of such an impedance could help us to understand better the different aspects of space charge on instabilities.

SPS parameters

SPS Q26 optics at injection, single bunch PyHEADTAIL simulations

Parameters	E _{kinetic} = 25.1 GeV
τ_{b} (full bunch length) [ns]	2.8
Q _s	3.24*10 ⁻³
Q _x	26.13
Q _y	26.18
α _p	1.92*10 ⁻³
γ_{tr}	22.8
n _{turns}	8192
n _{macroparticles}	500000
n _{slices}	5000

Resonators parameters

Effect of n_{slices} on wake function (BBR and hfBBR cases)

Sébastien Joly, Elias Métral | Effect of a high frequency BBR on the SPS TMCI from a BBR with PyHEADTAIL

Effect of n_{slices} on wake function (BBR and hfBBR cases)

- Setting a number of slices up to 500000 allows accurate wake slicing to the cost of time consuming simulations
- Another option is to take advantage of the length of the wake. Rather than uniformly slice the wake from $-\sigma_z$ to σ_z we can slice from $-\sigma_z/100$ to $\sigma_z/100$
- We can use a limited number of slices (5000) and still accurately interpolate the wake
- We will use this way of slicing wakes for the rest of the study

31/08/2020

Growth rate of a hfBBR (10 GHz) + BBR

Region more stable than BBR only

SPS TMCI from a BBR threshold

- Beam becomes the most unstable at larger intensities and inductive impedances
- The area of the stable region becomes smaller as the frequency of the inductive impedance increases

Growth rate of a hfBBR (100 GHz) + BBR

Region more stable than BBR only

SPS TMCI from a BBR threshold

- We observe a region where the effect of inductive impedance is beneficial leading to a beam more stable than the case BBR only
- We observe another region where the effect of inductive impedance is detrimental

Sébastien Joly, Elias Métral | Effect of a high frequency BBR on the SPS TMCI from a BBR with PyHEADTAIL

Growth rate of a hfBBR (1000 GHz) + BBR

SPS TMCI from a BBR threshold

- Beam becomes the most unstable at larger intensities and inductive impedances
- The stable region disappears after a certain frequency of the inductive impedance

Similarities between the effect of a hfBBR and space charge

• The effect of a hfBBR on the SPS TMCI from a BBR shares some similarities with the effect of space charge from 2-particle model from Chao-Chin-Blaskiewicz

- Adding a hfBBR impedance to a BBR impedance leads to two different effects :
 - A beneficial effect with the presence of a stable region at small intensities and Z^{hfBBR}_t/Z^{BBR}_t (region more stable than BBR only)
 - A detrimental effect, leading to substantially more unstable beam outside of the stable region
- Increasing the frequency of the hfBBR leads to two different effects :
 - Reduction of the stable region area until it disappears at a high resonant frequency
 - Shift of the most unstable region to larger intensities and inductive impedances
 - TMCI intensity threshold lower than ~7.10¹⁰ ppb (BBR only case) for Z_t^{hfBBR}/Z_t^{BBR} high enough

Outlook

- Check the results
 - Check the convergence with the number of **turns**, **slices** and **macroparticles**
- Look at intra-bunch motion
- How to introduce a hfBBR impedance in the SPS ?
 - Investigate potential adverse effects from such an impedance
 - Use DELPHI again
 - Highlight most critical mode coupling with DELPHI

Backup slides

home.cern